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ABSTRACT

This Doctoral Dissertation, presented as a set of research contributions, focuses

on resource efficiency in data centers. This topic has been faced mainly by the

development of several energy-efficiency, resource managing and scheduling policies,

as well as the simulation tools required to test them in realistic cloud computing

environments.

Several models have been implemented in order to minimize energy consump-

tion in Cloud Computing environments. Among them: a) Fifteen probabilistic and

deterministic energy-policies which shut-down idle machines; b) Five energy-aware

scheduling algorithms, including several genetic algorithm models; c) A Stackel-

berg game-based strategy which models the concurrency between opposite require-

ments of Cloud-Computing systems in order to dynamically apply the most optimal

scheduling algorithms and energy-efficiency policies depending on the environment;

and d) A productive analysis on the resource efficiency of several realistic cloud–

computing environments.

A novel simulation tool called SCORE, able to simulate several data-center sizes,

machine heterogeneity, security levels, workload composition and patterns, schedul-

ing strategies and energy-efficiency strategies, was developed in order to test these

strategies in large-scale cloud-computing clusters. As results, more than fifty Key

Performance Indicators (KPI) show that more than 20% of energy consumption

can be reduced in realistic high-utilization environments when proper policies are

employed.
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CHAPTER 1

INTRODUCTION

Today's scientists have substituted mathematics for experiments, and they wander

off through equation after equation, and eventually build a structure which has no

relation to reality.

Nikola Tesla

1.1 Research Motivation

Cloud computing and large-scale web services have transformed computer cluster

and big-data environments, which have led to a new scenario where these infras-

tructures are as energy greedy as many factories. The latest estimations consider

that data centers account for approximately 1.5% of global energy consumption [1].

In Figure 1.1 the evolution of data-center energy consumption is shown. It can be
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Chapter 1: Introduction

noticed that the growth of such energy consumption has decreased thanks to the

application of various energy-efficiency models.

Figure 1.1: Data-Center Energy consumption evolution

The evolution of cloud computing and big data services has enabled the industry

to process huge amounts of data in a reliable and distributed way; however, fast-

response and low latency are also needed in this late stage of cloud computing.

Several actors have made improvements in particular subsystems or frameworks,

such as: parallel and distributed algorithms; distributed file systems; resource man-

agers; and execution engines. Such developments have often resulted in a fragmented

and heterogeneous software environment whose complexity is constantly rising.

Many of these improvements offer various vertical all-in-one solutions to solve

each problem, others build new generalist solutions over de-facto standard systems,

such as Hadoop Distributed File System [2], YARN [3], and Spark [4]. This mix of

solutions forces system administrators to use various technologies or even multiple

stacks of technologies. In many cases, there is no compatibility between them. Thus,

a wrong architectural decision may cause business-critical negative impact.

According to Koomey Law [5], every new server generation provided higher com-

puting power since the 1950s. Such an increase made resource-efficiency strategies
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1.2 Research Methodology

not critical. However, the progression of the computing power is not as fast as it

was in the past, and it is limited by Margolus - Levitin theorem [6]. Such a limita-

tion forces data-center industry to adopt new strategies to fulfill the ever-increasing

computing requirements while maintaining data-center operation costs [7].

Data centers do not utilize the same amount of resources at any time, which leads

to many servers remaining idle during low-utilization periods. Software systems

should be able to make energy-aware scheduling decisions in order to achieve energy

proportionality while maintaining Service Level Objectives (SLO).

In addition, energy-proportionality models should not be focused only on spe-

cific frameworks or subsystems, since data-center workload is constantly evolving.

This problem led certain researchers to shift their focus towards the creation of an

evolution of the resource managers: a distributed data-center operating system [8]

which could manage the resource utilization of every subsystem at a higher level

instead of per-framework basis. The evolution of resource schedulers to a kind of

data-center operating system enables power proportionality to be achieved.

Since a wide range of frameworks are deployed on the same group of resources

in these systems, energy-efficiency efforts must focus on the core component of the

system - the resource manager, or data center operating system -, instead of on each

framework separately.

The described drawbacks in terms of heterogeneity, and requirements in terms

of resource efficiency, make necessary the development of energy and performance-

aware models to achieve higher energy proportionality. Such models are to be applied

to the high-level resource manager layer in large-scale realistic scenarios.

1.2 Research Methodology

This research follows the standard scientific research technique [9] which includes

the following phases:
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Chapter 1: Introduction

1. Study and analysis of the current state of the art. This first step helped

to clearly define the research question and motivate the novelty of the work,

since already-existing models, solutions and data were analyzed.

2. Novel theoretical solutions. In this phase new theoretical models which

can help to answer the research question are developed.

3. Implementation of the theoretical solutions. Several algorithms, policies

and techniques have been developed to empirically test the theoretical mod-

els. Other models have been developed to rigorously compare the proposed

solutions.

4. Simulation and empirical analysis. The required simulation tools which

implement the proposed models have been developed to correctly test and

analyze the results provided.

1.3 Research Question

The research question that leads this thesis dissertation is:

Which are the best strategies to reduce energy consumption in realistic large-scale

Cloud-Computing clusters with no notable negative impact on cluster performance?

1.4 Research Objectives

The objectives of this thesis dissertation aim to concretely contribute to the devel-

opment of energy-aware cloud computing data centers by answering the research

question in many areas. Among them:

• Proof that fear to the application of energy-efficiency policies that shut down

underutilized machines should be overcome in order to achieve higher efficiency

levels.
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1.5 Success Criteria

• Proof that a simulation tool able to simulate large-scale data centers with high

performance can be built to trustfully test the models proposed. This simula-

tion tool may include several energy efficiency policies, scheduling algorithms,

resource managers and workloads.

• Proof that energy consumption in monolithic-scheduling data centers can be

successfully reduced without notably impacting performance if the correct set

of energy-efficiency policies based on the shut-down of idle machines are ap-

plied.

• Proof that genetic algorithms are an excellent solution to efficiently distribute

tasks among servers in data centers taking into account performance, energy,

and security restrictions.

• Proof that models based on games theory, such as the Stackelberg model,

are an excellent choice to successfully model the concurrency between data-

center subsystems with opposite needs, and that this model can be used for

the dynamic application of resource-efficiency policies.

• Proof that the productive analysis of realistic Cloud-Computing data centers

can empirically guide data-center administrators to perform efficiency-related

decisions.

1.5 Success Criteria

Success will be achieved if the research question and objectives are resolved, by

testing that the models and the developed tools and algorithms which support them

achieve better grades of energy efficiency. Simulation tools have been built in order

to properly implement the energy-efficiency models and proof their validity and

improvements.

The experimentation should be performed by following industry standards to

recreate realistic, complex and heterogeneous scenarios which could be easily adopted
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Chapter 1: Introduction

by real-life partners. Such scenarios imply thousands or even tens of thousands of

servers, several workload composition and patterns, and scheduling algorithms.

1.6 Thesis outline

The document is structured as follows: Chapter 2 introduces the problem of saving

energy in Cloud-Computing large-scale data center facilities.

In Part II, six published papers have been selected. These papers address this

thesis objectives. Such journals are included in the Thomson Reuters Journal Cita-

tion Reports (JCR) ranking integrated with the Institute for Scientific Information

(ISI) web of knowledge.

Finally, in Part III, discussion, conclusions and future work are presented.
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CHAPTER 2

CLOUD-COMPUTING DATA CENTERS

~E· = Qenc

0
~B· = 0∮
~E· = −

∮
~B· = 0 + ienc

James Clerk Maxwell
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Chapter 2: Cloud-Computing Data Centers

2.1 Introduction

Cloud Computing is based on offering any computing resource as a service to the

user. This business model enables users to reduce the management and operation

costs related to physical infrastructures and human resources in order to properly

run them.

In such paradigm, all user data and applications are stored in external facilities,

which are usually backed by providers’ data centers and computing clusters. Final

users may access to those data and applications through the Internet if and only if

they have the security permissions required.

Several service layers compose the cloud-computing business paradigm, among

them:

• Software as a Service, where both the application and data to be processed

are stored in external data centers and final users have access to them through

web browsers or clients;

• Platform as a Service, where users utilize the toolkits and libraries offered

by the provider to develop, configure and deploy software; and

• Infrastructure as a Service, where external computing, storing and net-

working resources, among others, are provided and used by final users.

The spread of this paradigm due to the growth of large internet companies, such

as Google, Amazon, or Microsoft, has led to a higher utilization of data centers and

computing clusters as the main computational core of Cloud Computing.

2.2 Data-Center architecture

Cloud-Computing data centers are composed of a complex mix of software and hard-

ware solutions, which must collaborate to achieve high performance and reliability
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2.2 Data-Center architecture

levels. Figure 2.1 shows a simple Cloud-Computing data-center architecture. In such

a simple architecture, data centers are usually divided in management, monitoring,

and virtualization modules, in addition to computing and storing resources.

Figure 2.1: Simple Virtual Machine Based Energy-Efficient Data Center Ar-

chitecture for Cloud Computing [10].

2.2.1 Hardware facilities

Data centers are not only composed of computational clusters, but many other

physical resources are required in order to properly run such a facility. Among

them:

• Networking facilities, such as routers, switches, and panels, including their

respective installations and redundant components to achieve higher reliability.

• Security access facilities, such as cameras, security and telecommunication

centers.

• Fire control facilities, such as humidity, smoke and fire detectors.
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Chapter 2: Cloud-Computing Data Centers

• Electric facilities, such as battery rooms, emergency generators, and power

distribution equipment.

• Cooling facilities, including chillers, water-based cooling systems, and tem-

perature regulators.

The aforementioned facilities typically consume more than 40% of the total

energy of data centers, as shown in Figure 2.2. Many efforts have been done to

reduce energy consumption in those facilities, such as: data-center cooling and tem-

perature management [11] [12], energy-efficient hardware [13] [14] [15]; and power

distribution [16].

Figure 2.2: Distribution of electricity costs in Amazon Data Centers [17].

However, more than half of the energy is still consumed by the thousands, and

even tens of thousands of servers these facilities are composed of.

2.2.2 Servers energy efficiency

In classic physics, Energy is the capacity to produce work (W ), understood as the

ability to move along a distance. Energy is often measured in kilowatt hours, (kWh).
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2.2 Data-Center architecture

Energy is a combination of power and time. The fewer power (watts) or the shorter

time, the more energy reduction.

In the International System of Units (SI), energy is measured in joules (J) which

is the energy expended to apply a force of one newton through a distance of one

metre, or in passing an electric current of one ampere through a resistance of one

ohm for one second, that is, J = (kg ·m2)/s2 = N ·m = Pa ·m3 = W · s

The reduction of energy consumed by servers in large-scale Cloud-Computing

data centers may be targeted to different layers, as shown in Figure 2.3:

Component

Physical

Operating System

Rack

Data Center

Figure 2.3: Server energy-consumption layers

• Components layer, which are the core pieces servers are composed of. Ex-

amples of energy-efficiency improvements in this layer include: Dynamic Fre-

quency and Voltage Scaling (DVFS) in CPUs and memory; and new-generation

SSD hard disks.

• Physical layer, where the server manages the power states of the hardware

pieces. Blade servers, which can be power-managed at a chasis level, are a

good example of improvements of energy-efficiency in this layer.
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Chapter 2: Cloud-Computing Data Centers

• Operating system layer, where software make decisions along with hard-

ware to reduce energy consumption. The utilization of a different number of

cores depending on the server workload is a good example of strategies applied

at this level.

• Rack layer, where power consumption of the lower levels are aggregated in

order to make higher-level energy-efficiency decisions.

• Data-Center layer, where energy-efficiency policies may be applied to any-

thing within data center, such as racks, hardware, and software. High level

tasks distribution according to cooling, energy and performance requirements

are the key tools in this layer, such as the shut-down of under-utilized servers.

Cloud-computing cluster servers may switch between On (executing tasks), Idle

(waiting for tasks), andOff. Each state has a particular power consumption. Some of

the selected papers of this thesis dissertation focus on changing the aforementioned

servers states.

2.2.3 Workloads

Figure 2.4 shows a simple typical workflow in Cloud-Computing data centers: the

user submits a set of Jobs that must be executed by the computational clusters.

Then, the resource manager coordinates the process of scheduling the Tasks the

Jobs are composed of, while several systems apply the monitoring and security

services, among others, required to a successful execution. This processing takes

some time, which is called queue time. After this process, the Tasks are executed

and the results stored or returned to the final user after the execution time. The

whole time needed to fully execute all the Tasks in a Job is called the Job makespan.

Cloud Computing data centers and computational clusters do not usually execute

a homogeneous set of Jobs, but several applications which share the same resource

pool. In addition, the workload is constantly evolving and the workload pressure

depends on the time, days, and geographical cluster location.
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2.2 Data-Center architecture
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Figure 2.4: Cloud Computing workflow example

In some of the selected papers of this thesis dissertation, the trends presented

by Google [18, 19] have been followed in order to create a realistic workloads, which

are composed of two kinds of workloads:

• Batch jobs, which perform a concrete computation and then finish. These

jobs have a determined start and end. MapReduce jobs are an example of

Batch jobs.

• Service jobs, which are jobs that usually run longer than Batch jobs, and

provide end-user operations and infrastructure services. As opposed to Batch,

these jobs have no determined end. Web servers, distributed file systems, or

services like BigTable [20] are good examples of Service jobs.
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Chapter 2: Cloud-Computing Data Centers

2.2.4 Resource managers

Resource schedulers and managers have evolved significantly from monolithic de-

signs to more distributed and flexible strategies, which made them become one of

the most critical parts of the data-center operating systems. Several degrees of paral-

lelism have been added to overcome the limitations present in centralized monolithic

scheduling approaches when complex and heterogeneous systems with a high num-

ber of incoming jobs are considered. The following scheduling models are studied in

this work:

• Monolithic: A centralized and single scheduler is responsible for scheduling

all tasks in the workload in this model [21]. This scheduling approach may be

the perfect choice when real-time responses are not required [22, 23], since the

omniscient algorithm performs high-quality task assignations by considering

all restrictions and features of the data center [24, 25, 26, 27] at the cost of

longer latency [23]. The scheduling process of a monolithic scheduler, such as

that given by Google Borg [28], is illustrated in Figure 2.5.

• Two-level: This model achieves a higher level of parallelism by splitting the

resource allocation and the task placement: a central manager blocks the whole

cluster every time a scheduler makes a decision to offer computing resources

to schedulers; and a set of parallel application-level schedulers perform the

scheduling logic against the resources offered. This strategy enables the devel-

opment of sub-optimal scheduling logic for each application, since the state of

the data center is not shared with the central manager nor with the applica-

tion schedulers. The workflow of the Two-level schedulers ([29, 3] Mesos and

YARN respectively), is represented in Figure 2.6.

• Shared-state schedulers: On the other hand, in Shared-state schedulers,

such as Omega [19], the state of the data center is available to all the sched-

ulers. The central manager coordinates all the simultaneous parallel sched-

ulers, which perform the scheduling logic against an out-of-date copy of the
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Scheduling logic 

Figure 2.5: Monolithic scheduler architecture, , M - Worker Node, S - Service

task, B - Batch task.

state of the data center. The scheduling decisions are then committed to the

central manager, which strives to apply these decisions. Since schedulers use

non-real-time views of the state of the data center, the commits performed

by the central manager can result in a conflict when chosen resources are no

longer available. In such a scenario, the local view of the state of the data cen-

ter stored in the scheduler is refreshed before the repetition of the scheduling

process. The workflow of the Shared-state scheduling model is represented in

Figure 2.7.

2.3 Key performance indicators

In order to properly define the workload and to model the operational environment

that the simulation tool will follow, hundreds of parameters have been covered,

studied and described in the selected research papers. In this thesis dissertation,
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Figure 2.6: Two-level scheduler architecture, C - Commit, O - Resource offer,

SA - Scheduler Agent.

the most relevant ones are presented in order to correctly understand the behaviour

of our work and experimentation.

2.3.1 Workload and environmental parameters

Various parameters are considered in order to model the operational state of the

data center and the characteristics of the workload. Among them:

• Inter-arrival time: represents the time between two consecutive Service or

Batch Jobs. It determines also the amount of Jobs executed in a specific

window time.

• Number of tasks: represents the number of Tasks a Job is composed of.

• Job duration: represents the time that a Job is consuming resources in the

data center.
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Figure 2.7: Shared-state scheduler architecture, U-Cluster State Update.

• Job think time: represents the time needed to make a schedule decision.

This time is a job-related overhead.

• Task think time: In addition to the Job think time, the Task think time

represents the amount of time needed to schedule each task in a particular

Job.

• CPU utilization: The average CPU utilization in terms of the overall data

center during the simulated operation time.

• RAM utilization: The average RAM memory utilization in terms of the

overall data center during the simulated operation time.

2.3.2 Energy savings indicators

In order to describe the energy savings and its related behaviour, several pa-

rameters are taken into consideration. Among them:
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Chapter 2: Cloud-Computing Data Centers

– Energy consumption: The total energy consumed.

– Energy savings: The total energy saved compared to the base, non-

efficient data center.

– Total shut-down operations: The total number of shutting downs

performed during the overall simulated operation time. The higher the

number, the more stress hardware will suffer.

– Energy saved per shut-down operation: Represents the energy saved

against the shut-down operations performed. The higher the number, the

more will be saved with the lesser hardware impact.

– Time shut-down per shut-down cycle: This indicator will show the

amount of time a machine stays in a low-energy state without a power-on

action being requested. The higher the time a shutting-down cycle is, the

lesser the impact on the hardware. It can also represent a better or more

conservative workload prediction.

– Idle resources: Represents the percentage of resources that are turned

on and are not being used in each moment against the data-center re-

sources. Lowering idle resources is a main concern, representing a good

workload prediction and resource fit, therefore achieving the highest energy

efficiency.

2.3.3 Performance indicators

In order to describe the impact of the different energy-efficiency models on the

current data center performance, several parameters are studied and analyzed,

including:

– Makespan: Represents the actual time needed for a Job to fully complete

the execution of all the Tasks it is composed of.

– Job queue time first scheduled: Represents the time a Job is in the

queue until the first of its Tasks is scheduled for the first time. It is

usually related to the final user experience.
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– Job queue time fully scheduled: Represents the time a Job is in the

queue until all its Tasks are scheduled (not finished). It is usually related

to the real computing experience and makespan.

– Jobs timed out scheduling: A Job is marked as timed out and left

without scheduling when the scheduler tries to schedule the same job 100

times, or 1000 consecutive times the same task in a Job. The higher the

number, the worst performance is achieved.

– Busy time: Represents the time employed by schedulers to perform

scheduling decision Tasks. As the same workload is executed, a higher

busy time will represent a higher scheduler occupation, worsening the

overall scheduling performance.

– Job think Time: Represents the actual time needed for the scheduler

to make a Job schedule decision.

The aforementioned parameters constitute a subset of the total parameters

under analysis. As more than one hundred configuration and results param-

eters are involved in the papers presented in this thesis dissertation, only the

ones needed to a proper high-level understanding of the ongoing research have

been described in this Section. Deeper explanations on such parameters can

be found in the selected papers presented in Part II.
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internet data centers
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SCORE: Simulator
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Energy policies for
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Security support-
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cloud environments.
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Game-based energy-

aware cloud sched-

uler and simulator

for computational

clouds.

Productive Effi-

ciency of Energy-

Aware Data Centers.
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Energy wasting at internet data centers due to fear

This paper presents the initial step towards the achievement of this thesis

dissertation, and fulfills the first of its research objectives: "Proof that fear

to the application of energy-efficiency policies that shut down underutilized

machines should be overcome in order to achieve higher efficiency levels", since

in current data centers, the fear experienced by data-center administrators

presents an ongoing problem due to the low percentage of machines that they

are willing to switch off in order to save energy.

This risk aversion can be assessed from a cognitive system. The purpose of

this paper is to demonstrate the extra costs incurred by maintaining all the

machines of a data center executing continuously due to fear to damaging

hardware, degradation of service, and losing data.

To this end, an objective function which minimizes energy consumption de-

pending on the number of times that the machines are switched on/off is

provided. The risk aversion experienced by these data center administrators

can be measured from the percentage of machines that they are willing to

switch off.

The main contribution to the research community is the empirical analysis

which shows that it is always the best option to turn off machines in order to

reduce costs, given a formulation of the cognitive aspects of the fear experi-

enced by data-center administrators.

This work was published in Pattern Recognition Letters. This Journal is in-

dexed in JCR with an Impact Factor of 1.586. The Journal stands in

ranking Q2 in Computer Science, Artificial Intelligence (59/130).
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The fear experienced by datacenter administrators presents an ongoing problem due to the low percentage

of machines that they are willing to switch off in order to save energy. This risk aversion can be assessed

from a cognitive system. The purpose of this paper is to demonstrate the extra costs incurred by maintaining

all the machines of a data center executing continuously for fear of damaging hardware, degradating the

service, or losing data. To this end, an objective function which minimizes energy consumption depending

on the number of times that the machines are switched on/off is provided. The risk aversion experienced by

these data center administrators can be measured from the percentage of machines that they are willing to

switch off. It is shown that it is always the best option to turn off machines in order to reduce costs, given a

formulation of the cognitive aspects of the fear experienced by datacenter administrators.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A data center is a facility used to house computer systems and as-

sociated components, such as telecommunications and storage sys-

tems. It generally includes redundant or backup power supplies, re-

dundant data communications connections, environmental controls

(e.g., air conditioning, fire suppression) and various security devices.

Large data centers are industrial-scale operations that can consume

as much electricity as a small town and sometimes constitute a major

source of air pollution in the form of diesel exhaust.

The main purpose of a data center is to run applications, perform

tasks or store data. The many examples of internet and computing

services performed by data centers include:

The spread of cloud and grid computing paradigms has increased

the size and usage of data centers; today there are thousands of data

centers worldwide, which means millions of machines in total.

The majority of these facilities are located in the USA (about 25%

of the total energy consumption of data centers worldwide [20]) and

to a lesser extent in Europe. However, large companies such as Google

locate a number of their data centers in high latitudes near the north

pole to minimize cooling costs, which represent almost 40% of total

energy consumption of these infrastructures [1].

Energy consumption by data centers has grown in the past

ten years to 1.5% of worldwide energy consumption [25]. Major

✩ This paper has been recommended for acceptance by Lledó Museros.
∗ Corresponding author. Tel.: +34 954 559 769; fax: +34 954 557 139.

E-mail address: afdez@us.es (A. Fernández-Montes).

companies have therefore addressed their energy-efficiency efforts

to areas such as cooling [7], hardware scaling [8] and power distri-

bution [9], thereby slowing down the growth in power consumption

in these facilities in recent years as we can see in Fig. 1, which shows

the latest predictions.

In addition to these areas of work, saving energy by switching

on/off machines in grid computing environments has been simulated

using various energy efficiency policies, such as turning off every ma-

chine whenever possible, and turning off a number of machines de-

pending on workload [10].

Although it has been demonstrated that about 30% of energy can

be saved by applying these energy-aware policies [11], big companies

still prefer not to adopt such policies due to their potential impact

on the hardware, the possibility of damaging machines, and the costs

associated with this hardware deterioration.

The purpose of this paper is to compute the costs imposed by the

risk aversion experienced by data center administrators on switch-

ing off machines, and to show that even when taking these fears into

consideration, some servers of the data center should still be turned

off to minimize energy consumption and overall costs.

1.1. Cognitive systems modeling emotions

In psychology [33], emotion is a subjective, conscious experience

characterized primarily by psycho-physiological expressions, bio-

logical reactions, and mental states. It is influenced by hormones

and neurotransmitters, such as dopamine, noradrenaline, serotonin,

oxytocin, cortisol, and gamma-aminobutyric acid. Furthermore,

http://dx.doi.org/10.1016/j.patrec.2015.06.018

0167-8655/© 2015 Elsevier B.V. All rights reserved.
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Fig. 1. Data center energy consumption worldwide [24].

neurologists [14] have made progress in demonstrating that emotion

is as, or more, important than reason in the process of making

decisions. Modeling emotions is a problem tackled from diverse

knowledge areas: robot-based systems [6], music [30], videogames

and virtual worlds [15] and domain-independent systems [16].

Moreover, emotion recognition systems [18] are on the rise in

effective computing research. Data can be obtained from diverse

sources: physiological signals (electromyogram, blood pressure,

skin conductance, respiration rate and electroencephalogram rate),

speech and facial expressions. Focusing on the emotional fear, it

appears in response to a specific and immediate danger or a future

specific unpleasant event. It can be measured and detected through

biosignals such as irregular heart and respiration rate [5,19], visual

signals (head gestures, nods and shakes) [17] and facial feature

information [34]. Several studies [21] using optogenetic techniques

have shown how aversive experiences trigger memories and suggest

that combined hebbian and neuromodulatory processes interact to

engage associative aversive learning.

Our interest in this paper is to model a function that quantifies the

costs of the fear experienced by a datacenter operator on deciding

whether a machine must be switched off. According to Michael

Tresh, formerly a senior official at Viridity, a company that delivers

energy-optimization to data centers: “Data center operators live in

fear of losing their jobs on a daily basis, because the business won’t

back them up if there’s a failure.” The startup ‘Power Assure’ which is

focused on energy management, marketed a technology that enables

commercial data centers to safely power down servers when they are

not needed, but, as the manager of energy efficiency programs at the

utility, Mary Medeiros McEnroe, explains that, even with aggressive

programs to entice its major customers to save energy, Silicon Valley

Power, a not-for-profit municipal electric utility, failed to persuade a

single data center to use that technology. “It’s a nervousness in the I.T.

community that something isn’t going to be available when they need it”

[13]. Moreover, Power Assure, was dissolved in october 2014. Its tech-

nology was based on algorithms that enabled optimal server capacity

and application needs to be calculated and to automatically shut off

unnecessary capacity or spin up more capacity based on actual appli-

cation demand. Jennifer Koppy, research director for data center man-

agement at International Data Corporation (IDC), said Power Assure’s

energy management technology was “extremely forward-looking …

they had a superb idea, but I don’t think the market is ready yet.”

Fig. 2. Life cycle of a data center server [10].

2. Problem analysis

It makes sense that one of the most effective ways to achieve con-

siderable energy savings is to turn off computers that are not being

used. Although this idea is generally accepted by users, and hence

most personal computers are turned off at night or during periods of

low usage, it is seldom implemented in data centers or at enterprise

level.

Although the average server utilization within data centers is very

low (typically between 10% and 50% [4]), very few companies prefer

to turn off the machines that are not in use rather than leaving them

in an idle state. While idle servers consume half the energy of those

in a state of intensive use [24], this remains a high direct and indirect

energy cost due to the increased need for cooling. The several dif-

ferent states through which a machine can pass are shown in Fig. 2.

In this state diagram the average power consumption of a common

server per CPU in each state is also shown, and the time needed to
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Fig. 3. File access pattern in Yahoo cluster [23].

change from one state to another. Notice that a server with 4 CPUs

spends 4 times the energy shown in each state, i. e. 432 Watts∗h in

ON state.

It has to be noted that very few machines cannot be switched off.

Some of the machines from the data center act as master nodes, while

the vast majority of machines act as slave nodes which are candidates

to be switched off.

The main reasons why IT departments generally prefer to keep

machines idle are for fear of:

• Hardware damage: It is known that due to a high number of

switching on/off cycles, some computer hardware components

suffer stress, which can lead to computer deterioration. We incur

this as a cost: The repair cost. The component that is usually dam-

aged is the hard drive [29], which has other implications besides

simply their repair or replacement costs. However, due to the con-

stant improvements of these components and the new SSD hard

drives, it can be expected that the failure rate of these pieces of

hardware will diminish over time, and therefore these new drives

will reduce this type of fear.
• Service degradation: When a task needs the service of this

damaged computer which can no longer perform a service, in

a new cost is incurred due to the worsening in service quality,

response times, etc.: The opportunity cost. Despite this potential

opportunity cost, as we have seen, the server utilization within

data centers is very low therefore, in a distributed environment,

is highly unlikely that no other machine in the data center can

provide the service that this machine was providing.
• Data loss: This is a critical issue in a data center infrastructure.

If the machine (and its hard drive) that has been damaged was

the only one that stored certain data and this data has been lost,

certain critical operations could not be performed and it would

entail very high operation costs. However, as mentioned above,

distributed systems such as data centers typically replicate their

data between multiple machines across the data center servers,

and therefore, it is highly unlikely for information to be lost. Data

loss will only happen if data has just been created and has not had

time to be replicated.

Due to these fears experienced by the IT staff from big internet

companies, file distribution policies within data centers are designed

to minimize the possibility of losing any data, thereby maximizing

the availability of data and the available computing capacity to per-

form tasks associated with it.

These distribution policies do not aim at energy efficiency. To

achieve this energy efficiency, data center managers rely on hard-

ware systems that work by: switching off some components - mainly

the hard drive - to a state of inactivity; improving cooling systems;

adopting chiller-free cooling strategies; or by raising operating

temperature [7].

A performance penalty is imposed on hardware components left

in a state of inactivity and the entire data center has to assume a delay

of up to several seconds for inactive drives. In addition, we must take

into account that there is a trend among these infrastructures that

involves the utilization of multiple hard drives – ranging from 4 to 6 –

rather than RAID systems, which are less energy efficient. In this type

of system, hard disk consumption only accounts for 10% of energy

consumption; the bulk of the energy is consumed by harder scalable

hardware components such as RAM or CPU, which consume about

63% of the total energy [28].

To achieve this high availability of data stored in the data center,

many parallel-computing frameworks and distributed file systems

such as Hadoop [31] and GFS [12], make use of data replication as a

strategy to maximize its availability and fault-tolerance, distributing

it in accordance with policies that minimize the possibility of cor-

ruption in all stored replicas and thereby the irretrievable loss of any

data.

The above policies meet the requirements satisfactorily, since they

minimize the risk of data loss within the data center. However, these

kinds of policies have some disadvantages, including:

• Location and status of data are not taken into account: Tem-

poral data locality is essential to building operating optimization

policies for the data center due to the usage of and access to file

patterns. Therefore, the computation required to execute the re-

lated tasks follows a pattern as shown in Fig. 3.

In the case study of the Yahoo! Hadoop cluster that serves as a

base for GreenHDFS [22], 60% of this cluster total space was being

used by data that is not often accessed. The current average life-

time during which a piece of data is often used is 3 days in 98% of

cases, and even exceptions to this pattern of use, 80% of the files

were used intensively for fewer than 8 days. Within the group of

files that are not frequently used, non-access periods varied be-

tween 1 and 18 days [23].
• File distribution policies are not efficient-friendly: Current dis-

tribution policies scatter data blocks between the largest possible

number of machines with the aim of minimizing the risk of losing

any data due to hardware failure on the machine, failure of facility

components at rack level, etc. Servers are therefore constantly un-

derused as mentioned above, which in turn results in low power

usage in data storage and associated computing, as well as mak-

ing impossible an orderly shutdown of these servers impossible

without jeopardizing the proper functioning of the data center.

Moreover, these distribution policies are based on the static and

constant replication model, where all file blocks have the same

number of copies and are distributed following the same rules,

regardless of the access or computing needs.

For the reasons discussed (the low rates of storage and comput-

ing power utilization of these facilities), it seems that if efficient

distribution policies are applied in conjunction with switching

on/off policies, then not only will data center performance be free

from compromise in achieving greater energy efficiency, but also

substantial improvements in both aspects can be achieved due to the
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inefficiency of the current data distribution policies. Of course, this

kind of efficient distribution and switching on/off policies can never

jeopardize the availability and integrity of data, but must minimize

(if not improve) impact on overall data center performance. Within

these distributions and machine power on/off policies we can

highlight:

• Covering subset: These policies are based on splitting the data

center into many disjoint areas so that a number of replicas of

each file are stored. The goal of systems that implement these

policies is to switch off the maximum number of sectors in the

data center to achieve greater energy savings, without affecting

the correct operation [26] [35]. The disadvantages of the systems

that implement these policies are:

– The worsening write rate due to write-offloading associated

with writing on machines that are not running at the time that

writing occurs [3].

– The number of replicas of each file is constant and static.

– Neither data time locality nor file utilization pattern are taken

into account.

Systems like Sierra [32] and Rabbit [2] obtain a very high energy

proportionality with virtually no impact on the availability and

only a slight impact on the overall performance of the data center.
• Data temperature: Systems that apply these policies are based

on the temporal locality and frequency of use of the files stored

in the data center to consistently assign them a temperature (the

more frequently used the file is, the hotter the temperature) and

redistribute them into two areas: a hot zone aimed at maximizing

the performance and availability of data stored on it; and a cold

zone whose aim is to minimize the energy consumption of the

machines assigned to this area. In such systems, such as Green-

HDFS [22], the ultimate goal is to efficiently distribute the ma-

chines between these different areas, maximizing the overall per-

formance thanks to improvements in the hot zone, minimizing

the overall energy consumption thanks to improvements in the

cold zone, increasing the time response as little as possible when

reading files from machines switched off (in GreenHDFS, only 2.1%

of the readings were affected by this temporary penalty due to

switching on the machine at the time of the reading), thereby sig-

nificantly reducing the energy consumption of servers: 24% in the

case of GreenHDFS [23].
• Dynamic replication: Other solutions, such as Superset [27], take

the above strategies as a starting point, but also take into account

the “temperature” of the data above a threshold, not only to power

on/off machines, but also to increase or decrease the number of

copies of stored data, thereby preserving the availability of data

and reducing overall energy consumption thanks to the switch-

ing on/off policies and improved performance. This is achieved

by transferring storage space and computing power from the cold

files that are not frequently used, to those files that need these

resources, i.e, the hottest files.

As we have discussed, the problems related to the server shut-

down are not critical and do not endanger the proper operation of

these infrastructures. Therefore, this paper studies the costs caused

by risk aversion, and the energy savings and reduced environmental

impact that could be achieved if this fear is overcome.

3. Theoretical analysis

A function that quantifies the costs of fear, i.e. the costs associ-

ated with the belief that turning off data center machines imposes a

greater cost than the energy savings achieved, is proposed. From this

function, an assessment of the risk aversion to switching off machines

is provided.

Let us present the problem. Given a set of tasks to be com-

puted in a period of time T, it is assumed that the minimum power

consumption, min, is achieved by turning off the machines when-

ever possible, and that the maximum power consumption, Max, is

obtained in the case that the machines never are turned off. Hence,

the extra expense imposed due to the consumption from all those

machines remaining turned on without interruption is given by

M = Max − min

Let us suppose that a datacenter has n machines, all of them equal.

This act is justified since actually, data center machines are grouped

by racks of identical machines. Even machines from different racks

share the same components or at least components are produced by

the same manufactures.

Let Nj be the maximum number of times that a machine j, j =
1, . . . , n, can be turned on given an operation time T. This value is

computed as a maximum that depends on operation time T, shutting

down time (Toff, time needed to switch off a machine) and turning on

time (Ton, time needed to switch on a machine from the off state) as

follows:

Nj = T

Tof f + Ton

Therefore, by considering that all machines are equal (Nj = N), the

maximum number of times that the machines of the datacenter can

be turned on given an operation time T is

N1 + · · · + Nn = n · N

Let X
j

i
be the random variable which takes the value 1 if a com-

puter j breaks down on power switching i and 0 otherwise. Hence, if

the probability of X
j

i
= 1 is pi, that is P(X

j
i

= 1) = p
j
i
, then X

j
i

follows

a Bernoulli model and, hence E[X
j

i
] = p

j
i
. With respect to p

j
i
, some

considerations must be given:

• As aforementioned, all machine of the datacenter are supposed

equal, therefore p
j
i
= pi for any j = 1, . . . , n.

• pi depends on the power switching i and this values can be con-

sidered constant within a horizon of the framework T. Clearly,

pi = pi(t) and
d pi(t)

dt
> 0, that is, the probability of malfunction

of a machine is going to increase during its life. Nevertheless,

the technology of this machine provides that this probability de-

creases slowly,
d pi(t)

dt
≈ 0, and the considered operation time, T,

is short compared to its lifetime. Hence, pi = p ≈ constant can be

considered.
• With respect to the value of p. The advance in the technology in-

dicates that the real value of pi is to be very close to 0. Neverthe-

less, from a cognitive point of view, the data center administrator

can consider it is a high value and this is the reason why it would

never be a good idea to switch off machines.

It is worth noting that if a machine breaks down, there are other

machines of the datacenter available to replace its operational re-

quirements. Let nj be the number of times that a machine j should

be switched off, 0 ≤ nj ≤ N.

From here, if x denotes the number of power cycles, a new random

variable

S(x) =
n∑

j=1

nj∑
i=1

X j
i
, x = 0, 1, . . . , n · N

where x = ∑n
j=1 n j, that is, x is the number of power cycles per-

formed in all machines. Thus, S(x) is a random variable that repre-

sents the number of machines broken down in x power cycles and,

hence, 0 ≤ S(x) ≤ n for any x.

The average number of damaged machines after x switching

on/off cycles, that is, the expectation of the random variable S(x) is

calculated as follows:

E[S(x)] = E

[
n∑

j=1

nj∑
i=1

X j
i

]
=

n∑
j=1

nj∑
i=1

E[X j
i

] = p ·
n∑

j=1

nj = x · p
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Furthermore, the cost of repairing computers damaged by the

switching on/off cycles has also to be taken into account. Let Cr >

0 be the average cost of repairing the computer. Hence, the costs of

fear, derived from switching on/off machines, denoted by Cfear, can be

given as follows:

Cfear(x) = x · p · Cr, x = 0, 1, . . . , n · N

In addition, if a computer is turned off and then there is a request

that requires the machine to be turned on, then the client will need

to wait until the computer is turned on. Considering Co as the op-

portunity cost that measures the value that a customer gives to that

lost time, and Ton as the time needed for a computer to be turned on.

Then, the turn on costs, denoted by Con, can be quantified as follows:

Con(x) = x · Ton · Co, x = 0, 1, . . . , n · N

Therefore, the total cost of turning off x machines, denoted by C(x),

is given as C(x) = Cfear(x) + Con(x), that is,

C(x) = x · (Ton · Co + p · Cr) x = 0, . . . , n · N (1)

From the above function, the cost of switching off the machines is

as follows:

C(n · N) = n · N · (Ton · Co + p · Cr)

Nowadays due to the different aspect of the life among them, the

cognitive aspect, most companies prefer not to turn off machines so

this decision implies that C(n · N) > M. The main aim of this paper is

to show that this is not an optimal decision.

First, in order to simplify the function given in (1), the variable

y = x
n·N is considered which indicates the proportion (per unit) of the

number of switching on/off cycles applied against the natural maxi-

mum applicable. Hence,

C(y) = y · n · N · (Ton · Co + p · Cr) (2)

From the definition of y, it can be seen that (1 − y) represents the

percentage of switching on/off cycles not applied to the machines.

Assuming that the cost of having all the extra machines turned on, M,

is proportional to the percentage of switching on/off cycles applied

as represented by y, then (1 − y) · M represents the cost of having the

machines switched on. From these latter two costs, the cost for having

a percentage of machines turned off, is given by

f (y) = y · n · N · (Ton · Co + p · Cr) + (1 − y) · M 0 ≤ y ≤ 1 (3)

Since M is not null, and C(1) = n · N · (Ton · Co + p · Cr) > M due to

current fear experienced by most companies, the value

A = C(1)

M
> 1

is considered and the cost function, denoted by fcurrent, is written as

follows:

fcurrent(y) = A · y + (1 − y) 0 ≤ y ≤ 1, A > 1 (4)

Following the current hypothesis which assumes that switching

off any machine implies more cost (the so-called fear cost), this ob-

jective function reaches its minimum when y0 = 0, i.e., when no ma-

chines are turned off and they maintain continuous execution, and

fcurrent(y0) = 1 (An example of this kind of function is given in Fig. 4).

4. Fear cost

In this section, a new cost function is given by assuming that the

switching off/on of machines in moderation may have a benefit.

First, let us indicated that the function fcurrent(y) verifies that
d fcurrent (y)

dy
= A − 1 = cte, that is, the increment of the emotional cost

caused by the modification of the percentage of power cycles is con-

stant for the datacenter administrator. However, this is not a realis-

tic hypothesis since by taking into account the pessimism (cognitive

Fig. 4. Graphical representation of the point where the minimum of function (5) is

attained.

aspect) of the administrator, the fcurrent(y) function must verify that
d2 fcurrent (y)

dy2 > 0 since, for instance, the incremental cost to change of

0.1–0.2 must be smaller than the incremental cost to change of 0.7 to

0.8.

Hence, the new function cost, denoted by fprop, must verify that

• If y is near to zero, then fprop(y) < fprop(0) since the switching

off/on of machines in moderation may have a benefit. Further-

more, in order to provide a regular function it is imposed that
d fprop(y)

dy
exists for any y.

• By following the commentary of the fcurrent(y) function with re-

spect to the second derivative, the
d2 fprop(y)

dy2 > 0 is required.

• Furthermore, a similar to fcurrent(y) functional form is required for

fprop(y).

Thus, the simplest function with these conditions is:

fprop(y) = Ay2 + (1 − y) 0 ≤ y ≤ 1, A > 1 (5)

Moreover, another justification of this new function is that it lends

less weight to the value of C(y) given in (2) in the function (3). Hence

the importance of switching off machines is relaxed.

The function (5) is convex (see Fig. 5) and reaches its minimum at

the point:

y0 = 1

2 A
(6)

and fprop(y0) = 1 − 1
2 A

. This means that the ideal situation is to

switch off 1
2 A

% of machines, and the savings, as a percentage, are

equal to the percentage of machines switched off.

Thus, if A has a high value, this favours the shutdown of the servers

in the data center. And, if A is close to 1 it favours keeping 50% ma-

chines on/idle which is a consequence of the supposition that the

‘switching off/on of machines in moderation may have a benefit’.

Hence, a coefficient, denoted by fear, which measures the risk

aversion to switching off the machines, is modeled as follows:

f ear = 1 − 1

A

This value verifies 0 ≤ fear ≤ 1 and satisfies:

• f ear = 0 (A = 1) implies low risk aversion, and under the hypoth-

esis of ‘switching off/on machines in moderation may have a ben-

efit’, means switching off 50% of the machines.
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Fig. 5. Graphical representation of the function (5) for A = 2 (blue), 2.5 (green) and 3

(red). (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article).

• f ear = 1 (A = ∞) implies maximum risk aversion, and therefore

machines are never switched off.

As aforementioned, most data center companies currently do not

shut down servers, so the value of A is set to ∞ in the proposed func-

tion and hence the number of machines switched off is 0 (y0 = 0).

Based on these developments, it is possible to model the risk aver-

sion experienced by data center companies by posing a simple ques-

tion: What percentage of machines are you willing to switch off? For in-

stance, if the answer is 10%, the equation 0.1 = 1
2 A

is resolved, which

means that A = 5, thus the fprop(y) = 5y2 + (1 − y) 0 ≤ y ≤ 1 and

from this point the emotion of the fear experienced by the company

is as follows:

A = 5 ⇒ f ear = 1 − 1

5A
= 0.8

In contrast, if the answer is 40% of machines, then A = 5
4 , and

therefore: f ear = 0.2.

5. Conclusions

In this paper we have presented the cost of risk aversion to which

most companies currently subscribe due to the false belief that turn-

ing off machines in data centers involves more costs than savings.

In order to demonstrate this, an objective function has been pro-

posed which determines that a lower total cost can always be at-

tained by turning off data center servers a number of times, show-

ing that the current belief is a mistake that should be corrected by

applying shutting on/off policies.

As future work, we plan to measure the extra costs associated

with turning off the machines in terms of hardware damage and to

measure the energy savings that could be obtained by building a

software system which implements policies for energy efficiency in

data centers.
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SCORE: Simulator for cloud optimization of resources and

energy consumption

After the motivation presented in the previous paper, we needed to meet the

second research objective of this thesis dissertation: "Proof that a simulation

tool able to simulate large-scale data centers with high performance can be built

to trustfully test the models proposed. This simulation tool may include sev-

eral energy efficiency policies, scheduling algorithms, resource managers and

workloads", and we needed to face also the complex challenge of achieving effi-

ciency both in terms of resource utilization and energy consumption, especially

in large-scale wide-purpose data centers that serve cloud-computing services.

Simulation presents an appropriate solution for the development and testing

of strategies that aim to improve efficiency problems before their applications

in production environments. Various cloud simulators have been proposed to

cover different aspects of the operation environment of cloud-computing sys-

tems, but they lack crucial features needed to achieve the goal of this thesis

dissertation.

In this paper we present our next contribution, the SCORE simulation tool,

which is dedicated to the simulation of energy-efficient monolithic and parallel-

scheduling models and for the execution of heterogeneous, realistic and syn-

thetic workloads. The simulator has been evaluated through empirical tests.

The results of the experiments performed confirm that SCORE is a perfor-

mant and reliable tool for testing energy-efficiency, security, and scheduling

strategies in cloud-computing environments. This paper is the result of my

first research stage in Cracow. With this work, both research groups started

a tight research collaboration that continues in the present.

This work was published in Simulation Modelling Practice and Theory. This

Journal is indexed in JCR with an Impact Factor of 2.092. The Journal

stands in ranking Q1 in Computer Science, Software Engineering (21/104).
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a b s t r a c t 

Achieving efficiency both in terms of resource utilisation and energy consumption is a 

complex challenge, especially in large-scale wide-purpose data centers that serve cloud- 

computing services. Simulation presents an appropriate solution for the development and 

testing of strategies that aim to improve efficiency problems before their applications in 

production environments. Various cloud simulators have been proposed to cover different 

aspects of the operation environment of cloud-computing systems. In this paper, we de- 

fine the SCORE tool, which is dedicated to the simulation of energy-efficient monolithic 

and parallel-scheduling models and for the execution of heterogeneous, realistic and syn- 

thetic workloads. The simulator has been evaluated through empirical tests. The results of 

the experiments confirm that SCORE is a performant and reliable tool for testing energy- 

efficiency, security, and scheduling strategies in cloud-computing environments. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Cloud-computing (CC) and large-scale web services have had a notable impact in the data center scenario and the big- 

data environment, since they enable huge amounts of data to be processed in a reliable and distributed way. However, the 

CC services in the big-data era should meet new requirements from the end users, such as fast-response and low latency. 

Major CC service providers, such as Google, Microsoft and Amazon, are constantly developing new applications and ser- 

vices. As the number of these services grows, many types of applications have to be deployed on the same hardware. Virtual- 

isation of the resources enabled the resource utilisation to be improved by designing general and wide-purpose data centers. 

These facilities can handle an enormous workload with various requirements. Therefore, many well-known solutions, such 

as fragmenting the data center into a set of clusters that are responsible for executing only one kind of application, are no 

longer needed. 

Large-scale data centers which execute heterogeneous workloads on shared hardware resources bring new challenges in 

addition to those inherent to small and medium-sized clusters, not least because scheduling such an amount of work may 

exceed the capacity of a centralized monolithic scheduler. In order to overcome this limitation, several scheduling models 
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with different degrees of parallelism have been developed, such as the two-level approach of Mesos [1] , the shared-state 

approach of Omega [2] , and various approaches for scheduling in large-scale grid systems [3] . 

The aforementioned infrastructures usually consume as much energy as do many factories and small cities, and account 

for approximately 1.5% of global energy consumption [4] . 

Although, data centers may be used by users worldwide, they are usually deployed on a continental basis. Therefore, 

these facilities are usually under higher pressure during day-time hours than in night-time hours. This and other reasons, 

such as the fear of any change that could break operational requirements [5] , and the complexity of the systems involved, 

lead to an over-provision of data-center infrastructures. This decision leads to servers being kept underused or in an idle 

state, which is highly inefficient from an energy-consumption perspective. 

Many models have been implemented in order to minimise the energy consumption in data centers, such as chiller- 

free cooling systems, and hardware model improvements, such as dynamic voltage and frequency scaling (DVFS). However, 

another approach that may lower the energy consumption considerably in data centers is seldom implemented. This strategy 

involves switching off idle servers. 

The strategies that shut down idle machines may have a negative impact in terms of performance of the whole system. 

The inactive machines would not be able to execute large workloads in a short time. Therefore, the optimal energy-aware 

strategies must guarantee an appropriate level of reduction of energy consumption. In order to test these strategies and 

to measure the impact in terms of performance and energy consumption, a trustworthy simulation tool is required. In 

addition, the chosen simulator has to be able to reproduce the conditions present in real data centers. This requirement is 

critical, since the simulation is usually the step prior to implementing these strategies in working data centers. Therefore, the 

“optimal” energy-aware cloud simulator should guarantee the following achievements: a) Low resource consumption – data 

centers are composed of thousands of data servers which consume a huge amount of energy; b) Simulation of the parallel- 

scheduling models – the monolithic-scheduling model may prove ineffective in the large-scale CC systems; c) Easy codes for 

replication and extensions –generic model focused on shut-down, power-on and scheduling strategies, since many low-level 

aspects, such as hardware and networking details, may be overlooked, and d) Validation of results against a trustworthy 

source. This means that the simulation tool has been compared with the real-life system that it simulates. 

Several simulators were evaluated in this paper. These tools followed various simulation models, such as: a) Discrete- 

event systems; b) Multi-agent systems; c) Multi-paradigm systems; and d) Hierarchic systems. The simulators under eval- 

uation presented a wide range of purposes and levels of detail. However, by using these simulators, it is very difficult to 

achieve the aforementioned properties. In this paper, we propose a new data-center simulation tool, namely the SCORE 

Cloud simulator , which is our proposal for an “optimal” energy-aware CC simulation package. SCORE is based on the Google 

Omega lightweight simulator [2] , which was extended by the implementation of the hybridisation of the discrete-event and 

the multi-agent scheduling and resource utilisation models. The Google Omega lightweight simulator has been validated 

against Google data centers, which makes it suitable for being the core of a trustworthy simulation tool. This is critical, 

since the authors have not been able to validate SCORE against real-world data centers due to the huge size of the clusters 

taken into consideration. 

The paper is organised as follows. In Section 2 , a simple comparative analysis is presented of the most relevant cloud 

computing simulators available. In Section 3 , the high-level architectural decisions of SCORE are highlighted. The scheduling 

models under evaluation are described in Section 3.1 . In Section 3.3 , the core modules of SCORE, which are related to energy 

efficiency, are described. A number of the parameters available for the configuration of the experimentation are shown in 

Section 4 . In Section 4.2 , the workload employed to perform the experimentation in SCORE is characterised. In Section 5 , the 

data available as a result of the experiments performed in SCORE, as well as the means to retrieve this data are explained. 

The various experimentation scenarios and the result parameters are shown in Section 6 . Finally, the conclusions and future 

work are discussed in Section 7 . 

2. Related Work 

In recent years, many simulators have been developed for the modelling of the main components of the computational 

cloud systems. In this section, a simple survey and comparative analysis is provided. The following basic trade-offs should 

be considered when developing a simulation tool: a) Performance versus features; b) Performance versus accessibility; c) 

Accessibility versus features; and d) Performance versus accuracy. 

Although visual general-purpose simulators, such as Insight Maker [6] , could be used to simulate computational cloud 

systems, the development of the model of an energy-efficient cloud-computing infrastructure, such as that described earlier, 

would be failure-prone and over-sized. 

On the other hand, there are other non-general-purpose simulators, such as ElasticTree [7] , and CloudSched [8] , which are 

focused on the energy consumption of networking elements and scheduling policies, respectively. Due to this specialisation, 

these simulators present major limitations and restrictions. 

In addition, we evaluated wide-ranging cloud-computing simulation tools, which cover more elements of the Cloud- 

Computing systems (CC). Each of the frameworks studied simulates different aspects of the CC systems to a different degree 

of detail. These modelling and implementation decisions render each system different in terms of performance and fea- 

tures provided, which, in turn, makes some of them more suitable for the aforementioned purpose. This class of simulators 

includes: 
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Table 1 

Simulator comparison. 

Simulator Scheduling Energy Energy Scheduling Performance 

models aware strategies policies 

GridSim N N N Y Medium 

CloudSim N Y Y Y Medium 

GreenCloud N Y Y Y Low 

Google Omega Y N N N High 

paper 

Grid’50 0 0 Toolbox N Y Y N High 

• GridSim . This toolkit [9] , based on the SimJava library [10] , models various aspects of grid systems, such as users, 

machines, applications, and networks. However, it fails to consider several cloud-computing features. It also lacks the 

energy-consumption perspective. 
• CloudSim . This popular cloud simulator is based on SimJava and GridSim and is mainly focused on IaaS-related operation 

environment features [11] . It presents a high level of detail, and therefore allows several VM allocation and migration 

policies to be defined, networking to be considered, features and energy consumption to be taken into account. However, 

it features certain disadvantages when applied for the simulation of large data-center environments: this high level of 

detail means that CloudSim is considered cumbersome to execute, especially for data centers composed of thousands to 

tens of thousands of machines. In addition, it is not principally designed to simulate multiple scheduling models, but 

takes a largely a monolithic approach. 
• GreenCloud . This simulator is an extension of the NS2 network simulator. Its purpose is to measure and compute the 

energy consumption at every data center level, and it pays special attention to network components [12] . However, its 

packet-level nature compromises performance in order to raise the level of detail, which may be not optimal for the 

simulation of large data centers. In addition, it is not designed to offer ease of development and extension in various 

scheduling models. 
• Google Omega lightweight simulator . This simulator is designed for the comparison of various scheduling models in 

large clusters. To this end, it focuses on maximizing the performance of the simulations by reducing the level of detail. 

However, it is not designed to easily develop and extend other scheduling strategies. In addition, this tool fails to consider 

energy consumption. 
• Grid’50 0 0 Toolbox . Grid’50 0 0 was built upon a network of dedicated clusters. The infrastructure of Grid’50 0 0 is geo- 

graphically distributed over various sites, of which the initial 9 are located in France. Grid’50 0 0 Toolbox [13] simulates 

the behaviour of Grid’50 0 0 resources for real workloads while changing the state of the resources according to several 

energy policies. The simulator includes: 

a) A GUI that allows the user to perform a set of simulations for each location and to execute a set of energy policies; 

b) A graphical visualisation of the resources during the simulation, including their states, and future and past jobs; c) A 

graphical view of the results through several charts and spreadsheets. 

On the other hand, the simulator fails to include various scheduling frameworks and it does not simulate the behaviour 

or consumption of network devices and resources. 

Several of these simulators are well-known, and in-depth comparisons have been presented in the literature [14–17] . 

In this work, the most important aspects regarding the development and application of power-off/on strategies in order to 

minimise the energy consumption are presented. Among these: 

• Scheduling models : This parameter reflects whether the simulation tool has different scheduling models implemented, 

such as parallel, distributed, and monolithic approaches. In addition, this parameter also considers whether the tool is 

designed to easily extend and develop new scheduling frameworks, and not only allocation policies. 
• Energy aware : This parameter reflects whether the simulation tool is capable of measuring and computing energy con- 

sumption and efficiency parameters. 
• Shut-down and Power-on policies : This parameter reflects whether the simulation tool has different shut-down and 

power-on algorithms implemented. In addition, it also considers whether the tool is designed to easily extend and de- 

velop new energy policies. 
• Scheduling strategies : This parameter reflects whether the simulation tool has different allocation/scheduling algorithms 

implemented. In addition, it also considers whether the tool is designed to easily extend and develop new strategies. 
• Performance : This parameter reflects the amount of time for a simulation to be run in a comparable environment. The 

amount of computational and memory resources is also considered. 

A short comparative between the simulation tools described are presented in Table 1 . 

The simulator described in this work, SCORE, is a high-performance cloud-computing simulation tool focused on energy- 

efficiency in large data centers. This tool is designed to be easily extended, and offers several strategies already implemented 

and ready to use, for various scheduling models, allocation, and shut-down and power-on strategies. The high performance 
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Fig. 1. SCORE architecture. 

and ease of use have been achieved by minimising the low-level features, such as networking, low-level machine details, 

and low-level task details. 

3. SCORE Architecture 

The SCORE simulator developed herein is based on the model proposed by Robinson in [18] . The main workflow of that 

simulator can be defined as follows: 1. Definition and initialisation of the problem; 2. Determination of the modeling and 

general objectives; 3. Identification of the model inputs; 4. Identification of the model outputs; and 5. Determination of the 

model content and level of detail. 

Based on this workflow model in CC, we developed the SCORE architecture as presented in Fig. 1 . The SCORE source code 

is publicly available at: 

https://github.com/DamianUS/cluster-scheduler-simulator . 

The architectural model is composed of two main modules, namely the core simulator – (CS) and the efficiency module –

(EF) . The core simulator is the core execution engine, and it has been inherited from the Omega lightweight simulator as 

explained in Section 2 . Although the main layers in the CS model are based on the same structure present in the original 

simulator, we made several modifications in order to be able to perform the experimentation related to the security and 

energy-efficiency. Each experiment is a set of executions and each execution defines all the operational environment details, 

such as energy policies and scheduling models. 

The architecture of CS is a 3–layer architecture with the Workload generation as the first layer, which is responsible for 

the generation of the CC workload that will be used in every run of a single experiment. The workload is created only 

once. This is critical, since it enables the parameters and other aspects used within each run to be reliably compared. The 

workload is generated by the various data-center utilisation patterns. For instance, the day/night pattern is the predominant 

pattern in the data centers that execute large web services and applications, since this is common human behaviour. 

A workload is composed of a set of Jobs . In the same way, a Job is composed of a Bag of Tasks . A Task is the minimum 

execution unit that may be deployed on a computational server. Each Task is mapped to a linux container which is deployed 

in a similar (but more lightweight) way as a virtual machine (VM). This modern and more flexible virtualisation strategy 

replaces the traditional virtualisation strategy based on independent virtual machines. Each Task deployed on a linux con- 

tainer requires a given amount of computational and memory resources for a given time to be successfully completed. In the 

current version of this simulator, no linux-container migration nor server consolidation strategy is considered. Thus, once a 

Task is deployed on a server, it runs on this machine until its completion. 

The Core Engine Simulation layer performs all the simulation duties, reads the workload generated, and performs the 

scheduling decisions to deploy the tasks on the worker nodes. The Cluster is defined by its Descriptor and represents the 

number of computational servers and their features. The current version of SCORE does not provide any networking capa- 

bilities due to two main reasons: a) The main goal of this work is to provide a performant and low resource-consuming tool 

capable of simulating large-scale data centers. These requirements impose serious restrictions regarding the level of detail 

of the developed features. b) There are several simulation tools that focus on networking details, as stated in Section 2 . 

Finally, the Scheduling models layer implements various scheduling frameworks, such as Omega [2] , Mesos [1] , and Mono- 

lithic models. These schedulers perform the resource-allocation process, and dictate the scheduling decisions to the Core 

Engine Simulation layer. 

We developed the EF module in order to apply several energy-efficiency and resource-selection strategies. Therefore, 

this module is logically divided into two layers of the same name. The Efficiency strategies layer defines the policies for 

shutting-down and powering-on computational servers with the objective of optimising the energy consumption of the data 
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Fig. 2. Monolithic scheduler architecture, B - Batch-type task, S - Service-type task, M - Worker Node. 

center. These policies can act over the Cluster , changing the energy state of the working nodes from powered-on to shut- 

down and viceversa. Finally, in the Resource-selection strategies layer, several approaches for the reservation of resources are 

implemented, such as maximizing the dispersion of tasks, deploying them randomly, and minimising the dispersion of tasks. 

These selection decisions therefore have an impact on the overall performance and energy-saving results. 

3.1. Scheduling models 

• Monolithic schedulers : In this model, a single, centralized scheduling algorithm is employed for all jobs. Google Borg 

[19] is an example of this kind of scheduling model. The workflow of the monolithic scheduler is demonstrated in Fig. 2 . 
• Two-level schedulers : In this model, the resource allocation and task placement concerns are separated. There is 

a unique, centralised active resource manager that offers computing resources to multiple parallel, independent, 

application-level scheduling nodes, as shown in Fig. 3 . This approach allows the task-placement logic to be developed for 

every single application, but also allows the cluster state meta-data to be shared between these schedulers. Mesos [1] is 

an example of this kind of scheduler. 
• Shared-state schedulers : In this model, the cluster meta-data is shared between all scheduling agents. The scheduling 

process is performed by using an out-of-date copy of this shared cluster meta-data. When one of these parallel sched- 

ulers performs a scheduling decision based on the probably stale cluster meta-data, the scheduling agent commits the 

scheduling decision as a transaction in an optimistic way, as shown in Fig. 4 . Hence, if any of the scheduling operations 

committed cannot be applied because the chosen computing resources are no longer free, then that scheduling operation 

is repeated by the scheduler until no conflicts are found. Google Omega is an example of this kind of model. 
• Fully-distributed schedulers : In this model, the scheduling frameworks have various independent scheduling nodes 

which work with a local and out-of-date vision of the cluster state with no central coordination. Sparrow [20] is an 

example of this kind of scheduler. 
• Hybrid schedulers : In this model, several scheduling strategies are used (typically a fully distributed architecture is 

combined with a monolithic or shared-state design) depending on the workload. There are usually two scheduling paths: 

a distributed path for short or batch tasks, and a centralized path for the remaining tasks. Mercury [21] provides an 

example of this kind of scheduler. 

3.2. SCORE energy-awareness model 

SCORE has been developed to enrich the Google Omega Lightweight Simulator. A main feature included is the capability 

of performing energy-efficiency analysis by applying an energy-consumption model. The CPU is considered in order to com- 

pute the energy consumption. The proposed energy-awareness model considers the following states for each CPU core in a 
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Fig. 3. Two-level scheduler architecture, SA - Scheduler Agent, O - Resource offer, C - Commit. 

server: a) On: 150W b) Idle: 70W. The energy consumption is linearly computed in terms of the utilisation of each CPU core. 

The following machine power states have also been considered: a) Off: 10W b) Shutting down: 160W 

∗ number of cores c) 

Powering on: 160W 

∗ number of cores. 

The total energy consumed by the whole data center is measured from time to time by checking the power state of 

every machine. This time interval is a configurable parameter. 

Regarding the shut-down process time parameters, the following values have been assumed: a) T On → Hibernated : 10s, and b) 

T Hibernated → On : 30s. The power states and transitions are shown in Fig. 5 . All the aforementioned power and time parameters 

can be modified for each experiment. 

3.3. SCORE energy-efficiency modules 

As aforementioned, the energy-efficiency tier is composed of the following three modules: 

• Shut-down module : This module is responsible for shutting down the computational servers in order to minimise en- 

ergy consumption. Several strategies may be used in order to shut down the machines. Each shut-down strategy is 

implemented in the form of a Shut-down policy . 
• Power-on module : This module is responsible for waking up the machines required to meet present or future workload 

demands. Several strategies may be used in order to minimise the negative performance impact caused by machines that 

are not available to immediately execute tasks because they are shut down. Each of these strategies is implemented in 

the form of a Power-on policy . 
• Scheduling module : This module is responsible for determining which tasks should be deployed on which machine. 

3.3.1. Shut-down policies 

Power-off policies are responsible for deciding whether or not a machine should be shut down and responsible for trig- 

gering the order for the shut-down operation. 

In this work, authors have divided the process into making a decision of whether a shut-down action must be taken, and 

carrying on the actual action of ordering the shut-down of the machine in order to allow various combinations of strategies 

to be performed. The workflow of this process is illustrated in Fig. 6 . 

Shut-down decision policies can be: deterministic, such as always shutting-down; or probabilistic, such as shutting down 

machines following the exponential policy. These decision policies always return a Boolean value which determines whether 

a given machine must be shut down. In order to make the decision, this policy may check various Cluster variables after 

having finished a task and having freed the resources. 
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Fig. 4. Shared-state scheduler architecture, U-Cluster State Update. 

Fig. 5. Machine power states. 

Several shut-down policies have been implemented and tested in-depth, as shown in Section 6 . These policies include: 

Never power off, Always power off, Shut down depending on data-center load, Leave a security margin, Exponential , and Gamma . 

In addition, various power-off decision policies can be combined by using the logical operators and and or to achieve policies 

of a more flexible and complex nature. 

3.3.2. Power-on policies 

Power-on policies are responsible for maintaining sufficient resources available in order to properly execute the arriving 

jobs. As the complement to shut-down policies, the strategies developed are critical to guarantee that heterogeneous work- 

loads and peak loads can be executed without causing a negative impact in the overall data-center performance, without 

breaking SLAs/SLOs, and without affecting the user experience. 

As opposed to power-off policies, which make a decision and perform an action independently for each machine, power- 

on policies work with the overall cell state in order to turn on multiple machines if required by the workload. This power-on 
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Fig. 6. Power-off module architecture. 

business logic is conceptually executed when a new job is scheduled, as opposed to the shut-down business logic, which is 

executed when resources are released. Of course, each scheduler has different scheduling processes, so powering-on cycles 

can therefore vary depending on the scheduler. In order to make power-on decisions, the system may require several items 

of operational information, such as: a) The Job that triggered the power-on action; and b) The scheduler model that triggered 

the power-on action. 

In order to be realistic, this simulation tool usually works with a heterogeneous workload with no evident usage pattern. 

This kind of workload is really complex to predict, and therefore shut-down policies may negatively impact the data-center 

performance if they are unable to predict near-future workload requirements properly. 

Various deterministic and probabilistic power-on decision and action policies have been developed to face this challenge. 

These policies include: Never power on, Power-on only the required machines, Power-on a fixed number of machines to main- 

tain a security margin, Power-on a percentage of machines to maintain a security margin , and power-on policies which make 

decisions based on statistical distributions, such as Exponential , and Gamma . 

In addition, it is especially interesting that various power-on decision policies may be combined using the logical op- 

erators and and or to achieve policies of a more flexible and complex nature. With this strategy, the benefits of predictive 

policies may be enjoyed without giving up the possibility of turning on the required machines if the prediction fails or a 

peak load arrives. 

3.3.3. Scheduling strategies 

SCORE designs the scheduling strategy as a plug-in piece that is established at the experiment creation time. This 

scheduling strategy is used by all the schedulers of all scheduling models in order to determine on which machines the 

tasks should be deployed. Thus, the scheduling strategy works as a black box which uses the information of the whole 

cluster and of the job for these schedulers, and returns them the mapping between tasks and the machine to be applied. 

Once this mapping is available, each scheduling model deploys these tasks on the chosen machines depending on their own 

scheduling logic, as illustrated in Fig. 7 . 

Several scheduling strategies have been developed. These strategies include: those based on the ETC-matrix genetic pro- 

cess [22] , such as ETC minimising makespan [23] , and ETC minimising energy [24] , Random, Spread tasks the maximum, Greedy 

minimising energy, Greedy minimising makespan, Spread tasks the minimum, Spread tasks the minimum with randomness . 

4. Experiment analysis 

4.1. General parameters 

Table 2 presents the key parameters of the simulator used in experiments. 
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Fig. 7. Scheduling-strategy workflow. 

4.2. Workload parameters 

In order to perform realistic experimentation, the workload present in Google traces [25] is considered. Based on the 

studies made by the research community in [26,27] , it is known that realistic jobs are composed of one or more tasks, 

sometimes thousands of tasks. In addition, two types of jobs are to be considered: 

• Batch jobs : This workload is composed of jobs which perform a computation and then finish. These jobs have a deter- 

mined start and end. MapReduce jobs are an example of a Batch job. 
• Service jobs : This workload is composed of long-running jobs which provide end-user operations and infrastructure 

services. As opposed to Batch jobs , these jobs have no determined end. Web servers or services such as BigTable [28] are 

good examples of a Service job. 

In order to properly define the workload and create the model for the generated jobs, the following job attributes are 

considered: a) Inter-arrival time, which represents the time elapsed between two consecutive Service jobs or between two 

Batch jobs; b) Number of tasks, which is usually higher for Batch jobs than for Service jobs; c) Job duration, which may be 

modified by the machine performance profile; and d) Resource usage, which represents the amount of CPU and RAM that 

every task in the job consumes [2] . 

4.2.1. Workload generation 

Regarding the generation of the workload, several approaches are implemented and may be used, ranging from uniform 

generators, followed by several degrees of exponential generators and generators that rely on traces to model the tasks. 

This workload is generated at the beginning and used for all the experiments of that execution. The following workload 

generators are available in SCORE: 

• Uniform : This strategy generates jobs at a uniform rate, of a uniform size and which consume the same amount of 

resources. 
• Exponential : This approach generates workloads with jobs that have the inter-arrival time, the number of tasks, and the 

task duration sampled from exponential distributions. Two versions of the Exponential generator have been implemented 

in order to create both a flat and a day/night patterned workloads. 
• Exponential built from a trace file : This generator creates workloads where the duration and the number of tasks of all 

jobs are sampled from exponential distributions built from a trace file. In addition, the Exponential and the Exponential 

built from a trace file can be chosen on a per-parameter basis. 
• Trace file : This approach generates workloads that reproduce a trace file. 

Trace-related workload generators require a trace file that contains one job per line. Each line must present the following 

columns separated by a whitespace: 1. Submission time; 2. Number of tasks; 3. Job duration; 4. Number of CPU cores 

required by the tasks; and 5. Amount of RAM required by the tasks. 
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Table 2 

Configurable experiment parameters. 

Parameter Description Values 

Cluster Parameters related to the data center that must be fixed 

for all experiments 

#Machines Data-center size [1 - ∞ ] 

#Cores Number of CPU cores for every machine [1 - ∞ ] 

RAM Amount of RAM in GB for every machine [0.1 - ∞ ] 

Heterogeneity Flag to decide whether data-center machines are 

heterogeneous 

Boolean 

Machine 

performance profile 

Describe the performance of every machine in the data 

center. The lower this value, the more performant the 

server is 

Array, size: number 

of machines [0.01 - 

∞ ] 

Machine security 

profile 

Describe the security of every machine in the data 

center. The higher this value, the more secure the server 

is [23] 

Array, size: number 

of machines [1 - 5] 

Machines energy 

profile 

Describe the energy consumption of every machine in 

the data center. The lower this value, the more 

energy-efficient the server is 

Array, size: number 

of machines [0.01 - 

∞ ] 

Power-on time The time required to boot a server, in seconds [0.1 - ∞ ] 

Shut-down time The time required to hibernate a server, in seconds [0.1 - ∞ ] 

Performance Parameters related to performance iterated in order to 

create all experiment variations 

Per-job algorithm 

time 

Time spent (in seconds) by the scheduler in order to 

make a job-level scheduling decision. This simulates the 

performance of the scheduling algorithm 

Array [0.001 - ∞ ] 

Per-task algorithm 

time 

Time spent (in seconds) by the scheduler in order to 

make a task-level scheduling decision. This simulates the 

performance of the scheduling algorithm 

Array [0.001 - ∞ ] 

Blacklist The percentage of machines not to be used Array [0.0 - ∞ ] 

Inter-arrival This parameter rewrites the inter-arrival time generated 

for all jobs, replacing it with a fixed time instead 

Array [0.001 - ∞ ] 

Energy Parameters related to performance iterated in order to 

create all experiment variations 

Shut-down policies The shut-down policies to be run, such as: Always power 

off, Exponential , and Gamma 

Array 

Power-on The power-on policies to be run Array 

Scheduling The scheduling strategies to be run Array 

Sorting These strategies are used by greedy scheduling strategies 

to sort the candidate servers for their later selection 

Array 

Specific Parameters used by specific schedulers 

Schedulers assigned 

to workloads 

Mapping that describes how many and which schedulers 

are assigned to which workload type (Batch/Service) 

used by non-monolithic schedulers. Each row adds a 

new scheduler to serve a workload 

Map [Scheduler 

name - > Workload 

name] 

Conflict mode Approach used by non-monolithic schedulers to decide 

whether a commit results in conflict 

resource-fit 

sequence-numbers 

Transaction mode Approach used by non-monolithic schedulers to decide 

what to do when a commit results in conflict 

all-or-nothing 

incremental 

5. Information retrieval 

The results of the experiments are stored in one to several Google protocol buffer files. The main blocks of these protocol 

buffer files include the following: 

• Experiment Environment section stores the information related to the global configuration of the experiments. 
• Experiment Results section stores the information related to global results for each of the experiments performed. 
• Workload Stats section stores the workload-specific information for both Batch and Service jobs for each Experiment 

Result , including the details of the genetic process when used. 
• Scheduler Stats section stores the scheduler-specific information for each Experiment Result , including daily and 

workload-related details. 
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Fig. 8. Simulation results graphic scripts. 

Table 3 

Experiment outputs. 

Parameter Description Values 

Performance Output parameters related to the data center 

overall and per-workload performance 

Queue time until 

first deploy 

Represents the time a job waits in the queue until 

its first task is scheduled (in seconds). 

[0.0 - ∞ ] 

Queue time until 

full deploy 

Represents the time a job waits in the queue until 

it is totally scheduled (not completion). 

[0 - ∞ ] 

Timed-out jobs Number of jobs left unscheduled after 100 

unsuccessful scheduling tries for a given job or 

10 0 0 tries for any given task in a job. 

[0.0 - ∞ ] 

Scheduler 

occupation 

Percentage of scheduler utilisation on average [0.0 - 100.0] 

Job scheduling 

attempts 

Number of scheduling operations needed to fully 

deploy a job. 

[0 - ∞ ] 

Task scheduling 

attempts 

Number of tasks scheduling operations needed to 

fully deploy a job. 

[0 - ∞ ] 

Energy-efficiency Output parameters related to the data-center 

resource and energy efficiency. 

Energy consumed Total data-center energy consumption (in kWh) [0.0 - ∞ ] 

Energy saved vs. 

current system 

Total energy saved by applying energy-efficiency 

policies compared to the same scenario with no 

energy-efficiency policies applied (in kWh). 

[0.0 - ∞ ] 

Shut-downs Number of shut-down operations. [0 - ∞ ] 

Idle resources Percentage of resources operating in an Idle state 

on average. 

[0.0 - 100.0] 

KWh saved per 

shut-down 

operation 

This represents the energy saved against the 

number of shut-downs performed. It shows the 

goodness of the shut-down operations performed. 

[0.0 - ∞ ] 

• Efficiency Stats section stores the energy-efficiency parameters for each Experiment Result . 
• Measurements section stores the performance and energy-efficiency metrics gathered in each measurement performed 

every few seconds for each Experiment Result in order to show the cluster evolution. 

The information stored in the protocol buffer files can’t be visualized directly. Hence, a set of python scripts, aimed to 

create valuable human-readable and graphic information from these files, have been implemented. The results of some of 

these graphic scripts are illustrated in Fig. 8 . 

5.1. Output indicators 

Table 3 presents the most relevant results indicators of the experimentation performed in terms of performance and 

energy-efficiency. 
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6. Examples of usage 

In this section, a set of experiments have been run in order to illustrate certain experiment parameterisation and results 

related to both performance and energy-efficiency. Although each experiment may show a different subset of parameters 

and results, all the parameters are used and returned in each experiment. In addition, several parameters have been fixed in 

order to keep the tests simple, such as always using the default power-on policy, which aims to power on machines when 

a workload cannot be served. 

Each experiment runs for a 7-day operation period and processes a day-night patterned workload that uses, on average, 

approximately 30% of the resources, with load peaks achieving approximately 60% of data-center utilisation. The parameters 

of the jobs in this workload are generated by using an exponential distribution for the inter-arrival time, number of tasks, 

and duration, while the security constraints are generated randomly. Regarding these constraints, the following values are 

used: a) Batch jobs are composed of 50 tasks and Service of 9 tasks on average; b) Batch -job tasks take 90 seconds and 

Service -job tasks 2,0 0 0 seconds to finish on average; and c) Batch -job tasks consume 0.3 CPU cores and 0.5 GB of memory, 

while Service -job tasks consume 0.5 CPU cores and 1.2 GB of memory. 

The data center is composed of 1,0 0 0 machines of 4 CPU cores and 8GB RAM. The energy, performance, and security 

profiles of these machines are randomly generated. 

6.1. Genetic process experimentation 

In this test, a set of experiments focused on illustrating certain results of the genetic process of the ETC-matrix-based 

scheduling strategies are run by using: a) a monolithic scheduling model, and b) fixed algorithm times. 

The results corresponding to Batch jobs and the Single-path monolithic scheduler are presented in Table 4 , where it can 

be observed that the genetic scheduling strategy focused on minimising the makespan achieves better performance results, 

and it is shown how this makespan average evolves between the genetic-process epochs. 

6.2. Performance experimentation for the Omega scheduler 

Several parameters are available for the evaluation of the impact on the operation environment of the energy-efficiency 

policies and algorithm performance. A number of these parameters are presented after having executed a new set of ex- 

periments by using the following simulation configuration: a) the Omega scheduling model, with 4 schedulers responsible 

for serving Batch jobs and 1 scheduler for Service jobs; b) one scheduling strategy which strives to maximise machine usage 

while minimising resource contention; and c) the Resource-fit conflict mode. 

Table 4 

Parameters of the minimising-makespan genetic process. 

Shut-down Scheduling Savings (%) Makespan Avg. (s) Epoch 0 (s) Epoch 100 (s) 

Never off Makespan N/A 236.01 324.02 202.07 

Never off Energy N/A 290.55 N/A N/A 

Random Makespan 55.88 258.41 344.51 273.99 

Random Energy 55.31 311.91 N/A N/A 

Table 5 

Omega performance experimentation. 

Shut-down 

policy 

Transaction 

mode 

Per-job alg. 

time (s) 

Per-task alg. 

time (ms) 

Savings 

(%) 

Queue time 

until first deploy 

(ms) 

Queue time 

until full deploy 

(ms) 

Never off all-or-nothing 0 .1 10 N/A 0 .0 0 .0 

Never off all-or-nothing 0 .1 100 N/A 560 .0 1,021 .4 

Never off all-or-nothing 1 .0 10 N/A 0 .2 0 .2 

Never off all-or-nothing 1 .0 100 N/A 791 .8 1,604 .0 

Never off incremental 0 .1 10 N/A 0 .0 0 .0 

Never off incremental 0 .1 100 N/A 12 .9 27 .5 

Never off incremental 1 .0 10 N/A 0 .0 0 .0 

Never off incremental 1 .0 100 N/A 18 .5 38 .9 

Always off all-or-nothing 0 .1 10 46.08 0 .1 0 .8 

Always off all-or-nothing 0 .1 100 40.86 2,294 .7 5,368 .4 

Always off all-or-nothing 1 .0 10 44.97 1 .2 2 .2 

Always off all-or-nothing 1 .0 100 38.78 3,503 .1 9,061 .6 

Always off incremental 0 .1 10 45.06 0 .1 0 .5 

Always off incremental 0 .1 100 45.10 36 .9 84 .6 

Always off incremental 1 .0 10 45.02 1 .1 2 .5 

Always off incremental 1 .0 100 45.05 46 .8 107 .9 
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Table 6 

Mesos energy-efficiency experimentation. 

Shut-down 

policy 

Per-job alg. 

time (s) 

Per-task alg. 

time (ms) 

Energy consumed 

(kWh) 

Energy Saved 

(kWh) 

# shut 

downs 

Idle resources 

(%) 

Never off 0 .1 10 57,259 0 0 69 .30 

Never off 0 .1 100 57,359 0 0 69 .29 

Never off 1 .0 10 57,372 0 0 69 .27 

Never off 1 .0 100 57,440 0 0 69 .28 

Always off 0 .1 10 31,138 25,774 18,520 5 .97 

Always off 0 .1 100 31,748 25,208 18,473 7 .28 

Always off 1 .0 10 31,642 25,321 19,719 7 .00 

Always off 1 .0 100 31,808 25,137 17,550 7 .48 

Random 0 .1 10 32,003 24,949 9,136 7 .97 

Random 0 .1 100 32,694 24,295 8,968 9 .55 

Random 1 .0 10 32,702 24,225 8,816 9 .82 

Random 1 .0 100 32,739 24,241 9,606 9 .65 

Exponential 0 .1 10 34,952 21,842 1,156 16 .43 

Exponential 0 .1 100 36,119 20,823 1,286 18 .33 

Exponential 1 .0 10 35,953 20,951 1,214 17 .87 

Exponential 1 .0 100 36,513 20,408 1,816 19 .49 

The results corresponding to Batch jobs are presented in Table 5 , where it can be observed that the algorithm perfor- 

mance and the conflict-handling strategy have a notable impact both on queue times and on energy consumption. 

6.3. Energy-efficiency experimentation for the Mesos scheduler 

In addition to performance parameters, the energy-efficiency parameters constitute the core of the simulation tool. In 

order to illustrate these parameters, several experiments have been run by using the same configuration as laid out in 

Section 6.2 for the Omega scheduler. 

The results corresponding to Batch jobs are presented in Table 6 , where it can be observed that the shut-down policies 

exert a major impact on energy consumption and hardware stress, and that a high level of energy-efficiency can be achieved 

without performing many shut-down operations, thereby minimising the performance impact. 

7. Summary and future work 

Our simulation tool: SCORE is presented as an extension to the Google Omega lightweight simulator, a simulator focused 

on the comparison of the performance between scheduling models, especially parallel frameworks in large-scale data cen- 

ters. The model of the Google Omega lightweight simulator has been enhanced with extensions and improvements for: a) 

The development of an energy consumption model; b) The extension and creation of allocation policies; c) The extension 

and creation of energy-efficiency policies based on shutting down and powering on machines; d) The addition of hetero- 

geneity to data center machines; and e) The consideration of security profiles. 

It has been shown that the application of all the features of this tool to heterogeneous workloads in large-data centers 

results in major potential improvements from both the energy-efficiency and performance point of view. 

As future work, several aspects of the tool are being improved. These improvements include: 

• Greater ease of use and extendability of the implemented code. 
• Addition of a visual interface to set the experiment configurations and to execute the experiments. 
• Addition of a real-time visualizer of the power and performance state of the machines. 
• Incorporation of support for other workload constraints, such as time and precedence constraints. 
• Tasks dependency, which implies, among others, networking considerations. 
• Development of Tasks migration and server consolidation techniques. 
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Energy Policies for Data-Center Monolithic Schedulers

Once the simulation tool was ready and its results empirically tested, it was

the moment to work on the third research objective of this thesis dissertation:

"Proof that energy consumption in monolithic-scheduling data centers can be

successfully reduced without notably impacting performance if the correct set of

energy-efficiency policies based on the shut-down of idle machines are applied".

To this aim, we put our focus on the development, study, testing, and analysis

of a set of energy policies which consitute the core of this thesis dissertation.

Cloud computing and data centers that support this paradigm are rapidly

evolving in order to satisfy new demands. These ever-growing needs represent

an energy-related challenge to achieve sustainability and cost reduction.

We defined an expert and intelligent system that applies various energy poli-

cies. These policies are employed to maximize the energy-efficiency of data-

center resources by simulating a realistic environment and heterogeneous work-

load in a trustworthy tool.

The contributions include a deep description of the impact of 6 different power-

off policies - applied at the resource manager level - in terms of performance

and energy consumption on a well-defined, rich and realistic heterogeneous

workload that follows the trends present in Google Traces by running a huge

amount of experiments for centralized monolithic scheduling frameworks.

In addition, an environmental and economic impact of around 20% of energy

consumption can be saved in high-utilization scenarios without exerting any

noticeable impact on data-center performance if an adequate policy is applied.

This work was published in Expert Systems with Applications. This Journal

is indexed in JCR with an Impact Factor of 3.768. The Journal stands

in ranking Q1 in three categories: Computer Science, Artificial Intelligence

(20/132), Engineering, Electrical Electronic (42/260), and Operations Re-

search & Management Science (8/83).
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a b s t r a c t 

Cloud computing and data centers that support this paradigm are rapidly evolving in order to satisfy 

new demands. These ever-growing needs represent an energy-related challenge to achieve sustainability 

and cost reduction. In this paper, we define an expert and intelligent system that applies various en- 

ergy policies. These policies are employed to maximize the energy-efficiency of data-center resources by 

simulating a realistic environment and heterogeneous workload in a trustworthy tool. An environmental 

and economic impact of around 20% of energy consumption can be saved in high-utilization scenarios 

without exerting any noticeable impact on data-center performance if an adequate policy is applied. 
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1. Introduction 

Cloud computing and large-scale web services have trans- 

formed the data-center scenario and the big-data environment, 

and have led to a new scenario where these infrastructures are as 

energy greedy as many factories. The latest estimations claim that 

data centers account for approximately 1.5% of global energy con- 

sumption ( Koomey, 2011 ). 

In this new scenario, data centers are in constant evolu- 

tion towards servicing multiple heterogeneous workloads on the 

same hardware resources. This strategy enables higher energy- 

efficiency levels to be achieved by turning off idle resources in 

low-utilization periods. Decision-support systems are one of the 

main applications for expert systems. This work presents an auto- 

mated decision-support system aimed to make the best decisions 

to improve the energy efficiency of the system through a better 

management of data-center resources and jobs placement. We de- 

velop, apply, and analyze various energy policies based on shutting 

machines off in order to reduce data-center energy consumption 

while preserving the cluster performance. 

This approach has yet to be widely applied due to various 

reasons, such as: (a) Natural human behaviour and the fear of 

any change that could break operational requirements ( Fernández- 

Montes, Fernández-Cerero, González-Abril, Álvarez-García, & Or- 

tega, 2015 ); (b) the complexity and heterogeneity of all the subsys- 

tems involved; and (c) power-off policies, and (d) the fast develop- 

∗ Corresponding author. 

E-mail addresses: damiancerero@us.es (D. Fernández-Cerero), afdez@us.es (A. 

Fernández-Montes), jortega@us.es (J.A. Ortega). 

ment of new systems and paradigms that could break the estab- 

lished standards and systems. However, keeping servers underuti- 

lized or in idle state is highly inefficient from an energy-efficiency 

perspective. 

On the other hand, the research community has made many 

effort s in other areas in order to achieve energy proportional- 

ity ( Jakóbik, Grzonka, Kolodziej, Chis, & González-Vélez, 2017 ), 

such as: data-center operating temperature and cooling systems 

( El-Sayed, Stefanovici, Amvrosiadis, Hwang, & Schroeder, 2012; 

Sharma, Bash, Patel, Friedrich, & Chase, 2005 ), hardware energy 

proportionality ( Fan, Weber, & Barroso, 2007; Miyoshi, Lefurgy, 

Van Hensbergen, Rajamony, & Rajkumar, 2002 ), upgrading hard- 

ware pieces such as HDDs to operate with non-mechanical devices 

such as SSDs ( Andersen & Swanson, 2010 ), and improving power 

distribution infrastructures ( Femal & Freeh, 2005 ) that have been 

put into production in various data centers from top-tier compa- 

nies such as Google, Microsoft, and Amazon. 

The paper is organized as follows. The related work is de- 

scribed in Section 2 and various powering-off resources strategies 

are shown in Section 3 . Section 4 presents the simulation tool 

adapted and used for the experimentation environment shown in 

Section 5 . 

Finally, results are shown and analyzed in Section 6 , where we 

compare energy-saving outcomes and the performance impact for 

each energy-efficiency policy. Conclusions are drawn in Section 7 . 

2. Related work 

Many effort s have been made in order to increase resource and 

energy efficiency in data centers. The proposed strategies range 

from energy-aware scheduling algorithms to power-off heuristics 

https://doi.org/10.1016/j.eswa.2018.06.007 

0957-4174/© 2018 Elsevier Ltd. All rights reserved. 
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Table 1 

Related work summary. 

Ref. Title: Performance evaluation of a green scheduling algorithm for energy savings in cloud computing Savings 

Duy et al. (2010) ∼ 45% 

Strategy: Power off policy based on a neural network predictor 

Evaluation: [8–512] nodes cluster simulation 

Workload: End user homogeneous requests that follow a day/night pattern 

Ref. Title: Energy efficient utilization of resources in cloud computing systems Savings 

Lee and Zomaya (2012) [5–30]% 

Strategy: Energy-aware task consolidation heuristic based on different cost functions 

Evaluation: Simulation of a not stated size cluster 

Workload: Synthetic workload in terms of number of tasks, inter arrival time and resource usage 

Ref. Title: Dynamic energy-aware scheduling for parallel task-based application in cloud computing Savings 

Juarez et al. (2018) [20–30]% 

Strategy: Polynomial-time and multi-objective scheduling algorithm for DAG jobs 

Evaluation: Experimentation on a 64 nodes cluster 

Workload: Synthetic directed acyclic graph-based workload 

Ref. Title: Energy efficient resource management in virtualized cloud data centers Savings 

Beloglazov and Buyya (2010) ∼ 80% 

Strategy: VM allocation and migration policies + Always off policy 

Evaluation: 100 nodes cluster simulation using CloudSim 

Workload: Synthetic workload that simulates services that fulfill the capacity of the cluster 

Ref. Title: Saving energy in data center infrastructures Savings 

Ricciardi et al. (2011) [20–70]% 

Strategy: Safety margin power-off policy 

Evaluation: 100 and 5000 nodes cluster simulation 

Workload: Synthetic workload that follows a day/night pattern 

Table 2 

Summary of the pros and cons of the energy-aware scheduling algorithms in the related work. 

Duy et al. (2010) Performance evaluation of a green scheduling algorithm for energy savings in cloud computing 

Pros Deeply described neural-network-based algorithm; Empirically measured power consumption 

Cons No focus on overall performance, only in drop rate; Small data-center size ([8–512] nodes) 

Short simulation period (2 days); No evaluation of huge & heterogeneous workload (cloud computing) 

Fernández-Cerero et al. (2018) Security supportive energy aware scheduling and scaling for cloud environments 

Pros Load balancing and VM scaling techniques; Computes security constraints 

Proposal of an energy-aware Genetic Algorithm 

Cons Focused on DVFS, not on shutting-down machines; Only for Independent Batch Scheduling environment 

No evaluation of huge & heterogeneous workload (real-life cloud computing system); Tiny cluster (5 VMs) 

Juarez et al. (2018) Dynamic energy-aware scheduling for parallel task-based application in cloud computing 

Pros DAG and data-aware workload; Multi-heuristic scheduling algorithm 

Cons Small data-center size (64 nodes max.); Only evaluates the makespan and total energy consumed 

No evaluation of huge & heterogeneous workload (real-life cloud computing system) 

Not focused on shutting-down machines, but in various DAG workloads 

Not clear about the cluster utilization (and the theoretical maximal energy efficiency) 

Lee and Zomaya (2012) Energy efficient utilization of resources in cloud computing systems 

Pros Large and detailed experimentation; Allows task migration 

Cons Focused on task scheduling, not on the shut-down of machines. 

No evaluation of huge & heterogeneous workload (real-life cloud computing system) 

No evaluation of the performance impact of the proposed strategies 

that aim to minimize the number of idle nodes. A summary of 

these effort s is presented in Table 1 , and a summary of the pros 

and cons of the related work regarding energy-aware schedul- 

ing algorithms, VM scaling and migration, and proposals based on 

shutting-down idle nodes is presented in Tables 2 –4 , respectively. 

A substantial part of these approaches has been directed 

towards energy-aware scheduling strategies that could lead 

to powering off idle nodes, such as Duy, Sato, and In- 

oguchi (2010) , Fernández-Cerero, Jakóbik, Grzonka, Kołodziej, 

Fernández-Montes (2018) , Juarez, Ejarque, and Badia (2018) , and 

Lee and Zomaya (2012) . In Duy et al. (2010) , a Green Schedul- 

ing Algorithm based on neural networks is proposed. This algo- 

rithm predicts workload demand in order to apply only one power- 

off policy to idle servers. These experiments simulate a small 

data center (512 nodes as a maximum) which serves an homoge- 

neous workload composed of end-user facing tasks which follow 

a day/night pattern. Lee and Zomaya (2012) present two energy- 

aware task consolidation heuristics. These strategies aim to max- 

imize resource utilization in order to minimize the wasted en- 

ergy used by idle resources. To this end, these algorithms com- 

pute the total cpu time consumed by the tasks and prevent a 

task being executed alone. Juarez et al. (2018) propose an algo- 

rithm that minimizes a multi-objective function which takes into 

account the energy-consumption and execution time by combining 

a set of heuristic rules and a resource allocation technique. This 

algorithm is evaluated by simulating DAG-based workloads, and 

energy-savings in the range of [20–30%] are shown. Fernández- 

Cerero et al. (2018) propose energy-aware scheduling policies and 

methods based on Dynamic Voltage and Frequency Scaling (DVFS) 

for scaling the virtual resources while performing security-aware 

scheduling decisions. 

In addition, different techniques of energy conservation such 

as VM consolidation and migration ( Beloglazov, Abawajy, & Buyya, 

2012; Beloglazov & Buyya, 2010, 2012; Sohrabi, Tang, Moser, & 

Aleti, 2016 ) are also proposed. Beloglazov and Buyya (2010) de- 

scribe a resource management system for virtualized cloud data 

centers that aims to lower the energy consumption by applying 

a set of VM allocation and migration policies in terms of current 

CPU usage. This work is extended by focusing on SLAs restric- 

tions in Beloglazov et al. (2012) and by developing and compar- 
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Table 3 

Summary of the pros and cons of the VM scaling and migration algorithms in the related work. 

Beloglazov and Buyya (2010) Energy efficient resource management in virtualized cloud data centers & 

Beloglazov et al. (2012) Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing 

Pros VM resizing and migration; Thermal and network considerations. 

Cons Not focused on shutting down machines, but on VM placement; Small data-center size (100 nodes) 

No evaluation of huge & heterogeneous workload (real-life cloud computing system) 

No evaluation of the performance impact of the proposed strategies (only SLA violations) 

Sohrabi et al. (2016) Adaptive virtual machine migration mechanism for energy efficiency 

Pros Machine learning for re-scheduling tasks when hosts become overloaded; Real-life workload 

Cons Not focused on shutting down machines, but in VM placement;Not large data-center size (800 machines) 

No detailed evaluation of the performance impact (only SLA violations & makespan) 

Beloglazov and Buyya (2012) Optimal online deterministic algorithms and adaptive heuristics 

for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers 

Pros Dynamic VM resizing and migration; Dynamic host overloading algorithms; Real-life workload; Extensive experimentation 

Cons Not focused on shutting down machines, but in VM placement; Not large data-center size (800 machines) 

No detailed evaluation of the performance impact (only SLA violations) 

Table 4 

Summary of the pros and cons of the proposals based on shutting-down idle nodes in the related work. 

Ricciardi et al. (2011) Saving energy in data center infrastructures 

Pros Day-night workload pattern; Two different-sized data centers (50 0 0 and 100 nodes) 

Cons Only one energy-efficiency policy based on a security margin 

No performance impact evaluation; No description of workload and simulation tool 

Amur et al. (2010) Robust and flexible power-proportional storage 

Pros Near optimal power proportionality; Various data-layout policies 

Almost no negative impact in data loss; Good experimental analysis based on standard benchmarks. 

Cons Focused only on cluster storage; Small data center (25 nodes); Read-only workload 

Kaushik and Bhandarkar (2010) Greenhdfs: towards an energy-conserving, storage-efficient, hybrid hadoop compute cluster 

Pros Cold and hot data areas; Real-life HDFS traces workload; Large Yahoo! data center (2600 nodes) 

Cons Focused only on cluster storage; Few details on the simulation tool and performance impact 

Luo et al. (2013) Superset: a non-uniform replica placement strategy towards high-performance and cost-effective 

distributed storage service 

Pros The dynamic replication may improve both energy efficiency and performance 

Extensive experimentation with a comparative with Thereska et al. (2011) 

Cons Focused only on cluster storage; Few details of the simulation tool; Small data center (240 nodes) 

Thereska et al. (2011) Sierra: practical power-proportionality for data center storage 

Pros Real-life workload presenting a day/night pattern; No extra capacity nor migration required 

Read & write workload; Network-aware; Extensive experimentation 

Cons Focused only on cluster storage; Small data center (31 nodes) 

ing various adaptive heuristics for dynamic consolidation of VMs 

in terms of resource usage in Beloglazov and Buyya (2012) . These 

migration policies are evaluated by simulating a 100-node cluster. 

Energy reductions up to approximately 80% are shown with low 

impact on quality of service and SLAs. In Sohrabi et al. (2016) , a 

Bayesian Belief Network-based algorithm that aims to allocate and 

migrate VMs is presented. This algorithm uses the data gathered 

during the execution of the tasks in addition to the information 

provided at submission time in order to decide which of the vir- 

tual machines are to be migrated when a node is overloaded. In 

Ricciardi et al. (2011) , a different approach is proposed. In this 

work, Ricciardi et al. present a data center energy manager that 

relies on day/night workload patterns in order to aggregate traffic 

during night periods and therefore turn off idle nodes. The authors 

apply a power-off policy based on a safety margin in order to min- 

imize the negative impact on performance. To evaluate this strat- 

egy, two different data centers of 50 0 0 and 100 nodes are simu- 

lated. In this kind of scenario, potential energy reductions between 

approximately 20 and 70% are shown. 

The application of these techniques together presents a ma- 

jor opportunity in various large-scale scenarios, such as Grid 50 0 0 

( De Assuncao, Gelas, Lefevre, & Orgerie, 2012 ). 

In order to achieve energy proportionality, many effort s ( Amur 

et al., 2010; Kaushik & Bhandarkar, 2010; Luo, Wang, Zhang, & 

Wang, 2013; Thereska, Donnelly, & Narayanan, 2011 ) have been 

made in only one subset of all the systems, since these represented 

the main bottleneck when they were written. In Amur et al. (2010) , 

a power-proportional distributed file system that stores replicas 

of data on non-overlapping subsets of nodes is proposed. These 

subsets of different sizes contain one replica for each file. This 

partitioning strategy lets the administrator decide the number 

of datasets to be kept turned on to serve incoming requests, 

and therefore it gives the administrator the opportunity to con- 

trol the trade-off between energy consumption and performance. 

Kaushik and Bhandarkar (2010) present a variant of Hadoop Dis- 

tributed File System that divides the cluster in two zones in terms 

of data usage pattern. The first zone, called the Hot Zone , con- 

tains the subset of fresh data that is more likely to be accessed 

short term. The second zone, called the Cold Zone , contains the set 

of files with low spatial or temporal popularity with few to rare 

accesses. Once the cluster is divided in these two zones, an ag- 

gressive power-off policy is applied to the Cold Zone . This energy- 

efficiency strategy achieves approximately 26% energy reduction 

without notably worsening the overall performance and reliability 

in a three-month simulation based on a Yahoo! cluster configura- 

tion. In Thereska et al. (2011) , the cluster is partitioned in order to 

create different non-overlapping data zones. Each of these zones 

contains one replica of the cluster data. Once the cluster is par- 

titioned, the system lets the administrator power off the desired 

number of zones, depending on the aggressiveness of the energy- 

efficiency strategy. Luo et al. (2013) propose a non-uniform replica 

placement strategy in terms of data popularity. This strategy aims 

to increase the number of available parallel replicas for data that is 

very likely to be accessed, and to lower the number of replicas of 

the low-used data that is rarely accessed in order to power off the 

maximum number of nodes without affecting the overall perfor- 

mance. In order to evaluate this strategy, a Zipf distribution-based 
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workload and a real trace of Youku is executed in a 240-nodes sim- 

ulated cluster. 

This paper follows a different approach: to deeply describe the 

impact of 6 different power-off policies in terms of performance 

and energy consumption on a well-defined, rich and realistic het- 

erogeneous workload that follows the trends present in Google 

Traces by running a huge amount of experiments for centralized 

monolithic scheduling frameworks. In order to better characterize 

the impact of these power-off policies and unlike the presented re- 

lated work, this paper does not focus on developing energy-aware 

VM allocation or migration policies, but the authors use a Best- 

fit-like VM allocation heuristic and does not apply VM migration 

strategies as stated in Section 5 . In addition, these power-off poli- 

cies are applied at the data center operating system / resource 

manager level, not to a framework or subsystem like some of the 

related work presented. This difference makes it possible to apply 

the proposed power-off policies to any framework that can run as 

a VM / Linux container on the data center. 

3. Power-off policies 

In this work, we have developed several deterministic and prob- 

abilistic power-off decision policies. These power-off decision poli- 

cies form the core of the work since they have much more impact 

on data-center efficiency and performance than anything else. 

From among the deterministic policies, the following policies 

have been developed: 

• Never power off: This power-off decision policy disables the 

power-off process, and therefore represents the current sce- 

nario. 
• Always power off: This power-off decision policy will shut down 

every machine after freeing all the resources under use, when- 

ever possible. 
• Maximum load : This power-off decision policy takes into ac- 

count the maximum resource pressure of the data-center load 

and compares it to a given threshold μ. If the current load is 

less than this given threshold μ, then the machine will be pow- 

ered off. 
• Minimum free-capacity margin : This power-off decision policy 

assures that at least a given percentage of resources μ is turned 

on, free, and available in order to respond to peak loads. 

Regarding among the probabilistic policies, the following poli- 

cies have been implemented: 

• Random : This policy switches off and randomly leaves the re- 

sources idle by following a Bernoulli distribution whose param- 

eter is equal to 0.5. This policy is useful to ascertain the accu- 

racy of the predictions made by the following probabilistic poli- 

cies. 
• Exponential : The Exponential distribution, denoted by Exp ( λ), 

describes the time between events in a Poisson process, that 

is, a process in which events occur continuously and indepen- 

dently at a constant average rate (1/ λ). Under the hypothesis 

that the arrival of new jobs follows an Exponential distribution, 

this energy policy attempts to predict the arrival of new jobs 

that can harm the data-center performance due to the lack of 

sufficient resources for their execution. 

To compute the λ parameter, the most recent jobs are taken 

into account. The size of these last jobs is denoted as Win- 

dow size . Thus, every time a shut-down process is executed, the 

mean time between these last jobs that could not be served at 

the time of making the decision is computed, and denoted by 

δ. Hence, λ = 1 /δ by using the method of maximum likelihood. 

The probability of the arrival of a new job can then be com- 

puted by means of the exponential cumulative density function 

(cdf), as cdf ( T s ) 
1 = 1 − e −T s /δ . Therefore, given a decision thresh- 

old μ value, the following conditions are imposed: {
if cdf (T s ) > = μ then leave resources Idle 
if cdf (T s ) < μ then switch resources O f f 

• Gamma : The Gamma distribution, denoted by �( α, β), is fre- 

quently used as a probability model for waiting times and 

presents a more general model than the Exponential distribu- 

tion. Under the hypothesis that the arrival of new jobs follows 

a Gamma distribution, this energy policy attempts to predict 

the arrival of the amount of new jobs required to oversubscribe 

the available resources. 

and takes into account the Lost factor described in the Exponen- 

tial policy. are: 

– mem available : memory in Idle state. 

– cpu available : computational resources in Idle state. 

– mem mean : mean RAM used by last jobs. 

– cpu mean : mean computational resources used by last jobs. 

– δ: mean inter-arrival time of last jobs. 

– αcpu : as cpu available / cpu mean . 

– αmem 

: as mem available / mem mean . 

The parameters of the Gamma distribution are then estimated 

as: α = Min (αcpu , αmem 

) and β = δ. Finally the probability of 

the arrival of new jobs is computed by means of the cumulative 

density function (cdf) with: 

cdf (T s ) = 

γ (α, βx ) 

�(α) 

Hence, given a decision threshold μ value, the following condi- 

tions are imposed: {
if cdf (T s ) > = μ, then leave resources Idle 
if cdf (T s ) < μ, then switch resources O f f 

4. Simulation tool 

In this paper, we extended the Google lightweight simu- 

lator presented in Schwarzkopf, Konwinski, Abd-El-Malek, and 

Wilkes (2013) in order to perform energy-efficiency analysis. 

This simulator lets the authors focus on the development of 

energy-efficiency policies and perform simulations of the differ- 

ent scheduling frameworks and various data-center environments, 

while abstracting the details of each of them. The following energy 

states are considered : (a) On : 150 W (b) Off: 10 W (c) Idle : 70 W 

(d) Shutting Down : 160 W (e) Powering On : 160 W. The energy con- 

sumption is linearly computed in terms of the usage of each core. 

Moreover, this tool provides us with a trustworthy implemen- 

tation of the monolithic scheduling processes, and results have 

been contrasted to Google’s realistic simulator ( Schwarzkopf et al., 

2013 ). The simulator employed can be found at https://github.com/ 

DamianUS/cluster-scheduler-simulator . 

5. Experimentation 

In order to test and measure the achieved power savings and 

the consequent impact on data-center performance, a set of ex- 

periments have been run. Each of these experiments simulates a 

period of seven days of operation, and applies various combina- 

tions of the energy policies developed and described in Section 5.2 . 

These experiments are designed to simulate realistic and heteroge- 

neous environments. 

1 T S is defined as the minimum time that ensures energy saving if a resource is 

switched off between two jobs ( Orgerie, Lefèvre, & Gelas, 2008 ). 
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Fig. 1. Workload inter-arrival histogram. 

In order to create a realistic and trustworthy testbed, realistic 

Google traces ( Reiss, Wilkes, & Hellerstein, 2011, 2012b ) were cho- 

sen and the interpretations carried out over these traces by the 

research community ( Abdul-Rahman & Aida, 2014; Di, Kondo, & 

Franck, 2013; Liu & Cho, 2012; Reiss, Tumanov, Ganger, Katz, & 

Kozuch, 2012a ) were studied. 

In the following subsections, the test suite and environment de- 

signed and used are presented. 

5.1. Workload 

Jobs are composed of one or more tasks: sometimes thousands 

of tasks. In this work, two types of jobs are considered: 

• Batch jobs: This workload is composed of jobs which perform 

a computation and then finish. These jobs have a determined 

start and end. MapReduce jobs are an example of a Batch job. 
• Service jobs: This workload is composed of long-running jobs 

which provide end-user operations and infrastructure services. 

As opposed to Batch jobs, these jobs have no determined end. 

Web servers or services, such as BigTable ( Chang et al., 2008 ), 

are good examples of a Service job. 

Synthetic workloads are generated in each experiment run by 

replicating the behaviour of those workloads present in typical 

Google data centers. Therefore, although the workload generated 

in each simulation run is unique, they follow the same model de- 

sign. 

The subsequent job attributes have been covered and studied: 

• Inter-arrival time : The inter-arrival time represents the time be- 

tween two consecutive Service jobs or two consecutive Batch 

jobs. It also determines the amount of jobs executed in a spe- 

cific time window. The inter-arrival time between two Batch 

jobs is usually shorter than that between two Service jobs, as 

illustrated in Fig. 1 , leading to a higher number of Batch jobs, 

as illustrated in Fig. 4 . 
• Number of tasks : This parameter represents the number of tasks 

that comprise a job. As illustrated in Fig. 2 , Batch jobs are com- 

posed of a higher number of tasks than Service jobs. 
• Job duration : This parameter represents the time that a job con- 

sumes resources in the data center. As illustrated in Fig. 3 , Batch 

jobs require less time to complete than Service jobs. 
• Resource usage : Taking into account the parameters described 

above, although Batch jobs and tasks constitute the vast major- 

ity, the higher resource utilization and duration of Service jobs 

results in our synthetic workload as illustrated in Fig. 4 . In this 

figure, it can be noticed that less than 10% of jobs in the work- 

load are Service jobs, while less than 3% of tasks are Service 

tasks. It should be borne in mind, however, that almost 40% of 

CPU and 50% of RAM resources are used by Service jobs. 

Taking into account the aforementioned environment and work- 

load scenario, the generated workload is composed of 43,050 Batch 

jobs, 4238 Service jobs. This represents one week of operation time, 

and reaches 57, 81% computational power and 48.33% memory in 

use on average. 

5.2. Experiments performed 

After simulating a wide range of values for every parameter de- 

scribed in Section 3 , for comprehension purposes, the most inter- 

esting and representative have been chosen: 

In order to prevent resource contention, a power-on policy 

which turns on the necessary machines whenever the workload re- 

source demands are higher than available machines, and a schedul- 

ing strategy which tries to fill every machine to the maximum 

(90%) while maintaining some randomness ( Khaneja, 2015 ) is used. 

It is worth mentioning that in the experiments that simulate the 

Never power off policy, a scheduling strategy where resources are 

chosen randomly is used to represent the base scenario. 

6. Results 

In this section, the obtained results are illustrated through key 

performance indicators concerning a) energy savings and b) impact 

over performance. In this way, energy savings and performance are 

analyzed and compared for each energy policy. 

6.1. Energy savings indicators 

The following indicators were selected in order to describe the 

energy savings and the behaviour of the powering on/off opera- 

tions: 

• Energy consumed vs. current system : The overall energy used in 

each experiment against the current 2 operation energy utiliza- 

tion. 
• Power-off operations : The total number of shut-downs per- 

formed over all the resources during the overall simulated op- 

eration time. 
• KWh saved per shut-down : This represents the energy saved 

against the shut-downs performed. It shows the goodness of the 

power-off actions performed. 

2 Current operation for the same data center and workload, but without applying 

energy-saving polices. 
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Fig. 4. Workload resource usage. 

• Idle resources : Represents the percentage of resources in an idle 

state (turned on but not in use). 

6.2. Performance indicators 

The following indicators were selected as the most significant 

in the description of the impact of the various energy-efficiency 

policies on data-center performance. 

• Job queue time (first scheduled) : Represents the time a job waits 

in the queue until its first task is scheduled. 
• Job queue time (fully scheduled) : Represents the time a job waits 

in the queue until it is totally scheduled (not finished). 

Table 5 

Summary of energy savings for the best energy policies. N – Never power off. 

A – Always power off. R – Random . L – Maximum load . M – Minimum free- 

capacity margin . E – Exponential . G – Gamma . 

Energy Energy Power KWh Idle KWh Cost 

policy % vs. offs saved resources saved savings 

Current (10 3 ) Shutt. % (10 3 ) ($) 

N 100 0.00 n/a 42.21 0.00 0 

A 80.25 64.52 1.72 8.35 110.83 15,517 

R 80.73 39.16 2.76 9.18 108.15 15,141 

L 80.21 67.20 1.65 8.27 111.09 15,553 

M 82.35 9.04 10.96 11.97 99.04 13,866 

E 82.34 9.01 11.00 11.95 99.12 13,877 

G 82.7 8.98 10.82 12.56 97.12 13,597 

• Job think time : Represents the time needed for a schedule deci- 

sion to be made. 
• Timed-out jobs : A job is marked as timed out and left without 

scheduling when the scheduler completes 100 tries to schedule 

the same job, or 10 0 0 tries of any task of the job. In all our 

experiments, the number of timed-out jobs is always 0. 
• Scheduler occupation fraction : This represents the scheduler us- 

age. 

6.3. General results 

In order to analyze and compare the performance of each fam- 

ily of policies, the best and exemplary energy policy from each 

family has been selected, in terms of the combination of energy- 
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Table 6 

Summary of performance impact of best energy policies. B – Batch workload, S – Service 

workload. 

Energy Time first scheduled (s) Time fully scheduled (s) Sched. 

policy Mean 90p. Mean 90p. occu- 

B S B S B S B S pation(%) 

N 0.19 0.19 0.63 0.67 0.19 0.19 0.63 0.67 14.30 

A 0.22 0.22 0.78 0.84 0.30 0.32 0.92 0.95 15.18 

R 0.20 0.21 0.72 0.80 0.25 0.27 0.80 0.84 14.79 

L 0.22 0.22 0.78 0.83 0.31 0.33 0.94 0.95 15.20 

M 0.19 0.19 0.63 0.67 0.19 0.19 0.63 0.67 14.30 

E 0.19 0.19 0.63 0.67 0.19 0.19 0.63 0.67 14.30 

G 0.19 0.19 0.63 0.67 0.19 0.19 0.63 0.67 14.30 

(a) Savings vs. KWh/shut-down (b) Savings vs. Idle resources

Fig. 5. Energy-saving comparison. A – Always power off. E – Exponential . G – Gamma . L – Maximum load . M – Minimum free-capacity margin . N – Never power off. R – Random . 

saving and performance results. Table 5 shows performance key 

indicators, while Table 6 shows energy related results. Fig. 5 a and 

5 b summarize and illustrate these numeric results. 

From these results, several conclusions can be stated. In gen- 

eral, the more shut-downs there are, the more energy is saved, or 

from another point of view, the less idle the resources, the less en- 

ergy wasted. Fig. 5 b shows this behaviour, since the Always power 

off energy policy and other policies that tend to switch off re- 

sources are always the greatest energy savers, achieving savings 

of approximately 20%. This first conclusion provides evidence pre- 

viously shown by Fernández-Montes, Gonzalez-Abril, Ortega, and 

Lefèvre (2012) in similar environments. 

However, it should be borne in mind that the accuracy of the 

employed policies depends on the distribution of the data-center 

workload. The application of these policies without any previous 

knowledge of the workload and its distribution may be hard and 

might achieve sub-optimal results. 

Fig. 5 a shows that Exponential, Gamma and Minimum free- 

capacity margin policies perform fewer shut-down operations, but 

in a highly planned manner, and therefore the quantity of energy 

saved per shut-down operation is approximately 6 times better 

(from 2 to 12 kWh), and total savings are approximately 18%, 

which is only 2% less than the policies of the highest energy sav- 

ings, while performing 85% less shut-down operations compared to 

those performed by Always power off and Maximum load policies. 

In terms of costs, the saved energy adds up to a total of $15 K 

for 7 days, and hence, under similar conditions, this would indicate 

$60 K a month or $720 k a year. 3 

In terms of performance, Fig. 6 a and 6 b show that the more 

shut-downs are performed, the more probability of causing a neg- 

ative impact on the performance. This is noticeable for the Always 

power off and Maximum load policies. The negative impact in terms 

of queue time is shown on the queue-time parameters, such as Job 

3 $0.14 per KwH was considered to compute economic costs. 

queue time (first scheduled) and Job queue time (fully scheduled) pa- 

rameters, which suffer a mean impact of 15% and 60%, respec- 

tively compared to those of the base/current scenario. The Random 

policy acts as an intermediate stage between the two previously 

stated sides. The queue-time parameters, such as Job queue time 

(first scheduled) and Job queue time (fully scheduled) , suffer a mean 

impact of 5% and 15%, respectively. 

On the other hand, once again, Exponential, Gamma and Mar- 

gin energy policies do not affect negatively to the performance, but 

achieve major energy savings ( ∼ 18%). 

In order to better understand the behaviour of these energy 

policies, Fig. 7 shows the evolution of the resource state for each 

policy. 

It should be borne in mind that there is a short-time period at 

the beginning until each policy reaches its normal pattern. This ad- 

justing period occurs due to the On state of all the resources of the 

data center at the beginning of the simulation. Two groups of poli- 

cies can be determined according to their behaviour. On one hand, 

the Always power off, Maximum load and Random policies suffer 

from the same problem: they try to adjust available resources to 

fit, as much as possible, the current workload demand, which leads 

to a high number of power on/off operations. Moreover, it can be 

observed that the time needed by the Random policy to adjust to 

workload changes is double that of the Always power off policy, 

since the Random policy performs half the number of shut-down 

operations compared to the Always power off policy. 

On the other hand, prediction-based policies perform much 

smoother adjustments to the workload, therefore leading to a 

lower number of power on/off operations. 

Finally, at the end of day #1, there is a peak of machines that 

are switched on for Always power off-like policies. Hence, it should 

be pointed out that maintaining a set of machines as a security 

margin can lead to the ability to satisfy the workload needs in a 

much more gradual way. Moreover, these workload peaks do not 

affect these prediction-based energy policies. Aggressive policies 
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(a) Savings vs. Job queue time (b) Savings vs. Job think time

Fig. 6. Comparison of energy savings vs. performance. 

Fig. 7. Behaviour of energy policies. 

solve these load bursts by switching on a large set of machines, 

even larger than actually needed for that moment. 

The presented evidences lead us to recognize that controlled 

and prediction-based polices are preferable to deterministic poli- 

cies. 

6.4. Exponential policy: detailed results 

Exponential power-off policies described in Section 3 show a 

high dependency on the Lost factor parameter. This parameter rep- 

resents the percentage of resources that can not be used even if 

they are available because these resources are insufficient to hold 

the task. For example, lets consider a workload where all tasks will 

consume 1 GB of memory and 2 CPU cores. In this scenario, even 

if a machine has 900 MB of memory and 1.8 CPU cores available, 

these resources will be completely useless and should not be com- 

puted as available resources. The Lost factor allows the authors to 

take into account the useful available resources instead the total 

not-used resources. 

In order to fully understand the results presented in this sec- 

tion, it should be borne in mind the nature of the workload em- 

ployed: a vast majority are low-resource consuming jobs compris- 

ing very few tasks which are easily to serve. Due to this, the risk 

of not satisfying the requirements of these tasks is very low, tend- 

ing to 0. In the other hand, very few jobs are composed of an 

enormous number of tasks, where it is almost impossible to serve 

their requirements. This means that the risk of not satisfying the 

requirements of these tasks tends towards 1. Due to this, the deci- 

sion threshold μ has a lower impact in terms of performance and 

energy savings, unless a value extremely close to 0 or 1 is taken, 

whereby it behaves as the Never power off or Always power off poli- 

cies, respectively. 

In addition, the number of these high-demanding jobs is very 

low. This leads to a poor prediction when only a low number of 

the last jobs are taken into account. Thus, the Window size values 

evaluated are of less impact in terms of performance and energy 

savings than the Lost factor parameter. 

Fig. 8 presents the dependency on the Lost factor clearly. In 

terms of kWh saved per shut-down, as shown in Fig. 8 b, the best 

results are reached when a Lost factor of 20% is considered. This 

value makes sense, because as stated in Section 5 , our environment 

is designed to simulate the one presented in Lo, Cheng, Govin- 

daraju, Ranganathan, and Kozyrakis (2015) , which attains a level 

of utilization of 90% of resources without causing any noticeable 

negative impact. 

• Energy savings : In terms of energy savings, as presented in 

Table 7 and in Fig. 8 a, for low Lost factor values, the Expo- 

nential policy behaves similar to the Always power off policy, 

and achieves the highest rates of energy savings at the expense 

of a negative performance impact, as presented in Table 8 . 

The higher this parameter increases, the lower the number of 

power-off cycles, and approaches the Never power off policy. 
• Performance : In terms of performance, as presented in Table 8 , 

the Exponential policy follows the same trend present in the 

energy savings. However, it can be observed that if 20% of 

resources are taken as unusable ( lost factor ), as suggested by 

the kWh saved per shut-down parameter, then a virtually non- 

negative impact in terms of performance is imposed. Moreover 

only ∼ 2% more of energy is consumed compared to Always 

power off policy, but only ∼ 15% of the number of shut-downs 

is performed. In addition this is consistent with the Minimum 

free-capacity margin policy. Finally, if the Lost factor value con- 

tinues to rise above ∼ 20%, it does not impact positively in 

terms of performance, but negatively in terms of energy sav- 

ings. 

6.5. Gamma policy: detailed results 

As described for the Exponential policy, the exponential nature 

of the generated workload links the Gamma policy performance 

impact and energy savings to the Lost factor parameter, whereby 

the rest of the parameters, Window size and decision threshold μ, 

hold a minor influence. 

In terms of behaviour, the Gamma policy follows the same 

trends present in the Exponential policy. However, due to the dif- 

ference in the predictive model construction, the Gamma policy be- 
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(a) Energy savings vs. Exponential

parametrization

(b) kWh saved per shut-down vs. Expo-

nential parametrization

(c) Queue time vs. Exponential

parametrization

Fig. 8. Energy savings and performance indicators in Exponential parametrization. 

Table 7 

Energy savings for Exponential policies. Exponential parameterization: [ Decision threshold μ, 

Window size, Lost factor ]. 

Energy policy Energy Power KWh Idle KWh Cost 

% vs. offs saved resources saved savings 

Acr. Params Current (10 3 ) Shutt. % (10 3 ) ($) 

N n/a 100 n/a n/a 42.21 n/a 0 

A n/a 80.25 64.52 1.72 8.35 110.83 15,517 

R [0.50] 80.73 39.16 2.76 9.18 108.15 15,141 

E [0.30, 25, 0.10] 80.01 64.94 1.73 7.93 112.21 15,710 

E [0.30, 25, 0.15] 80.68 19.00 5.71 9.11 108.42 15,179 

E [0.30, 25, 0.20] 82.34 9.01 11.00 11.95 99.12 13,877 

E [0.30, 25, 0.25] 85.06 8.54 9.82 16.62 83.83 11,736 

E [0.30, 25, 0.30] 88.34 8.03 8.16 22.22 65.47 9166 

Table 8 

Performance results for the Exponential energy-efficiency policy. 

Energy policy Time first scheduled (s) Time fully scheduled (s) Sched. 

Mean 90p. Mean 90p. occu- 

B S B S B S B S pation(%) 

N 0.19 0.19 0.63 0.67 0.19 0.19 0.63 0.67 14.30 

A 0.22 0.22 0.78 0.84 0.30 0.32 0.92 0.95 15.18 

R [0.50] 0.20 0.21 0.72 0.80 0.25 0.27 0.80 0.84 14.79 

E [0.30, 25, 0.10] 0.22 0.22 0.77 0.84 0.30 0.32 0.92 0.95 15.15 

E [0.30, 25, 0.15] 0.19 0.20 0.65 0.69 0.20 0.21 0.68 0.69 14.45 

E [0.30, 25, 0.20] 0.19 0.19 0.63 0.67 0.19 0.19 0.63 0.67 14.30 

E [0.30, 25, 0.25] 0.19 0.19 0.63 0.67 0.19 0.19 0.63 0.67 14.30 

E [0.30, 25, 0.30] 0.19 0.19 0.63 0.67 0.19 0.19 0.63 0.67 14.30 
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Table 9 

Energy-saving results for Gamma energy policy. Gamma parameterization: [ Decision threshold 

μ, Window size, Lost factor ]. 

Energy policy Energy Power KWh Idle KWh Cost 

%vs. offs saved resources saved savings 

Acr. Params Current (10 3 ) Shutt. % (10 3 ) ($) 

N n/a 100 n/a n/a 42.21 0.00 0 

A n/a 80.25 64.52 1.72 8.35 110.83 15,517 

R [0.50] 80.73 39.16 2.76 9.18 108.15 15,141 

G [0.90, 25, 0.10] 80.28 60.21 1.84 8.40 110.67 15,494 

G [0.90, 25, 0.15] 81.03 15.08 7.06 9.71 106.45 14,902 

G [0.90, 25, 0.20] 82.7 8.98 10.82 12.56 97.12 13,597 

G [0.90, 25, 0.25] 85.36 8.49 9.67 17.13 82.14 11,500 

G [0.90, 25, 0.30] 88.44 7.99 8.12 22.40 64.89 9084 

(a) Energy savings vs Gamma

parametrization

(b) kWh saved per shutting vs Gamma

parametrization

(c) Queue time vs Gamma parametriza-

tion

Fig. 9. Energy savings and performance indicators in Gamma parametrization. 

haves slightly less aggressively in terms of number of shut-downs 

applied. 

• Energy savings : In terms of energy savings, as presented in 

Table 9 and in Fig. 9 a and stated in the Exponential policy, if 

the Lost factor is too low, then the Gamma policy behaves like 

the Always power off policy, in that it achieves the highest rates 

of energy savings at the expense of a negative performance 

impact, as presented in Table 10 . The higher this parameter 

increases, the lower the number of power-off cycles, and ap- 

proaches the Never power off policy. 
• Performance : In terms of performance, as presented in Table 10 , 

the Gamma policy follows the same trend present in the en- 

ergy savings. However, it can be observed that if 20% of re- 

sources are taken as unusable ( Lost factor ), as suggested by 

the kWh saved per shut-down parameter, then a virtually non- 

negative impact in terms of performance is imposed. Moreover 

only ∼ 2.5% more of energy is consumed compared to Always 

power off policy, but only ∼ 13% of the number of shut-downs 

is performed. In addition this is consistent with the Minimum 

free-capacity margin and Exponential policies. Finally, if the Lost 

factor value continues to rise above ∼ 20%, then it does not im- 

pact positively in terms of performance, but negatively in terms 

of energy savings. 
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Table 10 

Performance results for the Gamma energy policy. 

Energy policy Time first scheduled (s) Time fully scheduled (s) Sched. 

Mean 90p. Mean 90p. occu- 

B S B S B S B S pation(%) 

N 0.19 0.19 0.63 0.67 0.19 0.19 0.63 0.67 14.30 

A 0.22 0.22 0.78 0.84 0.30 0.32 0.92 0.95 15.18 

R [0.50] 0.20 0.21 0.72 0.80 0.25 0.27 0.80 0.84 14.79 

G [0.90, 25, 0.10] 0.21 0.22 0.77 0.83 0.29 0.31 0.89 0.94 15.09 

G [0.90, 25, 0.15] 0.19 0.20 0.65 0.68 0.20 0.20 0.66 0.69 14.40 

G [0.90, 25, 0.20] 0.19 0.19 0.63 0.67 0.19 0.19 0.63 0.67 14.30 

G [0.90, 25, 0.25] 0.19 0.19 0.63 0.67 0.19 0.19 0.63 0.67 14.30 

G [0.90, 25, 0.30] 0.19 0.19 0.63 0.67 0.19 0.19 0.63 0.67 14.30 

7. Conclusions 

We have empirically proven that a suitable policy in data cen- 

ters can save a considerable amount of energy and reduce the 

pollution of CO 2 in the atmosphere. Industrial partners willing to 

deploy this kind of energy-saving policies would have a direct 

positive impact on their competitiveness: in addition to become 

greener by minimizing the environmental impact, these policies 

may notably reduce their operation costs. 

Several energy-saving policies have been explained, and their 

advantages and disadvantages have been presented, which outline 

which policy is more suitable for each data-center operational en- 

vironment and administrator criteria. The behaviours of these en- 

ergy policies are also consistent for various scheduler strategies. 

This work characterizes the impact of these power-off policies. 

Unlike the presented related work, it is focused on the use of a 

Best-fit-like VM allocation heuristic. In addition, these power-off

policies are applied at the data center operating system/resource 

manager level, not to a framework or to a subsystem. This ap- 

proach makes it possible to apply the proposed power-off policies 

to any framework that can run as a VM/Linux container on the 

data center. 

In this work, we go beyond the presented state of the art by 

focusing on the development of realistic, empirically-driven and 

production-ready energy policies that have a minor impact on 

data-center performance. These policies are simulated on a real- 

istic environment that has been contrasted with real-life produc- 

tion systems, such as those of Google data centers. We can point 

out the following strengths in our research method: (a) A clear 

description of data-center utilization and workload distribution, 

which follow the industry trends; (b) A detailed explanation on the 

workload parameters, classification, generation and heterogeneity; 

(c) A complete description of the scheduling model and algorithms 

employed; and (d) A detailed explanation on the impact on both 

the main goals of our system: energy-efficiency and performance. 

On the other hand, the greatest weaknesses of this work include: 

(a) The lack of means to contrast the provided results with a real- 

life system; and (b) The lack of some real-life system aspects in 

simulation, such as task inter-dependency, networking and data- 

related considerations. However, we plan to overcome these limi- 

tations in future steps of this research. 

The authors consider that prediction-based policies present 

much better behaviour for the data center, since they perform 

a much lower number of power-off cycles and save considerable 

amounts of energy. Moreover, it is also shown that it is possible to 

save energy by switching off machines and maintaining QoS and 

SLA levels, even for data centers in great demand. 

For future work, the authors aim to focus on the following re- 

search directions: 

1. Development of energy-efficiency policies based on machine 

learning, especially deep learning techniques. 

2. Utilization of no-monolithic scheduling frameworks, such as 

two-level, shared state, distributed and hybrid schedulers. 

3. Development of an intelligent system that may dynamically 

change the scheduling framework depending on environmental 

and workload-related parameters, as well as the study of the 

impact of such a system in terms of energy efficiency and per- 

formance. 

4. Development of new simulation features, such as new workload 

patterns, task inter-dependency, networking and data-related 

considerations. 

Acknowledgments 

This research is supported by the VPPI - University of Sevilla. 

References 

Abdul-Rahman, O. A. , & Aida, K. (2014). Towards understanding the usage behav- 

ior of Google cloud users: the mice and elephants phenomenon. In Proceedings 
of the IEEE international conference on cloud computing technology and science 

(Cloudcom), Singapore (pp. 272–277) . 
Amur, H. , Cipar, J. , Gupta, V. , Ganger, G. R. , Kozuch, M. A. , & Schwan, K. (2010). 

Robust and flexible power-proportional storage. In Proceedings of the first ACM 

symposium on cloud computing (pp. 217–228). ACM . 

Andersen, D. G. , & Swanson, S. (2010). Rethinking flash in the data center. IEEE Mi- 

cro, 30 (4), 52–54 . 
Beloglazov, A. , Abawajy, J. , & Buyya, R. (2012). Energy-aware resource allocation 

heuristics for efficient management of data centers for cloud computing. Future 
Generation Computer Systems, 28 (5), 755–768 . 

Beloglazov, A. , & Buyya, R. (2010). Energy efficient resource management in virtual- 
ized cloud data centers. In Proceedings of the tenth IEEE/ACM international confer- 

ence on cluster, cloud and grid computing (pp. 826–831). IEEE Computer Society . 

Beloglazov, A. , & Buyya, R. (2012). Optimal online deterministic algorithms and 
adaptive heuristics for energy and performance efficient dynamic consolidation 

of virtual machines in cloud data centers. Concurrency and Computation: Practice 
and Experience, 24 (13), 1397–1420 . 

Chang, F. , Dean, J. , Ghemawat, S. , Hsieh, W. C. , Wallach, D. A. , Burrows, M. , 
et al. (2008). Bigtable: A distributed storage system for structured data. ACM 

Transactions on Computer Systems (TOCS), 26 (2), 4 . 

De Assuncao, M. D. , Gelas, J.-P. , Lefevre, L. , & Orgerie, A.-C. (2012). The green 
gridâ;;50 0 0: Instrumenting and using a grid with energy sensors. In Remote in- 

strumentation for Escience and related aspects (pp. 25–42). Springer . 
Di, S. , Kondo, D. , & Franck, C. (2013). Characterizing cloud applications on a Google 

data center. In Proceedings of the forty-second international conference on parallel 
processing (ICPP). Lyon, France . 

Duy, T. V. T. , Sato, Y. , & Inoguchi, Y. (2010). Performance evaluation of a green 

scheduling algorithm for energy savings in cloud computing. In Proceedings of 
the IEEE international symposium on parallel and distributed processing, workshops 

and Ph.D. forum (IPDPSW) (pp. 1–8). IEEE . 
El-Sayed, N. , Stefanovici, I. A. , Amvrosiadis, G. , Hwang, A. A. , & Schroeder, B. (2012). 

Temperature management in data centers: Why some (might) like it hot. ACM 

SIGMETRICS Performance Evaluation Review, 40 (1), 163–174 . 

Fan, X. , Weber, W.-D. , & Barroso, L. A. (2007). Power provisioning for a warehouse–
sized computer. In ACM sigarch computer architecture news: 35 (pp. 13–23). ACM . 

Femal, M. E. , & Freeh, V. W. (2005). Boosting data center performance through 

non-uniform power allocation. In Proceedings of the second international confer- 
ence on autonomic computing (ICAC’05) (pp. 250–261). IEEE . 

Fernández-Montes, A. , Fernández-Cerero, D. , González-Abril, L. , Álvarez-García, J. A. , 
& Ortega, J. A. (2015). Energy wasting at internet data centers due to fear. Pat- 

tern Recognition Letters, 67 , 59–65 . 



D. Fernández-Cerero et al. / Expert Systems With Applications 110 (2018) 170–181 181 

Fernández-Montes, A. , Gonzalez-Abril, L. , Ortega, J. A. , & Lefèvre, L. (2012). Smart 
scheduling for saving energy in grid computing. Expert Systems with Applications, 

39 (10), 9443–9450 . 
Fernández-Cerero, D., Jakóbik, A., Grzonka, D., Kołodziej, J., & Fernández- 

Montes, A. (2018). Security supportive energy-aware scheduling and energy 
policies for cloud environments. Journal of Parallel and Distributed Computing, 

119 , 191–202. doi: 10.1016/j.jpdc.2018.04.015 . 
Jakóbik, A. , Grzonka, D. , Kolodziej, J. , Chis, A. E. , & González-Vélez, H. (2017). En- 

ergy efficient scheduling methods for computational grids and clouds. Journal 

of Telecommunications and Information Technology, 1 , 56 . 
Juarez, F., Ejarque, J., & Badia, R. M. (2018). Dynamic energy-aware scheduling for 

parallel task-based application in cloud computing. Future Generation Computer 
Systems, 78 , 257–271. https://doi.org/10.1016/j.future.2016.06.029 . 

Kaushik, R. T. , & Bhandarkar, M. (2010). Greenhdfs: Towards an energy-conserving, 
storage-efficient, hybrid hadoop compute cluster. In Proceedings of the usenix an- 

nual technical conference (p. 109) . 

Khaneja, G. (2015). An experimental study of monolithic scheduler architecture in cloud 
computing systems . Ph.D. thesis. University of Illinois at Urbana-Champaign . 

Koomey, J. (2011). Growth in data center electricity use 2005 to 2010: A report by 
Analytical Press, completed at the request of The New York Times : 9. Analytic Press . 

Lee, Y. C. , & Zomaya, A. Y. (2012). Energy efficient utilization of resources in cloud 
computing systems. The Journal of Supercomputing, 60 (2), 268–280 . 

Liu, Z. , & Cho, S. (2012). Characterizing machines and workloads on a Google clus- 

ter. In Proceedings of the eight international workshop on scheduling and resource 
management for parallel and distributed systems (SRMPDS). Pittsburgh, PA, USA . 

Lo, D. , Cheng, L. , Govindaraju, R. , Ranganathan, P. , & Kozyrakis, C. (2015). Hera- 
cles: improving resource efficiency at scale. In ACM sigarch computer architecture 

news: 43 (pp. 450–462). ACM . 
Luo, X. , Wang, Y. , Zhang, Z. , & Wang, H. (2013). Superset: A non-uniform replica 

placement strategy towards high-performance and cost-effective distributed 

storage service. In Proceedings of the international conference on advanced cloud 
and big data (CBD) (pp. 139–146). IEEE . 

Miyoshi, A. , Lefurgy, C. , Van Hensbergen, E. , Rajamony, R. , & Rajkumar, R. (2002). 
Critical power slope: Understanding the runtime effects of frequency scal- 

ing. In Proceedings of the sixteenth international conference on supercomputing 
(pp. 35–44). ACM . 

Orgerie, A.-C. , Lefèvre, L. , & Gelas, J.-P. (2008). Save watts in your grid: Green strate- 
gies for energy-aware framework in large scale distributed systems. In Proceed- 

ings of the fourteenth IEEE international conference on parallel and distributed sys- 
tems (pp. 171–178). IEEE . 

Reiss, C. , Tumanov, A. , Ganger, G. R. , Katz, R. H. , & Kozuch, M. A. (2012a). Hetero- 

geneity and dynamicity of clouds at scale: Google trace analysis. ACM sympo- 
sium on cloud computing (SOCC). San Jose, CA, USA . 

Reiss, C. , Wilkes, J. , & Hellerstein, J. L. (2011). Google cluster-usage traces: format + 

schema. Technical Report . Mountain View, CA, USA: Google Inc . 

Reiss, C. , Wilkes, J. , & Hellerstein, J. L. (2012b). Obfuscatory obscanturism: Mak- 
ing workload traces of commercially-sensitive systems safe to release. In Pro- 

ceedings of the third international workshop on cloud management (Cloudman) 

(pp. 1279–1286). Maui, HI, USA: IEEE . 
Ricciardi, S. , Careglio, D. , Sole-Pareta, J. , Fiore, U. , Palmieri, F. , et al. (2011). Saving 

energy in data center infrastructures. In Proceedings of the first international con- 
ference on data compression, communications and processing (CCP) (pp. 265–270). 

IEEE . 
Schwarzkopf, M. , Konwinski, A. , Abd-El-Malek, M. , & Wilkes, J. (2013). Omega: Flex- 

ible, scalable schedulers for large compute clusters. In Proceedings of the eight 

ACM European conference on computer systems (pp. 351–364). ACM . 
Sharma, R. K. , Bash, C. E. , Patel, C. D. , Friedrich, R. J. , & Chase, J. S. (2005). Balance 

of power: Dynamic thermal management for internet data centers. IEEE Internet 
Computing, 9 (1), 42–49 . 

Sohrabi, S. , Tang, A. , Moser, I. , & Aleti, A. (2016). Adaptive virtual machine migration 
mechanism for energy efficiency. In Proceedings of the fifth international work- 

shop on green and sustainable software (pp. 8–14). ACM . 

Thereska, E. , Donnelly, A. , & Narayanan, D. (2011). Sierra: Practical power-propor- 
tionality for data center storage. In Proceedings of the sixth conference on com- 

puter systems (pp. 169–182). ACM . 







Security Supportive Energy-Aware Scheduling and Energy

Policies for Cloud Environments

As a second step in the collaboration we started in Cracow we explored the

fourth research objective of this thesis dissertation: "Proof that Genetic algo-

rithms are an excellent solution to efficiently distribute tasks among servers

in data centers taking into account performance, energy, and security restric-

tions". We defined and developed a set of performance and energy-aware

strategies for resource allocation, task scheduling, and for the hibernation

of virtual machines. The idea behind this model is to combine energy and

performance-aware scheduling policies in order to hibernate those virtual ma-

chines that operate in idle state. The efficiency achieved by applying the pro-

posed models has been tested using the realistic large-scale cloud-computing

system simulator, that is, the SCORE simulator. Obtained results show that a

balance between low energy consumption and short makespan can be achieved.

Several security constraints may be considered in this model. Each security

constraint is characterized by: a) Security Demands (SD) of tasks; and b) Trust

Levels (TL) provided by virtual machines. SD and TL are computed during

the scheduling process in order to provide proper security services.

The main contributions include the combination of the following two different

approaches for the improvement of energy efficiency into one model: a) an en-

ergy-aware scheduler that assigns tasks to VMs according to security demands;

and b) a set of energy-efficiency policies that hibernate idle resources.

Experimental results show that the proposed solution reduces up to 45% of

the energy consumption of the cloud-computing system. Such a significant

improvement was achieved by the combination of an energy-aware scheduler

with energy-efficiency policies focused on the hibernation of VMs.

This work was published in Journal of Parallel and Distributed Computing.

This Journal is indexed in JCR with an Impact Factor of 1.815. The Journal

stands in ranking Q2 in Computer Science, Theory & Methods (33/103).

Page 87





J. Parallel Distrib. Comput. 119 (2018) 191–202

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Security supportive energy-aware scheduling and energy policies for
cloud environments
Damián Fernández-Cerero a,*, Agnieszka Jakóbik b, Daniel Grzonka b, Joanna Kołodziej b,
Alejandro Fernández-Montes a

a Department of Computer Languages and Systems, University of Seville, Spain
b Department of Computer Science, Cracow University of Technology, Poland

h i g h l i g h t s

• We propose energy-efficiency strategies for task scheduling and hibernating VMs.
• We combine energy and time-based criteria in order to sleep idle resources.
• We take into account several security constraints in our model.
• The effectiveness of the proposed model has been confirmed by simulation experiments.

a r t i c l e i n f o

Article history:
Received 3 October 2017
Received in revised form 29 March 2018
Accepted 24 April 2018
Available online 4 May 2018

Keywords:
Cloud computing
Energy efficiency
Independent task scheduling
Genetic algorithms
VM hibernating
Cloud security

a b s t r a c t

Cloud computing (CC) systems are the most popular computational environments for providing elastic
and scalable services on a massive scale. The nature of such systems often results in energy-related
problems that have to be solved for sustainability, cost reduction, and environment protection.

In this paperwe defined and developed a set of performance and energy-aware strategies for resource
allocation, task scheduling, and for the hibernation of virtual machines. The idea behind this model is to
combine energy and performance-aware scheduling policies in order to hibernate those virtual machines
that operate in idle state. The efficiency achieved by applying the proposed models has been tested using
a realistic large-scale CC system simulator. Obtained results show that a balance between low energy
consumption and short makespan can be achieved.

Several security constraints may be considered in this model. Each security constraint is characterized
by: (a) Security Demands (SD) of tasks; and (b) Trust Levels (TL) provided by virtual machines. SD and TL
are computed during the scheduling process in order to provide proper security services.

Experimental results show that the proposed solution reduces up to 45% of the energy consumption
of the CC system. Such significant improvement was achieved by the combination of an energy-aware
scheduler with energy-efficiency policies focused on the hibernation of VMs.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Virtualization of resources andContainerization Platforms, such
as Docker, have improved the resource efficiency in Cloud Com-
puting (CC) environments. These strategies allow the execution of
several heterogeneous services, such as MapReduce frameworks,
web servers, databases, and multi-purpose virtual machines on
the same physical resources. Although both performance and en-
ergy efficiency in CC environments depend mainly on hardware

* Corresponding author.
E-mail addresses: damiancerero@us.es (D. Fernández-Cerero), akrok@pk.edu.pl

(A. Jakóbik), dgrzonka@pk.edu.pl (D. Grzonka), jokolodziej@pk.edu.pl
(J. Kołodziej), afdez@us.es (A. Fernández-Montes).

features, proper scheduling policies may significantly shorten task
completion time, which can lead to the reduction of the energy
consumption in CC environments [29,33].

CC systems should ensure the appropriate security level for
every task deployed on the system [37], and must provide tools
for CC operators to develop security frameworks that suit their use
cases [38].

In this paper, we defined various energy-efficient optimiza-
tion strategies for multi-purpose central, monolithic schedulers in
CC systems. The energy efficiency is achieved through dedicated
policies that hibernate virtual machines that run in an idle state.
Moreover, we present a new model for the calculation of the
energy consumption of security operations. Based on this model,
CC operators are able to select one of the possible security levels.

https://doi.org/10.1016/j.jpdc.2018.04.015
0743-7315/© 2018 Elsevier Inc. All rights reserved.
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This information enables users to set longer or shorter keys for
cryptographic procedures. Such key-scaling related services are
available in Amazon Cloud, RackSpace, OpenStack, and Google
Clouds [1,3–5].

The presented model may be used in any High-Performance
Computing system that requires the assignation of tasks to com-
puting units. The computing units used in this work, thus, virtual
machines, are characterized by their computing capacity. This
model could be adapted to work with any type of computing unit
characterized by its computational power, such as those used in
edge computing networks, grid computing systems, systems based
on micro-containers, and small data centers.

The paper is organized as follows. In Section 2, we present the
state of the art in measurement of energy for virtualized environ-
ments and optimization of energy consumption in CC. In Section 3,
we present various approaches and methods: (a) a methodology
for estimation of power consumption of virtual machines in CC;
(b) a Batch Scheduling problem in CC with security criteria; (c)
computation of the total energy consumed by a given task in a
schedule; (d) a multi-objective scheduling problem with energy
consumption and security; and (e) energy-efficiency policies based
on hibernating virtualmachines are presented. In Section 4, the ex-
perimental environment and scenarios,where the twomore repre-
sentative energy-efficiency strategies have been implemented, are
described.Weevaluate ourmodels through extensive realistic sim-
ulation. Achieved results are presented and analyzed in Section 5.
Finally, the paper is summarized in Section 6.

2. Related work and progress beyond the state-of-the-art

Several strategies have been developed over last years for the
estimation of energy consumption of virtual machines in Cloud
Computing systems. The power requirements of physical servers
in a cluster can be measured by the means of established proce-
dures [35,46,47] focused onmeasuring the utilization ofmicropro-
cessors. The measurement process is more complex when virtual
machines are considered [16,53].

The VM energy consumption may be computed in terms of the
CPU, memory, and IO utilization, as proposed by Li, et al. in [54].

In [13], the virtualmachine energy consumptionwas computed
according to hardware performance results collected from various
components, mainly the CPU-related ones. Thememory utilization
is considered in the approach proposed by Krishnan in [53]. The
energy consumption of both network interface cards and hard
drives was also taken into account in the model presented by
Wassmann et al. in [68].

In addition, a linear model based on nine independent param-
eters was proposed by Bertran et al. in [12] in order to measure
virtual machines energy consumption. These parameters were,
among others, the first level cache activity and the number of
accesses to the first level cache per cycle.

On the other hand, a Gaussian Stochastic Mixture model was
proposed in [18] by Dhiman in opposition to the aforementioned
linear mathematical models with independent parameters. How-
ever, none of the proposed strategies are sufficient to deal with
realistic cloud virtual resource allocation and scheduling prob-
lems [59].

Various tools aiming to compute VM power consumption have
been proposed in an isolated way from cloud platforms. These
algorithms, such as FitGreen [20], Julemeter [44], and the algo-
rithm proposed by Murwantara [57], need special configurations
to access the hardware layer. Hence, they can only be deployed as
an external framework at the cloud provider or Infrastructure as a
Service level.

As the importance of CC rises, the energy efficiency of these in-
frastructures becomes more and more important. These facilities,

which consume as much energy as many factories, are responsible
for approximately 1.5% of global energy consumption [52].

The strategies developed for optimization of energy consump-
tion in CC may be classified into three major categories:

• Cooling strategies. The goal of these strategies is the re-
duction of the energy consumption of chillers, which rep-
resents an important part of the total energy used by a
data center. A dynamic thermal management system at the
data center level was proposed by Sharma et al. [65]. Rising
the data center operating temperature was proposed by El-
Sayed et al. [21], whereas Gao et al. extensively evaluated
the risks related to this approach [28]. On the other hand,
Zimmerman et al. proposed the reutilization of the wasted
heat in order to propose a hot water-cooled data center
prototype [70]. A multi-stage outdoor air-enabled cooling
system composed of a water-side economizer, an air-side
economizer, and mechanical cooling was proposed by Kim
et al. [50].

• Hardware-related strategies. Many hardware-based mod-
els have been proposed in order to achieve high energy-
conservation levels. Dynamic Voltage Frequency Scaling
(DVFS) model is one of the most popular approaches.
Miyoshi et al. evaluated benefits of using CPU DVFS [56],
while David et al. applied this technique to memory com-
ponents [17]. The replacement of mechanical components,
such as HDDs, with non-mechanical devices, such as SSDs,
was proposed by Andersen et al. [8]. Regarding the power
supply, a dynamic and non-uniform global power-allocation
model among nodes was proposed by Femal et al. [23].

• VM consolidation and migration. Several strategies have
been developed in order to schedule VMs and redistribute
them to reduce the energy consumption. Beloglazov et al.
[10] propose a resourcemanagement system focused on the
minimization of the energy consumption by the utilization
of VM allocation and migration policies. This work is ex-
tended by the proposal of several heuristics for dynamic
consolidation of VMs in [11].

While many of these strategies have been adopted by com-
panies, such as Google, Microsoft, and Amazon, there is another
area of research that has been barely implemented on CC systems:
the achievement of power-proportional systems by turning off
idle resources. The idea is that the energy consumption of CC
systems should be proportional to workload requirements, which
are hardly ever stable.

There are some reasons that prevent the shut-down of ma-
chines that run in an idle state, including: the fear of any change
that could break operational requirements [25], the complexity
and heterogeneity of all the subsystems involved, and the fast
development of new systems and paradigms that could break
the established standards and systems. However, keeping servers
underutilized or in an idle state is highly inefficient fromanenergy-
efficiency perspective.

Much effort has been made by the research community in
order to hibernate underutilized resources. A power-proportional
distributed file based on the partition of data centers according
to redundant data replicas was proposed by Amur et al. [7]. In
such systems, servers that store redundant replicas of data may be
switched off. On the other hand, Kaushik and al. proposed in [48]
a variant of Hadoop Distributed File System that partitions data
centers into zones according to the data usage, which enables
servers that store low-used data to be shut down.

Other approaches have been proposed for small mobile sys-
tems, such as Virtual Backbone Scheduling [69], and multi-flow
multicast transmission [66]. These strategies are well-known in
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wireless networks and sensor networks [22] environments. How-
ever, the described approaches are not easily applicable to CC
systems, since the shut-down of CC servers is more complex and
expensive than in the aforementioned mobile systems.

The novelty of the research presented in this paper is the
combination of the following two different approaches for the
improvement of energy efficiency into one model: (a) an energy-
aware scheduler that assigns tasks to VMs according to security
demands; and (b) a set of energy-efficiency policies that hibernate
underutilized resources, based on the energy policies presented
in [26,27] for Grid Computing systems. These energy-efficiency
policies have been evolved in order to be applied to CC systems.

Major contributions of this paper include:

1. The proposal of a task service model combining a security-
aware task schedulerwith a set of energy-efficiency policies.

2. The implementation and testing of the proposed model by
using a realistic CC simulator.

3. The analysis of the impact of the proposed algorithms on the
task processing flow and the energy consumption of the CC
system.

Moreover, we developed a theoretical model for the schedule of
tasks according to the energy consumption of the security opera-
tions related to tasks.

3. Approaches for energy saving and security issues in CC envi-
ronments

3.1. VM power consumption

The construction of a model for the energy consumption of
virtual machines in CC systems is not straightforward. It depends
on several elements and processes, including the virtualization
process. However, the power consumption of various components,
such as microprocessors, memory, devices, hard drives, and net-
worksmay bemeasured by themeans of frameworks likeWatts UP
PRO Power, and APIs like Amazon Cloud CloudWatch metrics [2].

Moreover, models of energy consumption for virtual machines
may be defined as an extension of those applied to physical servers,
as long as the virtual machines features are taken into considera-
tion.

Let PStatic denote the power a server required to run all the tasks
that a VM needs to be ready for work. PVirtual denotes the dynamic
power used by VMs hosted by that machine. The overall server
power consumption may be described as follows [40]:

PPhys = PStatic +

∑
i=1,...,m

P(VMi) = PStatic + PVirtual, (1)

where P(VMi) denotes the energy consumed by the ith virtual
machine and m is the number of available VMs. This value is
estimated by themeans of several approaches. The non-observable
parameter P(VMi) is derived from the observable parameter PPhys.

These methods are mathematical models that consider the
power-related resources as independent parameters. Several sam-
ples of PPhys are typically collected to estimate the P(VMi) parame-
ter. This data can be collected by following a black-box approach,
i.e. by using a virtual machine hypervisor. On the other hand, a
proxy may be deployed in each VM if a white-box strategy is to
be used to collect this data [34].

In this work we follow the approach presented in [13]. This
means that the energy consumption of virtual machines is based
on VM states (working, idle, or hibernated).

Fig. 1. Single-path scheduling workflow, B - Batch type task, S - Service type task,
M - Virtual Machine.

3.2. Monolithic scheduling with a central scheduler

Conceptually, a monolithic scheduler is an omniscient unit
responsible for all scheduling decisions, for the allocation all re-
sources, and for maintaining the task deployment process. In this
model all workloads are governed by the same scheduler and
all tasks are processed by the same scheduling logic [64]. The
scheduling algorithm applies a set of heuristics according to tasks
requirements, then deploys the tasks on the chosen resources
and updates the system state, as illustrated in Fig. 1. Monolithic
schedulers usually implement complex scheduling algorithms in
order to fulfill various workload types. In this work we consider
two types of tasks:

• Batch tasks: This type of workload is composed of several
independent tasks that can be processed in parallel. Tasks
arrive at the system at the same time. Execution of a batch
is completedwhen all of the tasks are finished. After that the
whole batchmay be processed by another service, stored, or
send back to the end user. MapReduce jobs are an example
of batch tasks.

• Service tasks: This type of workload is composed of long-
running tasks. As opposed to the batch tasks, these tasks
have no determined end, but are submitted by an operator
(or an automated equivalent) and are killed when they are
no longer required. Web server instances or service in-
stances, such as BigTable [15], are good examples of service
tasks.

In addition to the classical scheduling-related challenges, like
minimizing the time a task waits in a queue, satisfying task
constraints, respecting priorities, fulfilling end-user SLAs, etc.,
the ever-growing use of the Cloud Computing paradigm and
large-scale web services add several new challenges, such as:
(a) scalability; (b) flexibility; (c) scheduling algorithms complex-
ity; and (d) environment fragmentation. These challenges have
been addressed by developing new distributed approaches and the
scheduling process, such as: (a) shared state scheduling frame-
works (e.g. Google Omega [64]); (b) two-level scheduling frame-
works (e.g. Mesos [36]); (c) distributed scheduling frameworks
(e.g. Sparrow [58]); and (d) hybrid scheduling frameworks (e.g.
Mercury [45]).
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Fig. 2. Multi-path scheduling workflow.

However, for most usual scenarios, such as those present in
low and mid-size CC infrastructures up to approximately 10,000
machines, monolithic scheduling frameworks, such as Google Borg
[14], are still the best and simplest option.

Two monolithic scheduling approaches are taken into consid-
eration in this paper:

• Single-path: This scheduling strategy uses a single schedul-
ing path for every task in the workload, as shown in Fig. 1.

• Multi-path: This scheduling strategy uses several schedul-
ing paths by taking advantage of internal parallelism and
multi-threading to solve head-of-line blocking and scala-
bility issues, among others. In this work, the multi-path
scheduling process represents a system composed of two
scheduler paths. The first scheduler path performs the
scheduling logic related to batch tasks, whereas the second
one is responsible for the scheduling logic related to ser-
vice tasks. In this approach, any given service task would
only need to wait in queue until all previous service tasks
are scheduled, since they are independently scheduled, as
shown in Fig. 2.

3.2.1. Batch task scheduling considering security demands
In this work, we consider the problem of Independent Batch

Scheduling in large Cloud Computing systems. Fig. 3 shows the
workflow of the simulated environment, which is composed of the
following processes: (a) generation and collection of tasks; (b) task
scheduling; (c) task execution; (d) results storage; (e) communi-
cation with end-users; and (f) management of the security issues
related to all the aforementioned processes.

However, a single batchmay contain tasks that require different
security levels: e.g. the process of an open-access free stock and
the process of clinical images of a hospital. The security demands
of tasks were introduced in order to meet these security-related
requirements [31,32,42]. The scheduler computes these security
demands by implementing a security demand vector that repre-
sents the security requirements of the tasks:

SD = [sd1, . . . , sdn], (2)

where sdj is specified by the jth task in the batch. On the other hand,
different computing units may offer different security services and

levels. Amazon Cloud offers high security standards, whereas a
private Cloud with an older version of software may offer a lower
security level. To reflect this situation, the following trust level
vector is introduced:

TL = [tl1, . . . , tlm]. (3)

It represents the security capacities of all VMs in the system. All
the parameters assume values in the range [0,1], where 0 means
the lowest security level for a task and the least trusted VM. A
particular task will be scheduled to a VM which offers a security
level greater or equal than that demanded by the task.

In order to achieve an effective and efficient scheduling process,
the previously developed Non-Deterministic Central Scheduler
based on a Genetic Algorithm [30,41,42] has been chosen as the
main scheduling policy for the monolithic scheduler. In addition
to the aforementioned makespan-focused Genetic Algorithm, a
new criterion that takes the energy consumption of every task
into account is considered in this paper. The developed scheduling
policy relies on an Expected Time to Compute (ETC) matrix [51],
adapted to virtualmachines (ETCV ). The ETCV matrix can be defined
as follows [39]:

ETCV = [ETCV [j][i]]j=1,...,n;i=1,...,m (4)

where

ETCV [j][i] = wlj/cci, (5)

where cci denotes the computational capacity of the ith virtual
machine and wlj is the workload of the jth task; n andm represent
the number of tasks and number of virtual machines, respectively.

Security demands involve additional security operations that
must be performed before or after task execution. The possible
security operations in the CC system are denoted by a padlock icon
in Fig. 3. Security issues may require additional computing time.
For this reason, we used an extended version of the ETCV matrix
— SBETC (Security Biased Expected Time to Compute) matrix. This
matrix takes the additional security bias (SB) parameter b into
consideration in order to represent the time spent for security
operations [42]:

b(sdj, wlj, tli, cci). (6)

All the biases give the matrix representation:

SB[j][i](SD, TL) = [b(sdj, wlj, tli, cci)], (7)

where SD and TL denote the security demand vector (see Eq. (2)),
and the trust level vector (see Eq. (3)) for the VMs in the system,
respectively.

The ETCV matrix can be evolved to the Security Biased Expected
Time to Compute (SBETC) matrix when the security biases are
considered:

SBETC[j][i](SD, TL) = wlj/cci + b(sdj, wlj, tli, cci) (8)

SBETC(SD, TL) = SB(SD, TL) + ETCV . (9)

The main goal of the scheduling and allocation processes is to
find an optimal solution for the specified criteria. Among all batch
workload scheduling process factors, the makespan is considered
the main objective. It can be described as follows:

Cmax = min
S∈Schedules

{
max
j∈Tasks

Cj

}
, (10)

where Cj is the jth task completion time. Tasks is the set of tasks in
the batch of task, while Schedules represents the set of all possible
schedules that may be generated for the tasks of that batch of task,
as illustrated in Fig. 4.
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Fig. 3. Cloud computing system workflow, Security Ops — additional security operations and procedures.

Fig. 4. Makespan measuring workflow.

3.3. Genetic algorithm

The scheduling of tasks in cloud-computing data centers con-
stitutes an NP-complete problem [67], whose complexity depends
on the features considered [51], such as: (a) the number scheduling
of criteria to be optimized (one vs. multi-criteria); (b) nature of
the environment (static vs. dynamic); (c) nature of tasks (Batch
or Service); and (d) dependency between tasks (independent vs.
dependent).

In this work, we use a heuristic algorithm that takes into
account the aforementioned requirements in order to solve the
NP-complete problem. This scheduling algorithm is based on a
genetic algorithm with dedicated population representation
[30,39], which can be characterized as follows: (a) a single gene
represents one task, which is unique within the population;
(b) each chromosome is composed by a set of tasks (genes);
(c) each individual is composed of one chromosome and represents
a scheduling assignation for a single computing node; (d) the
population is composed ofm individuals and represents a schedule
for all n tasks; (e) the fitness function depends on the optimization

objectives presented in Section 3.5. All individuals take part in the
reproduction process. Individuals presenting the lowest value for
the fitness function (best adapted) are crossedwithworst-adapted
individuals (those that show the highest values for the fitness
function). Crossing involves exchanging genes between chromo-
somes. The population obtained in the evolution process defines
the suboptimal schedule.

3.4. Energy calculation

Two different power states are considered for each virtual ma-
chine in the CC: busy (100% core computational power is used for
task computing) and idle state. Let: t iidle denote the time the ithma-
chine spends in an idle state; t ibusy — the time the machine spends
in computing tasks-related operations; P i

idle — the required power
for a machine to run in idle state; and P i

busy — the power required
by a machine to perform actual computing operations. The power
required to perform security-related activities is assumed to be the
same as in busy mode.

The aforementioned parameters may vary in each schedule and
can be defined as follows [42]:

t ibusy = max
j∈Tasksi

Cj (11)

t iidle = Cmax − t ibusy (12)

t isec =

∑
j∈Tasksi

bij (13)

where Tasksi represents the tasks assigned to VMi and t isec denotes
the time devoted to processing only the security-related opera-
tions.

The total energy consumption can be denoted as follows:

Etotal =

m∑
i=1

∫ Cmax

0
PowVMi (t)dt =

m∑
i=1

(P i
idle ∗ t iidle + P i

busy ∗ (t ibusy + t isec)). (14)

The presented energetic model is designed for the assignation
of tasks to virtual machines. However, thismodel could be adapted
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to work with other scheduling technologies, such as that based
on the assignation of tasks in the form of Linux micro-containers
to computing nodes. These micro-containers run only for the task
execution time. The energetic model could also be extended in
order to consider specific hardware configurations.

3.5. Energy-aware scheduling objectives

The determination of the solution thatminimizes themakespan
of a given schedule that assumes a constant computing powermay
be defined as follows:

argmin
s∈Schedules

∑
i=1,...,m
j=1,...,n

(
wlj
cci

+ bi)δi,j(s) (15)

where δi,j(s) equals one when the schedule s assigns the jth task to
the ith VM. Otherwise, δi,j(s) equals zero.

Moreover, the determination of the solution thatminimizes the
total energy consumption of a given schedule can be written as:

argmin
s∈Schedules

∑
i=1,...,m

(
n∑

j=1
δi,j(s)=1

P i
busy(

wlj
cci

+ bi) +

n∑
j=1,

δi,j(s)=0

P i
idlet

i
idle) (16)

with the following constraints (see Eqs. (2) and (3)):

sdj ≤ tli. (17)

Various energy-saving approaches may be tested by modifying
the trust level of any given machine thanks to the SBETC matrix.
Moreover, numerous complex and realistic scenarios may be sim-
ulated in order to check whether these strategies can be used in
real-life Cloud Computing systems.

In this work, we proposed the following four energy-aware and
time-aware scheduling policies based on Eqs. (15) and (16):

1. Makespan-centric scheduling.Whenever two given sched-
ules achieve the same (or close) makespan, the less energy-
consuming schedule is selected. This approach is desirable
when the makespan is the main scheduling objective and
the importance of the reduction of energy consumption is
low.

2. Energy-centric scheduling. Whenever two given schedules
present approximately the same energy consumption, the
schedule with the shorter makespan is selected. This ap-
proach is suitable when the energy efficiency is the main
objective and the execution time is not critical.

3. Makespan-centric scheduling until a given makespan
threshold. In this policy, the minimization of the makespan
is the main goal. Once a makespan threshold is achieved,
then the minimization of the energy consumption becomes
the main objective.

4. Energy-centric scheduling until a given energy-
consumption threshold. In this policy, the minimization of
the energy consumption is the main goal. Once a energy-
consumption threshold is achieved, then the minimization
of the makespan becomes the main objective.

3.6. Energy policies based on the hibernation of virtual machines

The volume of work that must be executed at any given time
by a CC system may significantly change, especially with peak
loads largely exceeding mean loads. The proper execution of this
ever-changing workload while achieving energy-proportionality
represents a major challenge. CC operators may choose between
the following strategies in order to face the challenge: (a) the over-
provision of the data-center to satisfy worst-case scenarios; and

(b) the adjustment of the available resources according to the
present and future workload demands.

The first of these two approaches represents themain trend im-
plemented in the vast majority of large Cloud Computing systems.
However, this strategy requires a high amount of energy to keep
servers in an idle state during long periods of time, while they wait
to serve worst-case peak loads.

Many software solutions implement the second strategy by
switching off either server components or whole servers to reduce
the energy consumption in low-utilization periods. However, this
approach could damage end-user experience and SLAs if these
workload peaks are not properly determined and served.

Various energy-efficiency policies based on the shut-down of
machines have been tested in grid computing scenarios, including:
(a) the shut-downof everymachinewhenever possible; and (b) the
shut-down ofmachines according to theworkload demands. These
policies have shown good energy-savings in [26,27]. In this work,
we adapted these energy-efficiency policies, which are designed
for grid computing environments, in order to be applied in CC
systems.

Our aim is the development of energy-efficiency policies that
rely on resource schedulers that could in CC systems of different
sizes, and that may serve various and heterogeneous workloads
rather than focusing on a specific scenario or infrastructure.

The power-off energy-efficiency policies are responsible for
deciding whether any given machine should be turned off or kept
in an idle state, and for performing the actual hibernation process
while keeping the environment state information up to date.

These power-off policies may be deterministic, such as the
Always power off policy, or probabilistic, which forecast future
workload demands based on historical data and then to perform
required actions according to this prediction. Power-off policies
may check various system, workload and machine parameters in
order to make decision about shutting any given machine down.

The following deterministic policies have been considered in
this paper:

1. Never power off: This power-off policy prevents any given
virtual machine to be hibernated. This is the current operat-
ing approach in many real Cloud Computing systems nowa-
days. Due to this, the power-off policy should be considered
and studied so the energy savings achieved by any other
power-off policy can be compared to the current power
consumption scenario.

2. Always power off: Opposite to the Never power off policy,
this policy always tries to hibernate any virtualmachine that
becomes idle.

The shut-down process is performed whenever any resource in
use (RAM, CPU) is released due to the execution of a task finished.
At thismoment, the systemmakes a decisionwhether themachine
those resources belongs to should be turned off or not. The system
prevents any virtual machine that is executing tasks from being
hibernated.

4. Evaluation of energy-aware scheduling vs. makespan
scheduling in cloud computing systems

We propose an environment that simulates a monolithic
scheduling framework to serve realistic and heterogeneous work-
loads in order to test the proposed strategies. The CC environment
has been simulated for seven days of operation time and various
combinations of the energy policies developed and described in
Section 3.6 have been evaluated.

In the following subsections a simulation tool, a test suite and a
designed environment are presented in detail.



D. Fernández-Cerero et al. / J. Parallel Distrib. Comput. 119 (2018) 191–202 197

Fig. 5. Machine power states.

4.1. Simulation tool

In this work we used the SCORE simulator presented in [24].
This simulator enables us to focus on the development of energy-
efficiency policies and on the performance of simulations of var-
ious scheduling frameworks and data-center environments. This
simulation tool has been modified in order to perform energy-
efficiency analysis by applying an energy-consumption model
which considers the following states for each CPU core in a ma-
chine: (a) On: 150 W (b) Idle: 70 W. The energy consumption is
linearly computed in terms of the utilization of each CPU core. In
addition to these CPU core power consumption states, the follow-
ingmachine power states have been assumed: (a)Hibernated: 10W
(b) Hibernating: 160 W * number of cores (c) Powering On: 160 W
* number of cores.

Regarding the shut-down process time parameters, the fol-
lowing values have been considered: (a) TOn→Hibernated: 10 s, and
(b) THibernated→On: 30 s. The power states and transitions are shown
in Fig. 5.

In order to develop and apply our energy-efficiency policies, a
new set of modules has been built on top of the current simulator.
Among these additions, the following can be found: (a) sorting,
(b) scheduling, and (c) power-off policies.

However, in order to preserve trust in the schedulers’ imple-
mentations, the behavior of the overall simulation process has not
been modified. Instead of modifying the current implementation,
hooks were placed in key parts of the simulation process to exe-
cute our developed policies and to register new key performance
indicators, which have been added in order to measure the impact
on data center energy consumption.

As a result of this approach, the developed energy-efficiency
policies have achieved a high level of isolation from the base
simulator implementation, thereby affecting the original simulator
design to a minimum extent.

4.2. Cloud computing center

A CC data center composed of 1000 heterogeneous virtual ma-
chines has beenmodeled. Eachmachine has the following features:

• Computing profile: Processor’s millions of instructions per
second (MIPS) have been simulated by generating randomly
a [1× - 4×] computing speed factor. Thus, a given VM may
be, as a maximum, four times faster than the slowest one:
cci ∈ [75000, 300000] MIPS.

• Energy profile: Processor’s power consumption hetero-
geneity has been simulated by generating randomly a [1× -
4×] energy consumption factor. Thus, a given machine M
may be (as a maximum) four times more energy-wasting
than the more efficient one. Hence, for a 4-core server, the
maximum power consumption may be described as: Ptotal ∈

[300, 1200] W.
• Security profile: Cryptographic services have been chosen

according to the FIPS standard [32], and ISO/IEC 19790
standard [33] for security requirements for cryptographic
modules, as described in [42]. These standards specify four
operating levels of general security requirements for cryp-
tographymodules, which have been simulated by randomly
generating a security factor in the range [1–4]. Therefore,
TL ∈ [0.25, 1].

• Computational resources: Every machine has 4 CPU cores
and 16 GB of RAM.

4.3. Workload

The patterns present in the realistic Google traces [61,62] were
followed to generate the synthetic workload used in the experi-
mentation. The interpretations by [6,19,55,60] have been studied
to model the synthetic workloads.

These workload tasks are composed of one ormore (sometimes
more than thousand) tasks. Every task is modeled to use a given
number of millions of instructions (MI).

Moreover, the two types of tasks described in Section 3.2 are
considered.

Each experiment executes the workload generated by repli-
cating the behavior of the workload present in typical Google
data centers. Therefore, although the workload generated in each
simulation run is unique, it follows the same model design. In this
workload, the vast majority of tasks are batch tasks, however, over
half of the available resources are reserved to service tasks.

Moreover, batch tasks are usually composed of a greater num-
ber of tasks than service tasks. However, these tasks require fewer
resources and run for a shorter time than service tasks. Hence, the
simulator generates a day/night patterned synthetic dataset com-
posed of tasks whose attributes follow an exponential distribution.

Taking into account the aforementioned environment and
workload scenario, the generated workload presents 22,208 batch
tasks and 2252 service tasks for each experiment that simulates 7
days of operation time, reaching 30.08% of average computational
power and 25.72% of memory in use. This data center utilization
rates follow industry trends presented in [9,63].

4.4. Key performance indicators

In order to measure the results of the application of energy-
efficiency policies that switchmachines on/off, the authors need to
measure key performance indicators of the data-center operation.
These indicators have been divided into two categories: (a) energy
savings; and (b) performance.

The following indicators were selected in order to describe the
energy savings and the behavior of the powering on/off operations:

• Energy consumption: The total energy consumed in each
experiment, Etotal (14).

• Energy savings: The total energy saved in each experiment.

The following indicators were selected as the most relevant
performance indicators:

• Queue time: Represents the time a task waits in the queue
until it is scheduled. This indicator is usually related to the
real computing experience, and therefore it is critical to
maintain this time as short as possible.
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Fig. 6. Percentage of powered-on machines when the Always power off policy is
used for the single-path scheduler.

• Makespan: Cmax (see (10)).

In order to analyze and compare the energy savings and the
performance impact of deploying hibernating energy-efficiency
policies, the simplest and most aggressive energy policies have
been applied, i.e., the Never power off and the Always power off.
Theywill be applied to themost representative scheduling policies
proposed in Section 3.5. Among them:

• The Makespan-centric scheduling (policy 1) is applied to
batch tasks. The scheduling policy tries to load every ma-
chine up to 90%. The rest of the computational power is
used for service tasks (cf. [49]). The evolution of the fitness
function value in average of the genetic process applied to
batch tasks can be observed in Fig. 7b;

• The Energy-centric scheduling (policy 2) is applied to
batch tasks. The same scheduling policy described in the
Makespan-centric scheduling is used for service tasks. The
evolution of the fitness function value in average of the
genetic process applied to batch tasks may be observed in
Fig. 7a;

• The Random strategy for both batch and service tasks. This
strategy selects a random machine from the subset of ma-
chines that meet tasks requirements. This scheduling policy
is especially important because many of top-industry com-
panies implement a similar strategy, such as round robin-
like methods.

The scheduling algorithm workflows may be described as fol-
lows: The random scheduler assigns tasks to VMs randomly,
according to the Round Robin-like schema (i.e., the Random strat-
egy). The GMakespan (Genetic-based with makespan as the main
objective) scheduler assigns tasks according to the solution of the
optimization problem shown in (15), by the means of the genetic
algorithm described in the policy 1 in Section 3.5. The GEnergy
(Genetic-based with energy as a main objective) scheduler assigns
tasks according to the solution of optimization problem presented
in (16), by the means of the genetic algorithm described in the
policy 2 in Section 3.5. The Never power off policy lets VMs be in an
idle state when the execution of tasks is finished, while the Always
power off policy hibernates them.

5. Results and discussion

In this section, the simulation results obtained for the
Makespan-centric, Energy-centric and Random scheduling policies
are discussed through key performance indicators concerning:
(a) energy savings; and (b) performance impact.We choose to only

show the results obtained for the most representative schedul-
ing policies since the Makespan-centric scheduling until a given
makespan threshold and the Energy-centric scheduling until a given
energy-consumption threshold are mixed strategies that could blur
the main differences between the opposite Energy-centric and
Makespan-centric scheduling policies. The energy savings and per-
formance are analyzed and compared between the current/base
systemenergy policy (Never power off policy) and theAlways power
off energy-efficiency policy. Table 1 shows numeric results for the
single-path scheduler and Table 2 presents those for themulti-path
scheduler. In general, the more hibernations there are, the more
energy is saved, or from another point of view, the less idle the
resources, the less energy is wasted.

Moreover, it can be observed that the utilization of only the
genetic algorithm that focuses on the minimization of the energy
consumption results in a higher energy consumption than the ge-
netic algorithm that focuses on the minimization of the makespan
(56.17MWhvs. 55.96MWh, as shown in Table 1, scenarioNever off
policy, GEnergy Scheduler vs GMakespan Scheduler). On the other
hand, it can be noticed that high energy savings up to approx-
imately 45% may be achieved by applying the Always off policy
for the genetic algorithm that focuses on the minimization of the
makespan (30.45 MWh consumed with the Always off policy vs.
55.96MWh consumedwith theNever off policy for the GMakespan
Scheduler, as presented in Table 1). This behavior, that is similar for
the Monolithic multi-path scheduler presented in Table 2, means
that only a 20% of energy is wasted from the theoretical optimum
instead of 70% of the current approach.

Regarding the performance, the application of the Always power
off energy-efficiency policy has a negative impact of approxi-
mately 35% in terms of scheduling queue time. This behavior can
be observed in Table 1, where Batch tasks wait on average ap-
proximately 20 more seconds (+40%) in queue for the GMakespan
scheduler and 15 more seconds (+30%) for the GEnergy scheduler
in queue. Similarly, Batch tasks have a longer makespan (+60s.
and +120s. on average for the GMakespan and GEnergy schedulers
respectively, as presented in Table 2) when the combination of the
Always power off energy-efficiency policy and the genetic algo-
rithm is used. This makespan impact is especially negative when
the genetic algorithm that focuses on the minimization of energy
is used (+140s. for the Always off policy and GEnergy vs. Random
schedulers respectively, as shown in Table 2). On the other hand,
it is noticeable that Service tasks never suffer from this negative
makespan impact as shown in Tables 1 and 2.

It can be noticed that the scheduling policy is crucial not only
for the performance, but also for the whole hibernation process. As
shown in Table 1, the Random scheduling policy almost prevents
any hibernation. In this case the Always power off policy results
in a similar energy consumption (54.66 MWh) compared to that
achieved by theNever power off policy (56.19MWh). Table 2 shows
that theMulti-pathmonolithic scheduler presents the samebehav-
ior as the Single-path monolithic scheduler, except for the queue
times, which are notably lower (−85% between queue time results
shown in Table 1 and those presented in Table 2) due to the Multi-
path approach preventing the head-of-line blocking issue. Table 3
summarizes the impact of the Never power off policy in terms of
both queue times and energy consumption compared to leaving
machines in an idle state. Fig. 6 presents the percentage of VMs in
a hibernated mode for a seven-day time span. It can be observed
that the Always power off policy fits perfectly the clear day/night
pattern workload. Taking into consideration the aforementioned
results, we can state that the Makespan-centric scheduling policy
provides the best results for the goals under consideration, thus:
the minimization of the energy consumption through the applica-
tion of hibernation policies with aminor negative impact on the CC
system performance.
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Table 1
Results for Monolithic Single-path scheduler.

Policy Scheduler Energy (MWh) E savings (MWh) Queue time (ms) Makespan (s)

Batch Service Batch Service

Never off Random 56.19 0.00 49.70 57.70 177.44 1,988.21
Always off Random 54.66 1.57 49.70 57.70 177.21 1,988.21
Never off GMakespan 55.96 0.00 49.70 57.70 235.71 1,988.21
Always off GMakespan 30.43 25.92 71.40 69.90 258.95 1,988.30
Never off GEnergy 56.17 0.00 49.70 57.70 287.48 1,988.21
Always off GEnergy 30.68 25.83 66.90 69.10 310.19 1,988.38

Table 2
Results for Monolithic Multi-path scheduler.

Policy Scheduler Energy (MWh) E savings (MWh) Queue time (ms) Makespan (s)

Batch Service Batch Service

Never off Random 56.21 0.00 06.90 06.50 178.56 1,920.60
Always off Random 55.00 1.13 06.90 06.50 178.56 1,920.60
Never off GMakespan 55.90 0.00 06.90 06.50 236.01 1,920.21
Always off GMakespan 30.08 26.12 10.30 07.20 258.46 1,920.66
Never off GEnergy 56.09 0.00 06.90 06.50 290.55 1,920.60
Always off GEnergy 30.65 25.76 11.00 06.90 313.41 1,920.67

Table 3
Always off policy results vs. current situation, represented by the Never power off policy.

Scheduler Strategy Savings Queue time diff Makespan diff

Batch Service Batch Service

Random Single-path 02.79% 0 0 −00.13% N/A
GMakespan Single-path 45.99% +43.67% +21.14% +45.94% N/A
GEnergy Single-path 45.71% +34.60% +19.76% +74.81% N/A
Random Multi-path 02.01% 0 0 0 N/A
GMakespan Multi-path 46.48% +49.27% +10.77% +44.75% N/A
GEnergy Multi-path 45.67% +59.42% +06.15% +75.52% N/A

(a) Task energy consumption. (b) Task makespan.

Fig. 7. Genetic process fitness evolution.

An important observation about the genetic process used for
finding the solution of the minimization problem (Eqs. (15) and
(16)) is that an early stopping strategy should be incorporated.
From Fig. 7b and 7a it can be seen that the genetic process should
be stopped after approximately 50 epochs in order to achieve the
best results.

6. Summary

In this paper amodel for reducing the energy consumption in CC
environments has been described. The presented approach enables
us to reduce the energy consumption of the CC system up to 45%.
The proposedmodel is composed of twoparts: (a) an energy-aware
independent batch scheduler; and (b) a set of energy-efficiency

policies for the hibernation of idle VMs.We proposed four schedul-
ing policies for the control of the energy consumption and the
makespan during the assignation of tasks to VMs.

The contributions of this work include:

1. The scheduler task assignation to VMs based on amakespan
optimization process. As a result, each batch of tasks is com-
puted in the shortest time, taking into account the current
state and the characteristics of the CC system.

2. The hibernation of virtual machines that remain in an idle
state, while the rest of VMs continue to execute the batch of
tasks. This guarantees the maximum positive impact on the
system performance since it does not negatively impact the
virtual machines under use.
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The proposed scheduler takes the security demands of
each task and trust levels of VMs that are computing those
tasks into account. Additionally, the proposed model en-
ables us to compute the energy consumption of the whole
system, including the energy spent on performing security
operations.

The developed methods were tested using the realistic work-
load of Google traces for seven consecutive days on the simulated
environment equipped with 1000 virtual machines. The experi-
mental results show that the application of the proposed model,
especially that parameterized with a scheduling policy focused
on the minimization of the makespan, in addition to an energy-
efficiency policy based on the hibernation of every virtual ma-
chine whenever possible, could successfully reduce the energy
consumption of large-scale data centers which securely serve het-
erogeneous workloads without notably impacting on the cloud
computing system overall performance.

The next stage of our research is the optimization of security
operations. We intend to apply game theory solutions which have
been developed previously (see: [43]) for the optimization of the
Trust Levels of VMs and for the decision of the applied security
biases.

Acknowledgment

This article is based uponwork fromCOST Action IC1406 ‘‘High-
Performance Modelling and Simulation for Big Data Applications’’
(cHiPSet), supported by COST (European Cooperation in Science
and Technology).

The research is supported by the VPPI — University of Sevilla.

References

[1] Amazon Cloud Scaling Service, URL http://docs.aws.amazon.com/autoscaling/
latest/userguide/scaling_plan.html.

[2] Amazon CloudWatch, URL https://aws.amazon.com/cloudwatch/.
[3] Google Cloud Scaling Service, URL https://cloud.google.com/compute/docs/

autoscaler/scaling-cpu-load-balancing.
[4] OpenStack Cloud Scaling Service, URL https://wiki.openstack.org/wiki/Heat/

AutoScaling.
[5] Rackspace Cloud Scaling Service, URL https://support.rackspace.com/how-to/

rackspace-auto-scale-overview/.
[6] O.A. Abdul-Rahman, K. Aida, Towards understanding the usage behavior of

Google cloud users: the mice and elephants phenomenon, in: IEEE Interna-
tional Conference on Cloud Computing Technology and Science (CloudCom),
Singapore, 2014, pp. 272–277.

[7] H. Amur, J. Cipar, V. Gupta, G.R. Ganger, M.A. Kozuch, K. Schwan, Robust and
flexible power-proportional storage, in: Proceedings of the 1st ACM sympo-
sium on Cloud computing, ACM, 2010, pp. 217–228.

[8] D.G. Andersen, S. Swanson, Rethinking flash in the data center, IEEE Micro
30 (4) (2010) 52–54.

[9] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee, D.
Patterson, A. Rabkin, I. Stoica, et al., A view of cloud computing, Commun. ACM
53 (4) (2010) 50–58.

[10] A. Beloglazov, R. Buyya, Energy efficient resource management in virtualized
cloud data centers, in: Proceedings of the 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing, IEEE Computer Society,
2010, pp. 826–831.

[11] A. Beloglazov, R. Buyya, Optimal online deterministic algorithms and adaptive
heuristics for energy and performance efficient dynamic consolidation of
virtual machines in cloud data centers, Concurr. Comput.: Pract. Exper. 24 (13)
(2012) 1397–1420.

[12] R. Bertran, Y. Becerra, D. Carrera, V. Beltran,M. Gonzalez, X.Martorell, J. Torres,
E. Ayguade, Accurate energy accounting for shared virtualized environments
using PMC-based power modeling techniques, in: 2010 11th IEEE/ACM Inter-
national Conference on Grid Computing, 2010, pp. 1–8. http://dx.doi.org/10.
1109/GRID.2010.5697889.

[13] A.E.H. Bohra, V. Chaudhary, VMeter: Power modelling for virtualized clouds,
in: 2010 IEEE International Symposium on Parallel Distributed Processing,
Workshops and Phd Forum (IPDPSW), 2010, pp. 1–8. http://dx.doi.org/10.
1109/IPDPSW.2010.5470907.

[14] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, J. Wilkes, Borg, omega, and
kubernetes, Commun. ACM 59 (5) (2016) 50–57.

[15] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows, T.
Chandra, A. Fikes, R.E. Gruber, Bigtable: A distributed storage system for
structured data, ACM Trans. Comput. Syst. (TOCS) 26 (2) (2008) 4.

[16] M. Colmant, M. Kurpicz, P. Felber, L. Huertas, R. Rouvoy, A. Sobe, Process-level
power estimation inVM-based systems, in: Proceedings of the Tenth European
Conference on Computer Systems, EuroSys ’15, ACM,NewYork, NY, USA, 2015,
pp. 14:1–14:14. http://dx.doi.org/10.1145/2741948.2741971.

[17] H. David, C. Fallin, E. Gorbatov, U.R. Hanebutte, O. Mutlu, Memory power
management via dynamic voltage/frequency scaling, in: Proceedings of the
8th ACM International Conference on Autonomic Computing, ACM, 2011,
pp. 31–40.

[18] G. Dhiman, K. Mihic, T. Rosing, A system for online power prediction in virtu-
alized environments using Gaussian mixture models, in: Design Automation
Conference, 2010, pp. 807–812. http://dx.doi.org/10.1145/1837274.1837478.

[19] S. Di, D. Kondo, C. Franck, Characterizing cloud applications on a Google data
center, in: 42nd International Conference on Parallel Processing (ICPP), Lyon,
France, 2013.

[20] C. Dupont, T. Schulze, G. Giuliani, A. Somov, F. Hermenier, An energy aware
framework for virtual machine placement in cloud federated data centres,
in: 2012 Third International Conference on Future Systems: Where Energy,
Computing and Communication Meet (e-Energy), 2012, pp. 1–10. http://dx.
doi.org/10.1145/2208828.2208832.

[21] N. El-Sayed, I.A. Stefanovici, G. Amvrosiadis, A.A. Hwang, B. Schroeder,
Temperature management in data centers: why some (might) like it hot, ACM
SIGMETRICS Perform. Eval. Rev. 40 (1) (2012) 163–174.

[22] B. Fateh, M. Govindarasu, Joint scheduling of tasks and messages for energy
minimization in interference-aware real-time sensor networks, IEEE Trans.
Mob. Comput. 14 (1) (2015) 86–98. http://dx.doi.org/10.1109/TMC.2013.81.

[23] M.E. Femal, V.W. Freeh, Boosting data center performance through non-
uniform power allocation, in: Second International Conference on Autonomic
Computing, ICAC’05, IEEE, 2005, pp. 250–261.

[24] D. Fernández-Cerero, A. Fernández-Montes, A. Jakóbik, J. Kołodziej, M. Toro,
SCORE: Simulator for cloud optimization of resources and energy consump-
tion, Simul. Model. Pract. Theory 82 (2018) 160–173. http://dx.doi.org/10.
1016/j.simpat.2018.01.004.

[25] A. Fernández-Montes, D. Fernández-Cerero, L. González-Abril, J.A. Álvarez-
García, J.A. Ortega, Energy wasting at internet data centers due to fear, Pattern
Recognit. Lett. 67 (2015) 59–65.

[26] A. Fernández-Montes, L. Gonzalez-Abril, J.A. Ortega, L. Lefèvre, Smart schedul-
ing for saving energy in grid computing, Expert Syst. Appl. 39 (10) (2012)
9443–9450.

[27] A. Fernández-Montes, F. Velasco, J. Ortega, Evaluating decision-making perfor-
mance in a grid-computing environment using DEA, Expert Syst. Appl. 39 (15)
(2012) 12061–12070.

[28] X. Gao, Z. Xu, H.Wang, L. Li, X. Wang,Why some like it hot too: Thermal attack
on data centers, in: Proceedings of the 2017 ACM SIGMETRICS/International
Conference on Measurement and Modeling of Computer Systems, ACM, 2017,
pp. 23–24.

[29] D. Grzonka, The analysis of OpenStack cloud computing platform: Features and
performance, J. Telecommun. Inf. Technol. 3 (2015) 52–57.

[30] D. Grzonka, A. Jakóbik, J. Kołodziej, S. Pllana, Using a multi-agent system and
artificial intelligence for monitoring and improving the cloud performance
and security, Future Gener. Comput. Syst. (2017). http://dx.doi.org/10.1016/
j.future.2017.05.046.

[31] D. Grzonka, J. Kołodziej, J. Tao, Using Artificial Neural Network For Monitoring
And Supporting The Grid Scheduler Performance, in: 28th European Confer-
ence onModelling and Simulation, ECMS2014, Brescia, Italy,May27–30, 2014,
Proceedings, 2014, pp. 515–522. http://dx.doi.org/10.7148/2014-0515.

[32] D. Grzonka, J. Kołodziej, J. Tao, S.U. Khan, Artificial neural network support to
monitoring of the evolutionary driven security aware scheduling in computa-
tional distributed environments, Future Gener. Comput. Syst. 51 (2015) 72–86.
http://dx.doi.org/10.1016/j.future.2014.10.031.

[33] D. Grzonka, M. Szczygiel, A. Bernasiewicz, A. Wilczyński, M. Liszka, Short
analysis of implementation and resource utilization for the openstack cloud
computing platform, in: 29th European Conference on Modelling and Simu-
lation, ECMS 2015, Albena (Varna), Bulgaria, May 26–29, 2015. Proceedings,
2015, pp. 608–614. http://dx.doi.org/10.7148/2015-0608.

[34] C. Gu, H. Huang, X. Jia, Powermetering for virtualmachine in cloud computing-
challenges and opportunities, IEEE Access 2 (2014) 1106–1116. http://dx.doi.
org/10.1109/ACCESS.2014.2358992.

[35] T.W. Harton, C. Walker, M. O’Sullivan, Towards power consumption modeling
for servers at scale, in: 2015 IEEE/ACM 8th International Conference on Utility
and Cloud Computing (UCC), 2015, pp. 315–321. http://dx.doi.org/10.1109/
UCC.2015.50.

[36] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A.D. Joseph, R.H. Katz, S.
Shenker, I. Stoica, Mesos: A platform for fine-grained resource sharing in the
data center, in: NSDI, vol. 11, 2011, pp. 22–22.



D. Fernández-Cerero et al. / J. Parallel Distrib. Comput. 119 (2018) 191–202 201

[37] A. Jakóbik, Big Data Security, in: F. Pop, J. Kołodziej, B. Di Martino (Eds.),
Resource Management for Big Data Platforms: Algorithms, Modelling, and
High-Performance Computing Techniques, Springer International Publishing,
Cham, 2016, pp. 241–261. http://dx.doi.org/10.1007/978-3-319-44881-7_12.

[38] A. Jakóbik, A cloud-aided group RSA scheme in Java 8 environment and Open-
Stack software, J. Telecommun. Inf. Technol. JTIT (2) (2016) 53–59.

[39] A. Jakóbik, D. Grzonka, J. Kołodziej, Security supportive energy aware schedul-
ing and scaling for cloud environments, in: European Conference onModelling
and Simulation, ECMS 2017, Budapest, Hungary, May 23–26, 2017, Proceed-
ings, 2017, pp. 583–590. http://dx.doi.org/10.7148/2017-0583.

[40] A. Jakóbik, D. Grzonka, J. Kołodziej, A.E. Chis, H. Gonzalez-Velez, Energy effi-
cient scheduling methods for computational grids and clouds, J. Telecommun.
Inf. Technol. 1 (2017) 56–64.

[41] A. Jakóbik, D. Grzonka, J. Kołodziej, H. González-Vélez, Towards secure non-
deterministic meta-scheduling for clouds, in: 30th European Conference on
Modelling and Simulation, ECMS 2016, Regensburg, Germany, May 31–June 3,
2016, Proceedings, 2016, pp. 596–602. http://dx.doi.org/10.7148/2016-0596.

[42] A. Jakóbik, D. Grzonka, F. Palmieri, Non-deterministic security driven meta
scheduler for distributed cloud organizations, in: High-Performance Mod-
elling and Simulation for Big Data Applications, Simul. Model. Pract. Theory
76 (2017) 67–81. http://dx.doi.org/10.1016/j.simpat.2016.10.011.

[43] A. Jakóbik, A. Wilczyński, Using polymatrix extensive stackelberg games in
security — Aware resource allocation and task scheduling in computational
clouds, J. Telecommun. Inf. Technol. 1/2017 (1) (2017) 71–80.

[44] A. Kansal, F. Zhao, J. Liu, N. Kothari, A.A. Bhattacharya, Virtual machine power
metering and provisioning, in: Proceedings of the 1st ACM Symposium on
Cloud Computing, SoCC ’10, ACM, New York, NY, USA, 2010, pp. 39–50. http:
//dx.doi.org/10.1145/1807128.1807136.

[45] K. Karanasos, S. Rao, C. Curino, C. Douglas, K. Chaliparambil, G.M. Fumarola,
S. Heddaya, R. Ramakrishnan, S. Sakalanaga, Mercury: hybrid centralized and
distributed scheduling in large shared clusters, in: USENIX Annual Technical
Conference, 2015, pp. 485–497.

[46] H. Kataoka, D. Duolikun, T. Enokido, M. Takizawa, Power consumption and
computation models of a server with a multi-core cpu and experiments,
in: 2015 IEEE 29th International Conference on Advanced Information Net-
working and Applications Workshops, 2015, pp. 217–222. http://dx.doi.org/
10.1109/WAINA.2015.127.

[47] H. Kataoka, A. Sawada, D. Duolikun, T. Enokido, M. Takizawa, Energy-aware
server selection algorithms in a scalable cluster, in: 2016 IEEE 30th Inter-
national Conference on Advanced Information Networking and Applications
(AINA), 2016, pp. 565–572. http://dx.doi.org/10.1109/AINA.2016.154.

[48] R.T. Kaushik, M. Bhandarkar, Greenhdfs: towards an energy-conserving,
storage-efficient, hybrid hadoop compute cluster, in: Proceedings of the
USENIX Annual Technical Conference, 2010, p. 109.

[49] G. Khaneja, An experimental study of monolithic scheduler architecture in
cloud computing systems (Ph.D. thesis), University of Illinois at Urbana-
Champaign, 2015.

[50] J.-Y. Kim, H.-J. Chang, Y.-H. Jung, K.-M. Cho, G. Augenbroe, Energy conservation
effects of a multi-stage outdoor air enabled cooling system in a data center,
Energy Build. 138 (2017) 257–270.

[51] J. Kołodziej, Evolutionary Hierarchical Multi-Criteria Metaheuristics for
Scheduling in Large-Scale Grid Systems, Springer Publishing Company, Incor-
porated, 2012.

[52] J. Koomey, Growth in data center electricity use 2005 to 2010, A report by
Analytical Press, completed at the request of The New York Times 9, 2011.

[53] B. Krishnan, H. Amur, A. Gavrilovska, K. Schwan, VM power metering: Fea-
sibility and challenges, SIGMETRICS Perform. Eval. Rev. 38 (3) (2010) 56–60.
http://dx.doi.org/10.1145/1925019.1925031.

[54] Y. Li, Y. Wang, B. Yin, L. Guan, An online power metering model for cloud envi-
ronment, in: 2012 IEEE 11th International Symposium onNetwork Computing
and Applications, 2012, pp. 175–180. http://dx.doi.org/10.1109/NCA.2012.10.

[55] Z. Liu, S. Cho, Characterizing machines and workloads on a Google cluster,
in: 8th International Workshop on Scheduling and Resource Management for
Parallel and Distributed Systems (SRMPDS), 2012, Pittsburgh, PA, USA.

[56] A. Miyoshi, C. Lefurgy, E. Van Hensbergen, R. Rajamony, R. Rajkumar, Critical
power slope: understanding the runtime effects of frequency scaling,
in: Proceedings of the 16th International Conference on Supercomputing,
ACM, 2002, pp. 35–44.

[57] I.M. Murwantara, B. Bordbar, A Simplified Method of Measurement of En-
ergy Consumption in Cloud and Virtualized Environment, in: Proceedings of
the 2014 IEEE Fourth International Conference on Big Data and Cloud Com-
puting, BDCLOUD ’14, IEEE Computer Society, Washington, DC, USA, 2014,
pp. 654–661. http://dx.doi.org/10.1109/BDCloud.2014.47.

[58] K. Ousterhout, P. Wendell, M. Zaharia, I. Stoica, Sparrow: distributed, low
latency scheduling, in: Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, ACM, 2013, pp. 69–84.

[59] J. Read, What is an ECU? CPU Benchmarking in the Cloud. URL http://
blog.cloudharmony.com/2010/05/what-is-ecu-cpu-benchmarking-in-cloud.
html.

[60] C. Reiss, A. Tumanov, G.R. Ganger, R.H. Katz, M.A. Kozuch, Heterogeneity and
dynamicity of clouds at scale: Google trace analysis, ACMSymposiumonCloud
Computing (SoCC), San Jose, CA, USA, 2012.

[61] C. Reiss, J. Wilkes, J.L. Hellerstein, Google cluster-usage traces: format +
schema, Technical report, Google Inc., Mountain View, CA, USA, 2011.

[62] C. Reiss, J.Wilkes, J.L. Hellerstein, Obfuscatory obscanturism:makingworkload
traces of commercially-sensitive systems safe to release, in: 3rd International
Workshop on Cloud Management, CLOUDMAN, IEEE, Maui, HI, USA, 2012,
pp. 1279–1286.

[63] S. Ruth, Reducing ICT-related carbon emissions: an exemplar for global energy
policy? IETE Tech. Rev. 28 (3) (2011) 207–211.

[64] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, J. Wilkes, Omega: flexible,
scalable schedulers for large compute clusters, in: Proceedings of the 8th ACM
European Conference on Computer Systems, ACM, 2013, pp. 351–364.

[65] R.K. Sharma, C.E. Bash, C.D. Patel, R.J. Friedrich, J.S. Chase, Balance of power:
Dynamic thermal management for internet data centers, IEEE Internet Com-
put. 9 (1) (2005) 42–49.

[66] W. Tu, Efficient resource utilization formulti-flowwirelessmulticasting trans-
missions, IEEE J. Sel. Areas Commun. 30 (7) (2012) 1246–1258. http://dx.doi.
org/10.1109/JSAC.2012.120810.

[67] J. Ullman, NP-complete scheduling problems, J. Comput. System Sci. 10 (3)
(1975) 384–393. http://dx.doi.org/10.1016/S0022-0000(75)80008-0.

[68] I. Wassmann, D. Versick, D. Tavangarian, Energy consumption estimation of
virtual machines, in: Proceedings of the 28th Annual ACM Symposium on
Applied Computing, SAC ’13, ACM, New York, NY, USA, 2013, pp. 1151–1156.
http://dx.doi.org/10.1145/2480362.2480579.

[69] Y. Zhao, J. Wu, F. Li, S. Lu, On Maximizing the lifetime of wireless sensor
networks using virtual backbone scheduling, IEEE Trans. Parallel Distrib. Syst.
23 (8) (2012) 1528–1535. http://dx.doi.org/10.1109/TPDS.2011.305.

[70] S. Zimmermann, I. Meijer, M.K. Tiwari, S. Paredes, B. Michel, D. Poulikakos,
Aquasar: A hot water cooled data center with direct energy reuse, Energy
43 (1) (2012) 237–245.

Damián Fernández-Cerero received the B.E. degree and
the M.Tech. degree in Software Engineering from the Uni-
versity of Sevilla. In 2014, he joined the Department of
Computer Languages and Systems, University of Seville,
as a Ph.D. student. In 2016 he was invited by at ENS-Lyon
and in 2017 at Cracow University of Technology to work
in saving energy solutions for cloud infrastructures. Cur-
rently he both teaches and conducts research at University
of Sevilla. He has worked on several research projects
supported by the Spanish government and the European
Union. His research interests include energy efficiency and

resource scheduling.

Agnieszka Jakóbik received her M.Sc. in the field of
stochastic processes at the Jagiellonian University, Cra-
cow, Poland and Ph.D. degree in the field of neural
networks at Tadeusz Kosciuszko Cracow University of
Technology, Poland, in 2003 and 2007, respectively. From
2009 she is an Assistant Professor at Faculty of Physics,
Mathematics and Computer Science, Tadeusz Kosciuszko
Cracow University of Technology. Her main scientific and
didactic interests are focused mainly on Artificial Intelli-
gence: Artificial Neural Networks, Genetic Algorithms, and
additionally on Clouds Security, Parallel Processing and

Cryptography.

Daniel Grzonka received his B.Sc. and M.Sc. degrees with
distinctions in Computer Science at Cracow University
of Technology, Poland, in 2012 and 2013, respectively.
Currently, he is Research and Teaching Assistant at Cra-
cow University of Technology and Ph.D. student at Pol-
ish Academy of Sciences in cooperation with Jagiellonian
University. He is also a member of Polish Information
Processing Society, cHiPSet IC1406 COST Action, co-chair
of the HiP-MoS track of the ECMS 2016 and 2017, and IPC
member of several international conferences. The main
topics of his research are grid and cloud computing, multi-

agent systems and high-performance computing. For more information, please
visit: www.grzonka.eu.



202 D. Fernández-Cerero et al. / J. Parallel Distrib. Comput. 119 (2018) 191–202

Joanna Kołodziej is a Professor in Research and Aca-
demic Computer Network (NASK) inWarsaw. She is a vice
Head of the Department for Sciences and Development
in Institute of Computer Science of Cracow University of
Technology. She serves also as the President of the Polish
Chapter of IEEE Computational Intelligence Society. She
published over 150 papers in the international journals
and conference proceedings. She is also a Honorary Chair
of the HiP-MoS track of ECMS. The main topics of her re-
search are artificial Intelligence, grid and cloud computing,
multiagent systems. The detailed information is available

at www.joannakolodziej.org.

Alejandro Fernández-Montes received the B.E. degree,M.
Tech. and International Ph.D. degrees in Software Engi-
neering from the University of Sevilla, Spain. In 2006, he
joined the Department of Computer Languages and Sys-
tems, University of Sevilla, and in 2013 became Assistant
Professor. In 2008 and 2009 he was invited to the ENS-
Lyon, in 2012 to the Universitat Politécnica de Barcelona
and in 2016 to Shanghai Jiao Tong University for sharing
experiences and knowledge in saving energy solutions
for Data Centers. His research interests include energy
efficiency in distributed computing, applying prediction

models to balance load and applying on–off policies to Data Centers.







GAME-SCORE: Game-based energy-aware cloud sched-

uler and simulator for computational clouds

Once energy-aware scheduling models and energy policies were analyzed in

monolithic environments, we worked on the fifth research objective of this

thesis dissertation as part of my second research stage in Cracow: "Proof that

models based on games theory, such as the Stackelberg model, are an excellent

choice to successfully model the concurrency between data-center subsystems

with opposite needs, and that this model can be used for the dynamic appli-

cation of resource-efficiency policies". Optimization of the energy consumed
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without negative influence into the system performance and task completion

time. In this work, we present an extension of the previously published sim-

ulation tool for Cloud Computing, GAME-SCORE, which implements the

scheduling model based on a Stackelberg game with the workload scheduler

and energy-efficiency agent as the main players in that game. We used the

GAME-SCORE simulator for the analysis of the efficiency of the proposed

game-based scheduling model. The obtained results show that Stackelberg

cloud scheduler is better than static energy-optimization strategies and may

achieve a fair balance between low energy consumption and makespan in a

very short time.

The main contributions of this work include: a) An energy-efficient model
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A B S T R A C T

Energy-awareness remains one of the main concerns for today's cloud computing (CC) operators.
The optimisation of energy consumption in both cloud computational clusters and computing
servers is usually related to scheduling problems. The definition of an optimal scheduling policy
which does not negatively impact to system performance and task completion time is still
challenging. In this work, we present a new simulation tool for cloud computing, GAME-SCORE,
which implements a scheduling model based on the Stackelberg game. This game presents two
main players: a) the scheduler and b) the energy-efficiency agent. We used the GAME-SCORE
simulator to analyse the efficiency of the proposed game-based scheduling model. The obtained
results show that the Stackelberg cloud scheduler performs better than static energy-optimisation
strategies and can achieve a fair balance between low energy consumption and short makespan in
a very short time.

1. Introduction

New paradigms, such as cloud computing, and the ever-growing web applications and services, have imposed new challenges to
traditional high-performance computing (HPC) systems. In the same time, computational clouds that provide the core foundation for
the parallel computing solutions have grown drastically in recent years to satisfy the ever-evolving user requirements. Modern large-
scale cloud computing systems are composed of thousands of computational distributed servers. The energy consumed by such cloud
computing systems may be compared to the energy utilized by small towns and large factories. computational clusters account for
more than 1.5% of global energy consumption [36].

Several hardware and infrastructure models have been recently developed for the successful reduction of the energy consumption
in real-life large-scale computational clusters. The most popular models and technologies include:

(a) cooling and temperature management [17,45];
(b) memory and CPU power proportionality [18,39];
(c) construction of energy-efficient flash hard disks [2]; and
(d) new models in energy transportation [19].
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Also the resource management and scheduling models in clouds are defined with the energy optimization modules. Energy
utilization policies may be based on various power related physical models, however the most popular scenario is to switch off idle
servers. Although such power-off strategy is commonly used in small-area grids and clusters [42], in realistic CC systems, the existing
power-off models need to be improved especially in the case of dynamical changes in the task workloads and cloud resource in-
frastructure [24]. It is also important to point out that decisions taken in the organizations might affect both positively and negatively
to different parts of the systems [43]

In this work, the balance between two opposed needs of the data-center environment is modelled by means of a Stackelberg Game
(SG) as an extension of a previous work presented in [22], where we presented the theoretical model for a game-based energy-aware
scheduling algorithm and an algorithm for the dynamic selection of energy-efficiency policies. On one hand, the performance side,
represented by the Scheduling Manager, which wants tasks to be processed as fast as possible, while the efficiency side (CC provider),
represented by the Energy-Efficiency Manager, wants the minimization of the energy consumption of the computational cluster.

In our SG model, the Scheduling Manager, that is the leader of the game, processes firstly every task to make its decision (move).
Once the particular Task is processed by the leader, then the follower, that is the Energy-efficiency Manager, handles it to make its
move. This competition process is implemented in a trustworthy simulation tool focused on simulating realistic large-scale com-
putational-cluster scenarios. Our contributions in this paper include:

(a) An energy-efficient model based on Stackelberg Game which balances the trade-offs of any energy-aware cluster: energy effi-
ciency and performance, through the dynamic application of shut-down policies; and

(b) A simulation tool called GAME-SCORE which implements this model. The presented tool is able to simulate large-cluster en-
vironments that supports popular cloud computing services.

The paper is organized as follows. In Section 2 we present a simple analysis on the most relevant energy-aware cluster simulators,
as well as a brief description of the main models for energy efficiency in CC systems. In Section 3, we present the developed
simulation tool, GAME-SCORE, as well as the formal definition of the implemented Stackelberg Game model for the balance between
energy consumption and performance in CC systems. This model theoretical core of this work. Due to this, we also present simple
theoretical example of its utilization in this section. The experimental environment, analysis and results obtained are presented in
Section 4. Finally, the conclusions and future work are discussed in Section 5

2. Related work

Many efforts have been made in order to increase resource and energy efficiency in computational clouds. Most of the energy is
consumed in computational clusters, where the data necessary for the computation is stored. However, the optimization of the
scheduling procedures may significantly reduce the time of keeping the requested data ready for use. The data records may be
archived when the computation is complete or simply removed from the computational cluster based on the specific end users
requests. In this section, we first survey in Section 2.1 the most popular cloud simulators for large-scale clusters, with a special focus
on the energy awareness. We present then a simple comparison of the evaluated simulators and critical analysis for better motivation
of our work. In in Section 2.2, we define a simple taxonomy of the energy-aware cloud schedulers and survey the classes of models
considered in the experimental evaluation presented in this paper.

2.1. Simulation tools for energy-aware cloud scheduling

Cloud simulators are still the main virtual environments for evaluation of the new models of cloud services and schedulers. In this
section, we evaluate the following most relevant cloud-computing simulators for the implementation and evaluation of energy-
efficiency techniques.

GreenCloud [34] is the extension of the NS2 network simulator. Its purpose is to measure and compute the energy consumption
at every computational cluster level, and it pays special attention to network components. However, its packet-level nature com-
promises performance in order to raise the level of detail, which may be not optimal for the simulation of large computational
clusters. In addition, it is not designed to offer ease of development and extension in various scheduling models.

CloudSim is based on SimJava and GridSim and is mainly focused on IaaS-related operation environment features [8]. It presents
a high level of detail, and therefore allows several VM allocation and migration policies to be defined, networking to be considered,
features and energy consumption to be taken into account. However, it features certain disadvantages when applied for the simu-
lation of large data-center environments: CloudSim is considered cumbersome to execute for large scale scenarios, as well as being
closely bound to only monolithic scheduling models.

CloudReports is a highly extensible simulation tool for energy-aware Cloud Computing environments. The tool uses the
CloudSim toolkit as its simulation engine and provides features such as a graphic user interface, reports generation, simulation data
exportation, power utilization models and an API for easily extend the tool [49]. However, as CloudReports is based on CloudSim, it
fails to achieve good performance levels when it comes to large-scale data-center infrastructures, as well as not providing easy and
out-of-the-box energy-efficiency strategies based on the shut-down of idle nodes for several scheduling frameworks.

CloudAnalyst adds visual modelling and simulation of large-scale applications that are deployed on Cloud Infrastructures to
CloudSim. Several configuration parameters may be set at a high level by using this GUI. However, CloudAnalyst keeps the per-
formance limitations of CloudSim. In addition, this simulator does not provide power-consumption measures out of the box, as it is
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focused on the visual modelling of data-center infrastructures, not in energy-awareness [53].
Omnet++ [51] is focused on modelling communication networks (mainly), multiprocessors and other distributed or parallel

systems. OMNeT++ is public-source discrete-event simulation tool which has been used as the core simulation engine to test several
energy-efficiency techniques in computational clusters . However, this simulator does not provide ready-to-use tools for the mea-
surement and implementation of energy-aware algorithms, and the main focus on modelling networking may make some scheduling-
related implementation complicated.

GDCSimGreen [27] focuses on the simulation of the physical behaviour of a computational cluster. This implies the evaluation of
energy efficiency of computational clusters under various workload characteristics, platform power management schemes, and
scheduling algorithms. However, the low-level hardware and cooling characteristics simulated by this tool make it sub-optimal for
large-scale computational clusters due to performance issues. In addition, this simulator does not provide easy and out-of-the-box
tools for the simulation of energy-efficiency policies based on the shut-down of the idle machines.

Grid’5000 Toolbox simulates the behaviour of Grid’5000 (France) resources for real workloads while changing the state of the
resources according to several energy policies. The simulator includes:

(a) A GUI that allows the user to simulate a set energy policies for each location of Grid’5000;
(b) A graphical visualisation of the state of the resources during the simulation;
(c) A graphical view of the results.

On the other hand, the simulator fails to include various scheduling frameworks and it does not simulate the behaviour or
consumption of network devices and resources.

CoolEmAll [11] is focused on evaluation the thermal side of the data-center operation in order to achieve energy-efficiency by
combining the optimization of IT, cooling and workload management. On the other hand, the support for testing energy-aware
scheduling algorithms as well as workload consolidation and other strategies based on the shut-down of idle nodes is not extensively
covered. In addition, this simulator is not designed to achieve high performance when large-scale cluster are considered.

SCORE [20] is designed for the comparison of various scheduling framework in large clusters. To this end, it focuses on max-
imizing the performance of the simulations by reducing the level of detail . The simulation tool enables the modelling of hetero-
geneous, realistic and synthetic workloads, as well as it provides the tools to easily develop both new energy-aware scheduling
policies for various scheduling frameworks and energy-efficiency policies based on the shut-down of idle nodes.

To summarize, the most widely adopted simulation tools for cloud computing clusters lack some critical features, as shown in
Figure 1, that motivated us to develop ENERGY-SCORE based on the SCORE simulator, mainly:

(a) the capacity to dynamically switch between energy-efficiency and scheduling strategies; and
(b) the performance required to run large-scale, heterogeneous and realistic experimentation in a reasonable time.

2.2. Taxonomy of energy-efficiency techniques

In Fig. 2, we present a simple taxonomy of the main techniques to improve energy-efficiency in cluster scheduling.

Fig. 1. Brief comparison between available simulation tools. Green parameters mean that either the characteristic is high or the easiness to im-
plement that characteristic is high. The same applies for medium and low (yellow and red respectively).
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There are two main categories of schedulers defined in that taxonomy, namely software and hardware-based models. The former
focus on the improvement of several pieces of the physical infrastructure of the cloud, such as cooling equipment and thermal
management, power distribution and hardware. The latter, on the other hand, focuses on the development of software strategies
which make an smarter use of the physical computational nodes.

In this paper, we study the following three classes of software-based models:

(a) Algorithms focused on the consolidation of workload and shut-down of idle nodes.
(b) Energy-aware scheduling algorithms; and
(c) VM scaling and migration algorithms;

These three classes have been chosen since they are the core of resource-managing systems. Resource managers are the re-
sponsible for the allocation and execution of tasks, the main goal of computational clusters. For the very same reasons, data re-
plication and placement models have not been covered, since they only affect to distributed file systems.

The first considered category contains the schedulers defined for the reduction of energy consumption in computational clusters,
which manly focus on the consolidation of the workload. That consolidation is necessary for the proper estimation of the number of
idle nodes in the physical cloud clusters and switch them into sleeping mode [7,21,23]. In [7], Berral et al. propose a consolidation
model that combines

(a) the shut-down of idle servers;
(b) power-aware workload-consolidation algorithms; and
(c) machine-learning techniques

to improve energy-efficiency in computational clusters. The computational cluster with 400 nodes is simulated using the OmNet++
simulator. The results obtained show that about 10% of energy consumption can be reduced without negatively impacting on SLAs. In
[21] the authors developed the static power-efficiency policies based on the idea of deactivation of the idle nodes in the realistic
environments. The SCORE simulator [20] was defined and used for simulation the the large-scale computational clusters with 5000
machines and for heterogeneous workloads. 20% energy reduction results are shown without notably impacting on data-center
performance. The SCORE simulator was also used for evaluation of the energy-aware scheduling strategies based on the genetic
algorithms with additional scheduling criteria such as security requirements defined by the end users [23]. We defined a realistic
cloud environment with 1000-nodes computational nodes and executed the realistic heterogeneous workloads. The implemented
scheduling model allowed to save up to 45% of the consumed energy.

A substantial part of the efforts on improving energy-efficiency has been directed towards energy-aware scheduling strategies that
could lead to powering off idle nodes, such as [29,33,37]. In [37], Lee et al. present two energy-aware task consolidation heuristics.
These strategies aim to maximize resource utilization in order to minimize the wasted energy used by idle resources. To this end,
these algorithms compute the total cpu time consumed by the tasks and prevent a task being executed alone. In [33], Juarez et al.
propose an algorithm that minimizes a multi-objective function which takes into account the energy-consumption and execution time
by combining a set of heuristic rules and a resource allocation technique. This algorithm is evaluated by simulating DAG-based
workloads, and energy-savings in the range of [20-30%] are shown. In [29], Jakóbik et al. propose energy-aware scheduling policies
and methods based on Dynamic Voltage and Frequency Scaling (DVFS) for scaling the virtual resources while performing security-
aware scheduling decisions.

Fig. 2. Generic taxonomy of energy-efficiency techniques for clusters. The strategies in studied in this paper are marked in green.
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In addition, different techniques of energy conservation such as VM consolidation and migration [4–6,48] are also proposed. In
[5], Beloglazov et al. describe a resource management system for virtualized cloud computational clusters that aims to lower the
energy consumption by applying a set of VM allocation and migration policies in terms of current CPU usage. This work is extended
by focusing on SLAs restrictions in [4] and by developing and comparing various adaptive heuristics for dynamic consolidation of
VMs in terms of resource usage in [6]. These migration policies are evaluated by simulating a 100-node cluster. Energy reductions up
to approximately 80% are shown with low impact on quality of service and SLAs. In [48] a Bayesian Belief Network-based algorithm
that aims to allocate and migrate VMs is presented. This algorithm uses the data gathered during the execution of the tasks in addition
to the information provided at submission time in order to decide which of the virtual machines are to be migrated when a node is
overloaded.

In this work we present a different approach to the energy-aware scheduling problem: we model the concurrency between energy
efficiency and performance as rival players in a Stackelberg-Game model. This game-based model enables us to balance optimally the
trade-off between these two opposite needs in energy-aware computational clusters.

The main simulator characteristics necessary to implement the Stackelberg-Game model are the following:

(a) The simulation tool must be energy-aware and provide the tools to measure the energy consumption and reduction;
(b) The simulation tool must provide several already-implemented scheduling models;
(c) The simulation tool must provide several already-implemented scheduling algorithms;
(d) The simulation tool must provide several already-implemented energy-efficiency policies based on the shut-down of idle nodes;

and
(e) The simulation tool must be performant when large-scale computational clusters (thousands or even tens of thousands of nodes)

are evaluated

. As presented in this Section, the SCORE simulator fulfills the majority of requirements. In this work we extend the SCORE
simulator in order to implement the Stackelberg-Game model.

Differently to most of the studied strategies and simulation tools which implement them, which rely on static scheduling strategies
for the consecution of energy efficiency, we model the trade-offs of energy-efficient computational clusters, that are performance and
energy efficiency, as the sides of this game. The application of the proposed model results on the balance between fast and reliable
task execution and low energy consumption. Hence, the major contributions of this work include a model for the dynamic application
of energy-efficiency policies based on the Stackelberg-Game model, as well as a trustworthy simulation tool, GAME-SCORE, that
implements this model.

3. GAME-SCORE simulator

In this section we define the GAME-SCORE simulator, which is the extension of SCORE [20] simulator, following the same design
pattern: a hybrid approach between discrete-event and multi-agent simulation. The main aim of the GAME-SCORE is the simulation
of energy-efficient IaaS of the clouds. However, this simulation tool has one limitation that may have a negative impact for the
reduction of the energy consumption in computational clusters: the application of energy policies is made statically. Hence, only one
static energy policy is applied at the beginning of the experiment and cannot be changed in runtime. This makes the simulation tool
sub-optimal for realistic heterogeneous workloads and changing operation environments such as those present in Cloud-Computing
scenarios.

In the following sections, we describe in detail the developed simulation tool and its modules. This simulation tool enables us to
dynamically choose between a catalog of energy-efficiency policies that shut-down idle machines in runtime. In addition we present,
as a realistic use case, an algorithm based on the Stackelberg Game which makes use of this feature. However, any other strategies
aiming to dynamically switch between a set of energy-efficiency policies and/or scheduling algorithms could be easily implemented
with this new simulation tool.

3.1. GAME-SCORE components

The GAME-SCORE base architecture is composed of two main modules:

• Core Simulator Module, responsible for executing the experiments, and is composed of three submodules:

• Workload generation, responsible for the generation of the synthetic workloads, either based on statistical distributions or on
real-life workload traces.

• Core engine, responsible for the creation of the simulation environment, cluster, and the multiple scheduling agents. This
engine is the module which actually runs the simulation.

• Scheduling module, responsible for the assignation of tasks to worker nodes, as well for the implementation of several
scheduling framework models.

• Energy-Efficiency Module, responsible for the implementation of the energy-efficiency policies based on the shut-down of idle
machines.

In addition, we extended this base architecture to implement the Stackelberg Game process as means to dynamically switch
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between energy-efficiency policies. To this aim, we developed the following modules which negotiate between the Scheduling module
and the Energy-Efficiency module:

(a) a Central Energy-efficiency Manager module which governs the catalog of energy-efficiency policies;
(b) a Stackelberg-Game manager which implements the concurrency-based model;
(c) a module for the Leader player to apply its decisions; and
(d) a module for the Follower player to apply its decisions;

. The resulting architecture of the proposed simulator is shown in Figure 3. The GAME-SCORE source code is publicly available at:
https://github.com/DamianUS/game-score.

3.2. Shut-down decision policies

We assume in our model that the energy conservation policies do not have a notable negative impact on the performance of the
whole computational cluster Therefore we define in our model a Central Energy-efficiency Manager that decides the power-off strategy
to be applied, which deactivates the servers in an idle mode. It should be noted that Always strategy cannot be kept active when a
machine computes tasks and send/receive data. In the case of huge workloads, where tasks and data may leave and arrive dyna-
mically from and to the cloud servers, the active servers may be overloaded and the whole task execution process can be significantly
delayed. Therefore, there is a need of the development of the decision model which allows us to activate the Always power-off
strategy in the optimal periods. The following shut-down decision policies have been implemented in our model:

• Margin – this decision strategy activates the Always power-off strategy only if, at least, a specified amount of resources (servers) is
ready to accept the incoming tasks.

• Random– in this case, the Always power-off strategy is activated randomly. This strategy is usually defined together with the
Never shut-down policy, where all servers are kept in the active mode (it happens usually in realistic cloud computational clusters)
and the Always shut-down scenario, where all idle machines are switched-off.

• Exponential – in this strategy, the Always shut-down strategy is activated depending on the probability of one (large) incoming
task of oversubscribing the available resources. This probability is computed by the means of the Exponential distribution.

• Gamma – in this case, the Always shut-down strategy is activated depending on the probability of incoming tasks (in a given
window time) of oversubscribing the available resources. This probability is computed by the means of the Gamma distribution.

The utilization of the Energy-efficiency Manager in our model does not guarantee the fair reduction of the energy consumed by the
cloud system. Therefore, we define another component of the model, that is the Scheduling Manager. This component allows the
optimal schedule of tasks onto the cloud servers based on the energy-conservation criterion. In this work, we focus on the problem of
the independent tasks scheduling. We use the genetic cloud scheduler developed in [31] and ETC Matrix scheduling model described
in [29]. The makespan constitutes the most representative parameter of the performance, and hence it becomes the scheduling goal.

3.3. Stackelberg Game used for scheduling decisions

In the model presented in this work we used the Stackelberg Game played by two opponents Scheduling Manager – Leader and
Energy-efficiency Manager –Follower. Similar strategies have been used for energy-aware resource allocation [3]. The interaction
between the previously described modules in this game is shown as a sequence diagram in Figure 4

As a model for balancing scheduling efficiency and energy minimization we used a non-zero symmetric game, defined by:

Fig. 3. GAME-SCORE architecture
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= ∈ ∈N S QΓ (( , { } , { } )n i i N i i N (1)

where =N {1, 2} denotes the set of players, {S1, S2} ( ≥ =cardS i2; 1, 2i ) denotes the set of strategies for them
�× × → ∀ =H H H S S{ , }; : ;i i1 2 1 2 1,2 denotes payoff functions for each player.

Both players are making decisions according their payoffs. A decision is a selection of one single action from the set of possible
actions. Possible actions are defines as elements of strategy sets f{S1, S2}. The sets of actions for each player are chosen to be
beneficial for this player. The payoff function is measuring the quality of actions by assigning the real value to each set of decisions. In
the model pure strategies and mixed strategies are considered, see [54]. Let us denote by si the Pure strategy of the player i and the
set of all pure strategies specified for player i is denoted by Si. The mixed strategy of the player i is denoted by σi∈ Si⊂ ΔSi and
allows to randomize over pure strategies:

Fig. 4. Sequence diagram of the interactions between modules of the Stackelberg Game workflow

Fig. 5. Stackelberg Game workflow, scheduling workflow, B - Batch type task, S - Service type task, M - Virtual Machine

D. Fernández-Cerero et al. Simulation Modelling Practice and Theory xxx (xxxx) xxx–xxx

7



=σ σ s σ s σ s{ ( ), ( ), ..., ( )},i i i i i i im1 2 (2)

where σi(si) denotes the probability that the player i choses the pure strategy si.
In Stakelberg Games (SG), the leader of the game is privileged to play first, and the second players (the follower) are obliged to

make their decisions after him [54]. In our model we proposed o non zero sum game, to allow the leader and the follower define their
strategies separately.

The leader of the game, Scheduler component is making decisions how to dispatch tasks among the Computing Nodes. These
Computing Nodes are grouped into Computational Units, denoted as CU1, CU2, ...CUP. Incoming Jobs are composed of a set of in-
dependent Tasks which can be executed in parallel.

Single decision of the leader is a schedule calculated for the given batch of tasks and available set of Computational Units. The
cardinality of the strategy set for the leader equals all possible schedules. Let us denote this number by P possible decisions. The
strategy vector σi(si) represents the probability for a Job to be assigned to the CUp, for =p P1, 2, ..., . The si may be taken from the set
1, 2, ..., P.

The expected payoff of the game leader is depends on the completion time of all the Tasks in the scheduled Job, thus, the
makespan of that Job, as shown in Figure 6. The leader plays to in order to minimize the makespan. In our model we used a
Monolithic Scheduler [35] which makes scheduling decisions based on the Expected Time to Compute (ETC) matrix, defined as
follows:

= = …
= …ETC ETC j i[ [ ][ ]] j n

i m
1, ,
1, , p

(3)

where

=ETC j i wl cc[ ][ ] /j i
p (4)

In this equation, cci
p is the computational capacity of the i-th Computing Node (CN) in the pth Computing Unit (CU) in Giga Flops

per Second (GFLOPS) and wlj represents the workload of j-th task in Flops (FLO); n and mp denote the number of tasks and number of
Computing Nodes in the pth Computing Unit respectively, see [32]. The makespan is defined as follows

=C wl wl cc cc m n p( , ..., , , ..., , , , )n
p

m
p p

max 1 1 p (5)

= ⎧
⎨⎩

⎫
⎬⎭∈ ∈

Cmin max ,
S Schedules j Tasks

j
(6)

where Cj is the completion time of the j-th task. Tasks represents the set of tasks in the Job, and Schedules is the set of all possible
schedules that can be generated for the Tasks of that Job. The shortest makespan is calculated by using the Expected Time to Compute
(ETC) matrix. In this matrix, the cell in the ith row and the jth column represents the completion time of the jth task if is it executed on
the ith CN.

The optimal schedule is is the best decision for the game leader, therefore utility function value for the game leader is defined as:

=
∑ ∑= =

H σ σ

σ σ C wl wl cc cc m n p

( , )

( , ..., , , ..., , , , )
p P l L

p l
n

p
m
p p

1 1 2

1,..., 1,..,

1 2 max 1 1 p (7)

Fig. 6. Example of Leader player (Scheduler) makespan computation
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where L indicates the number of decisions that may be taken by the game follower. The value of the makespan depends on the
computational power of the CNs. These parameters may be modified by the follower player:

=
∑ ∑= =

H σ σ

σ σ C wl wl cc l cc l m l n p l

( , )

( , ..., , ( ), ..., ( ), ( ), , ( ))
p P l L

p l
n

p
m
p p

1 1 2

1,..., 1,..,

1 2 max 1 1 p (8)

The follower in the game is the Central Energy-efficiency Manager. It applies energy policies to all the CNs in the computational
cluster. The follower may decide about the cc l( )i

p and the mp(l). The payoff for the follower is defined as the energy consumed by the
CC system for the execution of the schedule computed by the Scheduler:

=
∑ ∑= =

H σ σ

σ σ E wl wl cc cc m n p schedule

( , )

( , ..., , , ..., , , , , )
i m j n
j i

n
p

m
p p

2 1 2

1,..., 1,..,

1 2 1 1 p (9)

After the follower has made his decision, the leader is considering new batch of tasks. It computes next schedule and the game is
repeated. Both the payoffs depends on both players moves.

In order to calculate the the follower payoff, the following equation was introduced:
Etotal is the total energy consumed by particular Job, tidle

i is the idle time of CU after it calculated assigned tasks ; tbusy
i is the time

that the i-th CN is devoting on computing tasks; Pidle
i is the power a CN requires to remain in a idle state; Pbusy

i is the power a CN
consumes during computing tasks.

The time that the i-th CN spends on computing tasks depends on the schedule that was decided be the game leader:

= ∈t max Cbusy
i

j Tasks scheduled for CN ji (10)

and the idle time of the i-th CN may be calculated as follows:

= −t C tidle
i

max busy
i (11)

This model assumes that the next batch of tasks may be scheduled is the previous batch was calculated. Assuming that, the total
energy consumed may be calculated in the following way:

∫= ∑ =

∑ + + + +

=

=

E Pow t dt

P t P t P t P t P t

( )

( * * * * * )

total i
m

C

CN

i
m

idle
i

idle
i

busy
i

busy
i

sleep
i

sleep
i

off
i

off
i

t
i

t
i

1
0

1

max

i

(12)

where P t,sleep
i

sleep
i is power consumed during sleeping mode, and time spend in this state, P t,off

i
off
i is during power consumed during

being powered of (assumed as zero) and time spend in this state. Values Pt
i and tt

i are accumulated power and time spend during all
transitions from one state to another.

Our model allows competition between two aims: to compute tasks as fast as possible and to apply the more optimal power states
to the CNs in order to maximize the energy efficiency. q The core off the game is to solve two optimization problems. First is to find
the the best decision for the game leader, that is finding the solution of the problem

∑ ∑= =argmax

σ σ C wl wl cc cc m n p( , ..., , , ..., , , , )

σ σ σ p P l L
p l

n
p

m
p p

, ,..., 1,..., 1,..,

1 2 max 1 1

P

p

1
1

1
2

1

(13)

with the following constraints

∑ == σ 1p P
p

1,..., 1 (14)

∀ ∈σ σ: [0, 1]p p
1 1 (15)

and second, to find the best decision for the game follower:

∑ ∑= =argmax

σ σ E wl wl cc cc m n p schedule( , ..., , , ..., , , , , )

σ σ i m j n
j i

n
p

m
p p

,..., 1,..., 1,..,

1 2 1 1

m

p

2
1

2

(16)

with the following constraints

∑ == σ 1i m
i

1,..., 2 (17)

∀ ∈σ σ: [0, 1]i i
2 2 (18)

Considering pure strategies problem (16)-(18) may be solved by the direct search.The best strategy is one of the m possible
problem solutions. The number of possible solutions for the problem (13)-(15) is P! and the problem of finding the best schedule is
consider to be NP-hard. Therefore we applied Genetic Algorithm search method for finding suboptimal solution. During such
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procedure the suboptimal schedule is found and the strategy vector equals one for that schedule. Probabilities of all other schedules
are assumed to be equal zero. If several sub-optimums were found each is granted the same probability that equals one divided by the
number of them.

Considering mixed strategies optimization problem (16)-(18) is may be solved by one of the classical techniques, for example the
simplex method. The space of the argmax search is [0, 1]m. Mixed strategies for the problem (16)-(18) was not implemented as the
part of this research.

3.4. A simple theoretical example of the proposed algorithm

For the illustration of the game implemented in the GAME-SCORE simulator, lets consider the simplest possible environment,
consisting in only two computing units. Each unit is equipped with only one node. The computing capacities of the CUs are: CU1

=cc 11
1 GFLOPS/sec. and CU2 =cc 11

2 GFLOPS/sec.
The Jobs that will be considered by the scheduler are composed of three independent tasks, having the following workload:
=wl 11 FLO, =wl 21 FLO and =wl 41 FLO.
The Energy-Efficiency manager may choose only from two energy policies: keeping all unused CUs into idle state (strategy 1), and

always switch all idle CUs to sleep mode (strategy 2). For the clearance of the presentation the transition time and energy are omitted
and the rest of characteristics are assumed in the following form:

Pidle
1 = 2 MWh Pidle

2 = 4 MWh

Pbusy
1 = 10 MWh Pbusy

2 = 20 MWh

Psleep
1 =0.1 MWh Psleep

2 =0.2 MWh

In the previous round, the result of the strategy computed by the Follower player was: =σ 1/3,2
1 =σ 2/32

2 . Now it is the Leader’s
turn.

The algorithm for the application of the next Stackelberg game round is composed of the following steps:

1. Computation of the Leader’s move. This step is, in turn, composed of the following substeps:
(a) Computation ETC matrix, 4, based on the characteristics of the incoming Job:

= ⎡
⎣⎢

⎤
⎦⎥

ETC 1/1 2/1 4/1
1/2 2/2 4/2

(b) Find possible schedules. In this simple example the utilization of a genetic algorithm to solve the NP-hard problem is not
necessary. The optimal schedule may by computed by means of brute force. We will represent the schedules as follows: (tasks
assigned to CU1|tasks assigned to CU2). All possible schedules are the following.:
(1) = −s (1, 2, 4 )1 and = −s ( 1, 2, 4)2 . This schedule represents the mapping of all tasks to the selected CU
(2) =s (1, 2 4),3 =s (1, 4 2),4 =s (4, 4 1)5 . This schedule is the result of the assignation of one task to CU2, while the rest of the

tasks are assigned to CU1

(3) =s (1 2, 4),6 =s (2 1, 4),7 =s (4 1, 2)8 . This schedule is the result of the assignation of one task is assigned to CU1, while
the rest of the tasks are assigned to CU2.

(c) Computation of the payoff function 8. To this aim, we need to calculate the makespan for all the possible schedules, based on
ETC matrix:
(1) = + + + =C s( ) 1/1 2/1 4/1 0 7max 1 and = + + + =C s( ) 0 1/2 2/2 4/2 3.5)max 2 sec.
(2) = + + =C s( ) 1/1 2/1 4/2 5,max 3 = + + =C s( ) 1/1 4/1 2/2 6,max 4 = + + =C s( ) 4/1 1/2 2/1 3.5max 5 sec.
(3) = + + =C s( ) (1/1 2/2 4/2 4,max 6 = + + =C s( ) 2/1 1/2 4/2 4.5,max 7 = + + =C s( ) 4/1 1/2 2/2 6.5)max 8 sec.

(d) Find the schedule that maximize the payoff, which means the schedule that results in the shortest makespan,6 for the par-
ticular Job. If the run of the Genetic Algorithm results in a set of equal suboptimal schedules, then we can assign probabilities
to them to avoid the ”local minima” trap. According to the resulting makespans for the schedules s2 and s5, we may randomize
the selection, and set the mixed strategy vector in the following form:

=sigma sigma sigma( , , ..., ) (0, 1/2, 0, 0, 1/2, 0, 0, 0)1
1

1
2

1
8

Therefore the Leader’s payoff function is:

=
∑ ∑

=
+ + +

=

= =

H σ σ

σ σ C s

sec

( , )

( )
1/2*1/3*3.5 1/2*1/3*3.5 1/2*2/3*3.5 1/2*3/3*3.5

4.08(3) .

p l
p l

p

1 1 2

1,...,8 1,2

1 2 max

(19)

(e) Selection of a single action: We chose it randomly, with equal probability among schedules s2 and s5. In this case, the schedule
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number 2 was selected.
(f) Submission of this schedule to both the CU and the Follower player.

2. Computation of the Follower’s move. This step is, in turn, composed of the following substeps:
(a) Computation of the Idle and Busy times, see eq. 13 and 14 respectively for all the CUs. Given the resulting schedule:

= −s ( 1, 2, 4)2 results in =t 0busy
1 sec. and =t 3.5busy

2 sec.
(b) Computation of the total energy consumption 21 of the particular schedule for all available energy policies:

• If the policy number 1 is applied:

∑

=

+ =

+ + + =
+ + + =

=

E

P t P t

P t P t P t P t
KWh

( * * )

* * * *
2*3.5 0 0 4*3.5 21

total

i
idle
i

idle
i

busy
i

busy
i

idle idle busy busy idle idle busy busy

1

2

1 1 1 1 2 2 2 2

(20)

• If the policy number 2 is applied:

∑

=

+ =

+ + + =
+ + + =

=

E

P t P t

P t P t P t P t
KWh

( * * )

* * * *
0.1*3.5 0 0 4*3.5 14.35

total

i
sleep
i

sleep
i

busy
i

busy
i

sleep sleep busy busy sleep sleep busy busy

1

2

1 1 1 1 2 2 2 2

(21)

(c) Find the energy policy that minimizes the energy consumption, that is, the maximization of the payoff function. In this
particular example, the optimal energy policy is the policy number 2: =σ 0,2

1 =σ 12
2 .

(d) If necessary, we may randomize over several suboptimal solutions. In this simple example, this step is not necessary.
(e) Computation of the Follower’s payoff 22, as follows:

=
∑ ∑

= +
= =

H σ σ

σ σ E KWh

( , )

1/2*1 14.35
p l

p l
total

1 1 2

1,...,8 1,2

1 2 (22)

(f) Selection of the decision made by the system: The application of policy number 2 (only).
(g) Application of this energy policy to the CUs, and return the decision to the game Leader.

These steps are repeated for every incoming Job. In real-life scenarios we have to employ a Genetic Algorithm (GA) to sole the NP-
hard problem of the Leader’s move (the resulting scheduling) and a Simplex method to compute the follower strategy.

4. Experimental analysis

In this work, we aim to empirically demonstrate that the proposed simulation tool, GAME-SCORE, as well as the implemented
energy-aware scheduling algorithm based on the Stackelberg-Game model may have a notable positive impact in terms of energy
efficiency and performance, as well as an optimal balance between them.

In the following subsections we present the scheduling framework and algorithm considered, the simulation environment, the
parameters and KPIs under evaluation and the considered realistic scenarios where we compare our proposal to static energy-
efficiency policies.

4.1. Scheduling framework

In this experimental analysis, we employ a Monolithic centralized scheduler model. This scheduling model [28] works very well
under low job-arrival rate conditions, such as long-running MapReduce jobs [12], since latencies of seconds or minutes [15] are
acceptable in this context. This kind of scheduler can perform high-quality scheduling decisions [13,56] by examining the whole
cluster state to determine the performance impact of hardware heterogeneity and interference in shared resources [25,38,41,46,55],
and thereby it can choose the best resources for each task. This model leads to higher machine utilization [52], shorter execution
times, better load balancing, more predictable performance [14,57], and increased reliability [44]. The scheduling process for the
monolithic centralized scheduler is illustrated in Figure 7

Various parameters may characterize the jobs that make up the workloads of the Cloud-Computing system [40]. In this work, we
focus on the following main attributes of the job jk:

• Job inter-arrival time TI jk- represents the time elapsed between two consecutive jobs (jk) submissions of the same workload type
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W. Thus, the number of jobs to be scheduled and executed by the Cloud-Computing system in a given time is defined by this
parameter.

• Job duration time TD jk- is the completion time of the jk job in the Cloud-Computing system

• Number of tasks TTjk- is the number of tasks that makes up the job jk.

The performance efficiency of any Cloud-Computing Scheduler is related to the number of jobs that can be scheduled in a given
time as well as the quality of the scheduling decisions. We consider the processing time (makespan) of the total set of jobs, that is, the
workload Ws, as the main key performance indicator of the scheduling quality.

Usually, the term workload is conformed by the whole set of inputs related to Cloud-Computing systems, such as: applications,
service packages and related data required by tasks. In Cloud Computing, such inputs are often submitted by the Cloud-Computing
users by means of cloud services hosted in Cloud clusters. It should be also borne in mind that Cloud-Computing workloads are not
usually composed of real-time applications.

4.1.1. Genetic Algorithm for searching optimal schedule
The scheduling of tasks in cloud-computing computational clusters constitutes an NP-complete problem [50], whose complexity

depends on the features considered [35], such as:

(a) the number of scheduling criteria to be optimized (one vs. multi-criteria);
(b) nature of the environment (static vs. dynamic);
(c) nature of tasks (Batch or Service); and
(d) dependency between tasks (independent vs. dependent).

In this work, we use a heuristic algorithm that takes into account the aforementioned requirements in order to solve the NP-
complete problem. This scheduling algorithm is based on a genetic algorithm with dedicated population representation [26,30],
which can be characterized as follows:

(a) a single gene represents one task, which is unique within the population;
(b) each chromosome is composed by a set of tasks (genes);
(c) each individual is composed of one chromosome and represents a scheduling assignation for a single computing node;
(e) the population is composed of m individuals and represents a schedule for all n tasks;
(f) the fitness function depends on the optimization objectives

. All individuals take part in the reproduction process. Individuals presenting the lowest value for the fitness function (best
adapted) are crossed with worst-adapted individuals (those that show the highest values for the fitness function). Crossing involves
exchanging genes between chromosomes. The population obtained in the evolution process defines the suboptimal schedule, as

Fig. 7. Monolithic centralized scheduling workflow, B - Short-running Batch task, S - Long-running Service task, M - Machine

D. Fernández-Cerero et al. Simulation Modelling Practice and Theory xxx (xxxx) xxx–xxx

12



shown in Figure 8.

4.1.2. Workload types
The quality of the scheduling process has a notable impact in Cloud-Computing systems, both on the overall quality of the cloud

services as well as on the fulfillment of Service Level Agreements (SLAs).
We can classify the workloads to be processed according to two main characteristics:

• The internal architecture of the workload, that is, the relationship between jobs in the same workload. In this model, the kind and
number of jobs that form the cloud applications, as well as the dependencies between them describe the whole workload. Hence,
such jobs may be processed as a Directed Acyclic Graph [9], in parallel, and sequentially.

• The processing model of the jobs. In this model, we consider the following type of jobs:

• Batch workload BW– this workload is composed of jobs that have a strictly-specified job arrival, start and completion times
since these jobs are designed to perform a given computation and then finish.

• Service workload SW – this workload is defined as a set of long-running jobs which usually need a higher amount of resources.
These jobs have a determined job arrival and start time, but the completion time is not a priori determined.
As real-life examples of the aforementioned workloads, MapReduce jobs [12] are classified as belonging to the Batch workload
BW. On the other hand, long-running services such as BigTable [10] and HDFS [47], and web servers make up the Service
workload SW.

In this experimental analysis, we focus on the evaluation of the proposed simulation tool and the dynamic application of energy-
efficiency policies based on the Stackelberg-Game model. To this aim, We created heterogeneous and realistic workloads composed of
BW and SW jobs based on the trends of the industry and Google Data-Center traces present in [1,16].

4.2. Simulation environment

We used the GAME-SCORE simulator to perform a simple experiment that simulates seven days of operation time of a compu-
tational cluster composed of 1,000 heterogeneous machines of 4 CPU cores and 8GB RAM and one central monolithic scheduler. Each
machine has the following features:

• Computing profile: Differences in the processor’s computing power has been mocked by generating randomly a [1x - 4x]
computing speed factor. Thus, a given computing node may be, as a maximum, four times faster than the slowest one.

• Energy profile: Processor’s power consumption heterogeneity has been simulated by generating randomly a [1x - 4x] energy
consumption factor. Thus, a given machine M may be (as a maximum) four times more energy-consuming than the more efficient
one. Hence, for a 4-core server, the maximum power consumption may be described as: Ptotal∈ [300, 1200] W.

In this experiment, we chose an heterogeneous day-night patterned mixed workload. This workload, which is composed of
22,000 Batch jobs and 2,200 Service jobs, uses 30% of the computational cluster computational resources on average, with peak
loads that achieve 60% of utilization.

In order to create this realistic cloud scheduling scenario, the following workload parameters were considered:

Fig. 8. Genetic algorithm model for energy-aware scheduling
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• Job inter-arrival: The inter-arrival time TI jk of BW jobs is sampled from an exponential distribution whose mean value is 90
(seconds). For SW jobs, this inter-arrival time is sampled from an exponential distribution with a mean value of 900 (seconds).

• Job structure: The number of tasks TTjk for each job in BW is sampled from an exponential distribution with a mean value is 50,
while the number of tasks for each job in SW is sampled from an exponential distribution whose mean value is 9.

• Task duration: The durationTD jk of BW-jobs tasks is sampled from an exponential distribution whose mean value is 90 (seconds).
For SW-jobs tasks, this duration is sampled from an exponential distribution with a mean value of 2000 (seconds).

• Resource usage: in SW-jobs tasks consume 0.3 CPU cores and 0.5 GB of memory, in SW-job tasks consume 0.5 CPU cores and 1.2
GB of memory.

4.3. Energy-efficiency indicators

For the analysis of the impact in terms of the reduction of the energy consumption of the Cloud-Computing system, the following
energy-efficiency parameters are considered:

• Ec – Energy consumed: This parameter represents the total energy used by the Cloud-Computing system.

• Es – Energy saved: This parameter represents the total energy saved by the Cloud-Computing system compared to the current1

operation energy consumption.

• SD – Number of shut-downs: The total number of shut-down operations performed over all the resources during the simulated
operation time. This parameter can be related to the hardware stress due to booting actions.

• EsSD – Energy saved per shut-down: This parameter computes the energy saved against the shut-downs performed. Hence, it
shows the efficiency of the shut-down actions performed.

• IR – Idle resources: This parameter represents the amount of resources turned on but not in use.

4.4. Scheduling efficiency indicators

For the comparison and evaluation of the performance of the Cloud-Computing system, we define the following key performance
indicators (KPIs):

• JQTfi – Job queue times until first scheduled: This parameter represents the time a job needs to wait in queue until it scheduled
for the first time.

• JQTfull – Job queue times until fully scheduled: This parameter represents the time a job needs to wait in queue until it is fully
scheduled.

• SBT – Scheduler busy time: This parameter represents the total time spent by the scheduler performing scheduling operations.

• MSt – Final makespan: This parameter represents the total time spent by jobs in the Cloud-Computing system on average. It is
worth to mention that only the Batch workload BW has makespan, since Service workload SW has no determined end, but usually
these jobs are killed by operators or automated systems when they are no longer necessary.

• MS0 – Epoch 0 makespan: This parameter makes reference to the makespan of jobs in the first iteration of the genetic algorithm
on average.

4.5. Simple example for Always and Never power-off policies in SCORE simulator

In this experiment, we aim to empirically show a simple strategy where a dynamic change of Power-off policy could represent a
significant improvement of energy-efficiency.

The Stackelberg process described previously is applied for every scheduling decision in the system. In this experiment, the Shut-
down decision policy used to switch the Power-off policy is made based on cluster available resources. Every time that the idle resources
exceed a given threshold, the Always power-off policy is applied. On the other hand, when the amount of available resources is lower
than that threshold, the Never power-off policy is applied. The results of the application of the Stackelberg game against the static
energy policies are presented in Tables 1 and 2.

This experimentation shows that the Stackelberg model applies a minor negative impact (+ 15%) in terms of queue times
compared to the Never shut-down decision (17 vs 20 ms.), while the negative impact of the Always and Random strategies are +160%
and 80% (17 vs. 44 and vs. 30.5 ms.) respectively. In terms of energy consumption, the Stackelberg model only consumes 10% more
energy than the Always and Random shut-down policies (29 vs 32 MWh). On the other hand, the Always and Random strategies
achieve approximately 7% lower final average makespan time (146 vs. 155 s.) due to the dynamic changes of the Stackelberg model.

4.6. Extended example in SCORE simulator

In this section, we extended the simple experimentation presented in Section 4.5. In order to keep results comparable, we reused
all the configuration parameters taken for the large-scale CC system shown in Section the 4.5. However, in this experiment the Central

1 Current operation for the same computational cluster and workload, but without applying energy-saving polices
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Energy-efficiency Manager switches dynamically between the Never and the Always power-off policies by applying every Shut-down
decision policy described in Section 3.2. The results obtained are shown in Table 3 and 4.

In general, the Stackelberg process may apply a negative impact in terms of makespan due to that the Power-off policy may
suddenly change. This change can impact on two consecutive scheduling processes of a single job, which could apply a performance
penalty if there are no sufficient resources to immediately execute the job tasks. This negative impact can be mitigated by the
scheduler when only one static Power-off policy is applied. It should be borne in mind that only Batch jobs would suffer from this
negative impact since Service jobs have no determined finish.

This experimentation shows that the results of the Stackelberg model depends directly on the Shut-down decision policy. More
conservative probabilistic models, such as Exponential and Gamma, achieve and 45% faster queue times than a Random strategy (33
vs 18 and 19 ms.) respectively while consuming approximately 8 and 12% more energy (29.4 vs. 31.5 and 33.8 MWh) respectively.
On the other hand, strategies that rely on leaving a security margin of free resources, such as Margin, could achieve approximately
40% faster queue times than a Random strategy (33 vs 20 ms.), and it would only consume 10% more energy (29.4 vs 32.2 MWh). It
can be noticed that conservative strategies such as Gamma apply almost no stress to the hardware, performing approximately 1,000
shut-downs in a week of operation time, which represents 10% of those performed by the Random decision policy.

4.7. Results summary

The results obtained show that in general, the Stackelberg-Game-based can balance the trade-offs present in energy-efficient
computational clusters: energy-consumption reduction vs. performance.

As showed, our model can notably improve the scheduling performance compared to static energy-efficiency policies while
achieving almost the same levels of energy efficiency when the proper energy policies and switching decisions are used. However, the
Stackelberg process applies a minor negative impact in terms of makespan due to the sudden changes of the Power-off policy applied.

Table 1
Energy-efficiency results for the simple Stackelberg experiment

Strategy Ec Es Savings SD EsSD IR
(MWh) (MWh) (%) (kWh) (%)

Static-Never 55.65 0 0 0 N/A 70.71
Static-Always 29.04 26.83 48.03 19,722 1.36 3.49
Static-Random 29.33 26.47 47.44 10,943 2.42 4.49
Stackelberg 32.24 23.65 42.32 1,665 14.21 11.11

Table 2
Performance results for the simple Stackelberg experiment

Strategy Workload JQTfull JQTfi SBT MSt MS0
(ms) (ms) (h) (s) (s)

Static-Never Batch 17.05 17.02 3.71 142.55 177.65
Static-Never Service 20.08 20.07 0.12 N/A N/A
Static-Always Batch 43.93 19.58 4.25 146.12 185.74
Static-Always Service 35.11 21.19 0.13 N/A N/A
Static-Random Batch 30.50 18.44 4.02 143.98 180.48
Static-Random Service 33.46 22.03 0.12 N/A N/A
Stackelberg Batch 20.40 17.62 3.75 155.04 179.63
Stackelberg Service 29.91 21.53 0.12 N/A N/A

Table 3
Energy-efficiency results for the extended Stackelberg experiment, where the Always and Never shut-down policies are switched following several
decision policies

Strategy Switch Ec Es Savings SD EsSD IR
Decision (MWh) (MWh) (%) (kWh) (%)

Static-Never N/A 55.65 0 0 0 N/A 70.71
Static-Always N/A 29.04 26.83 48.03 19,722 1.36 3.49
Stackelberg Random 29.37 26.43 47.36 11,434 2.31 4.63
Stackelberg Margin 32.24 23.65 42.32 1,665 14.21 11.11
Stackelberg Exponential 31.48 24.32 43.49 2,998 8.08 10.05
Stackelberg Gamma 33.78 22.25 39.71 1,074 20.72 14.63
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5. Conclusions

In this paper, we presented a new simulation tool called GAME-SCORE which implements method that focus on the balance
between two opposite needs of every energy-efficient CC system: high performance throughput and low energy consumption.

The proposed simulation tool and model are based on a non-zero sum Stackelberg Game with the leader player, the Scheduling
Manager, which tries to minimize the makespan with its scheduling decisions while the follower player, the Energy-efficiency Manager,
responds to the leader player move with the application of energy-efficiency policies that may shut-down the idle machines. These
strategies are represented by the independent utility functions for each player. Our model enables the dynamic application of energy-
efficiency strategies depending on the current and predictable workload.

The results of our simple experimental evaluation show that the proposed model perform better than the application of only one
energy-efficiency policy, both in terms of energy-efficiency and performance. This means that the Stackelberg Game model can
balance better between opposed needs (performance and energy efficiency) and can adapt better to heterogeneous workloads.

It could be also observed in the experimental analysis, that probabilistic decision strategies that try to predict the short-term
future workload can balance better between energy consumption and performance impact.

For the presented reasons, we consider that the proposed simulator GAME-SCORE overperforms other simulators which only
permit the application of static energy-aware scheduling algorithms and static energy-efficiency policies based on the shut-down of
idle machines.

The presented model is just our first step towards the development of the new scheduling and resource allocation policies in order
to optimize the energy utilization in the whole cloud distributing system . The model improvement plans include:

(a) exploration of more advanced energy policies;
(b) introduction of multiple players in order to play several games simultaneously without any central energy manager;
(c) examination of more scheduling models, such as two-level or shared-state models;
(d) test more complex and dynamic scheduling strategies;
(e) inclusion of VM/container migration and consolidation; and
(f) empirical comparison of the simulation results with real-life data.

.
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Abstract: Information technologies must be made aware of the sustainability of cost reduction.
Data centers may reach energy consumption levels comparable to many industrial facilities and
small-sized towns. Therefore, innovative and transparent energy policies should be applied to
improve energy consumption and deliver the best performance. This paper compares, analyzes
and evaluates various energy efficiency policies, which shut down underutilized machines, on an
extensive set of data-center environments. Data envelopment analysis (DEA) is then conducted
for the detection of the best energy efficiency policy and data-center characterization for each case.
This analysis evaluates energy consumption and performance indicators for natural DEA and constant
returns to scale (CRS). We identify the best energy policies and scheduling strategies for high and
low data-center demands and for medium-sized and large data-centers; moreover, this work enables
data-center managers to detect inefficiencies and to implement further corrective actions.

Keywords: data envelopment analysis; return-to-scale; cloud computing; efficiency; energy policies

1. Introduction

Data centers, which constitute the computational muscle for cloud computing, can be compared
in energy consumption to many industrial facilities and towns. The latest trends show that these
infrastructures represent approximately 2% of global energy consumption [1], with a 5% annual growth
rate [2].

The data envelopment analysis mathematical model enables the management organizational
divisions to measure the performance of an organization by providing the relative efficiency of each
organizational unit. This relative efficiency measurement can be applied to a set of decision-making
units, also known as DMUs, or for productive efficiency. The productive efficiency, also called technical
efficiency, involves a collection of inputs (the resources needed for the production) and outputs
(the production achieved). To this end, DEA constructs an “efficiency frontier” which places the
relative performance of all units so these can be contrasted. This method is notably well-suited for
the examination of the behavior of complex relations, even unknown, between numerous inputs and
outputs, where the decisions made are affected by a level of uncertainty [3]. Moreover, DEA has been
used both in private [4,5] and in public contexts [6–9].

Many initiatives have emerged looking for the decrease of the consumption of energy and the
CO2 trace of data-centers, especially those of a medium and large size. These facilities are composed of
thousands and even tens of thousands of machines.

A substantial part of these initiatives focuses on the improvement of the Power Usage
Effectiveness (PUE), that is the amount of energy consumed in non-computational tasks, such as
power supply, cooling and networking components. This accounts for more than half of the energy
consumption of an Internet data-center (IDC).

Several strategies are proposed to significantly improve energy efficiency in large-scale
clusters [10]: cooling and temperature management [11,12]; power proportionality for CPU and
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memory hardware components [13,14]; fewer energy-hungry and non-mechanical hard disks [15];
and new proposals for energy distribution [16].

On the other hand, almost 50% of energy is consumed by computational servers to satisfy the
incoming workload. The job arrival is not stable over time, but usually presents correlative low and
high periods, such as those present in day/night and weekday/weekend workload patterns.

Such scenarios present a huge opportunity for the improvement of energy efficiency through
proper scheduling and through the application of low-energy consumption modes to servers, since
keeping servers in an idle state is extremely energy-inefficient. Many energy-aware schedulers, which
aim to raise server usage, have been proposed in order to free up the maximum amount of machines so
that they may put into hibernation [17–19]. In addition to these schedulers, several energy-conservation
strategies may be applied in virtualized environments, such as the consolidation and migration of
virtual machines [20,21].

Other strategies focus on the reduction of energy consumption in specific scenarios, such as those
of distributed file systems [22,23].

The most aggressive approach involves the shut-down of underutilized servers in order to
minimize energy consumption. Several shut-down policies have been proposed for grid computing
environments in [24]. This strategy is yet to be widely implemented in working data-centers since a
natural reticence to worsening QoS is usually present in data-center operators [25].

The innovation of the research presented in this paper involves the utilization of data envelopment
analysis (DEA) as a mathematical technique to compare the efficiency regarding the consumption of
energy and the performance of various workload scenarios, scheduling models and energy efficiency
policies. This efficiency analysis enables data-center operators to make appropriate decisions about the
number of machines, the scheduling solution and the shut-down strategy that must be applied so that
data-centers run optimally. The final goal is the maximization of the productive efficiency, which is
computed as the amount of energy consumed to serve a workload with a determined performance.

The major contributions of this paper can be summarized as follows:

1. Extensive empirical experimentation and analysis of various cloud-computing scenarios with a
trustworthy and detailed simulation tool.

2. Impact analysis in terms of the energy consumption and performance of several energy efficiency
policies, which shut-down idle machines by means of data envelopment analysis.

3. DEA-conducted analysis of the performance impact and energy consumption of a set of
scheduling models for large-scale data-centers.

4. Empirical determination and proposal of corrective actions to achieve optimal efficiency.

The work is organized as follows. In Section 2, the authors introduce the current literature
for the utilization of DEA presented for various areas, as well as the DEA model employed in this
work. In Section 3, we briefly explain the set of energy efficiency policies that shut down idle servers.
The scheduling models considered are explained in Section 4. In Section 5, the tool used for the
simulation, the experimental environment, the energy model and DEA inputs/outputs are presented.
Natural constant returns to scale (CRS) DEA results are described and analyzed in Section 6. Finally,
we summarize this paper and present conclusions in Section 7.

2. Data Envelopment Analysis Model

Data envelopment Analysis (DEA) is a method that analyzes the connections between
the outputs and inputs required in a production process in order to establish the efficiency
frontiers [26]. This non-parametric technique was first described for the determination of the efficiency
of DMUs by [27] and was formally defined by [28]. DEA has been proposed to measure the efficiency
in various areas of operations research and management science [29–32]. Moreover, it has been
applied to measure the environmental performance by other authors [33–40], who describe the gains
of this method in the field of environmental management, which is a matter of undoubted relevance
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for the valuation of the sustainable development ability and pathway [41]. A critical feature of
DEA for environmental analysis is the inclusion of desirable and undesirable outputs along with
its own production variables, which cannot be isolated in an environmental analysis model of these
features [42]. In this way, ref. [36] have refined a non-radial and radial model of DEA for environmental
measurements. This approach separates the outputs into desirable and undesirable and presents two
concepts: natural and managerial disposability. In this work, we employ the DEA radial approach for
environmental assessments proposed by [37]. It should be borne in mind that a main feature of this
approach is the utilization of DEA-RAM (range-adjusted measure), first proposed by [43] to treat in a
unified manner the analysis of managerial and natural disposability.

2.1. Natural Disposability

Natural disposability refers to a DMU that improves its efficiency by decreasing its inputs in order
to decrease its undesirable outputs, as well as to increase the desirable outputs.

In Model (1), each j-th DMU j = 1, . . . , n, considers inputs Xj = (x1j, . . . , xmj)
T for the production

of desirable outputs Gj = (g1j, . . . , gsj)
T and undesirable outputs Bj = (b1j, . . . , bhj)

T . Furthermore,
dx

i , i = 1, . . . , m, dg
r , r = 1, . . . , s and db

f , f = 1, . . . , h are all slack variables which are related to inputs,

desirable and undesirable outputs, respectively. λ = (λ1, . . . , λn)T are structural or intensity variables,
which are unknown and are used for the connection of the input and output vectors by means of a
convex combination. R is the range resolute through the lower and upper limits of inputs, desirable
outputs and undesirable outputs, denoted by:

Rx
i = (m + s + h)−1 (max{xij/j = 1, . . . , n} −min{xij/j = 1, . . . , n})

Rg
r = (m + s + h)−1 (max{grj/j = 1, . . . , n} −min{grj/j = 1, . . . , n}) and

Rb
f = (m + s + h)−1 (max{b f j/j = 1, . . . , n} −min{b f j/j = 1, . . . , n})

The natural efficiency of the k-th policy is computed by the following CRS and radial VRS model
(see [37] for a better understanding):

max ξ + ε (
m

∑
i=1

Rx
i dx

i +
s

∑
r=1

Rg
r dg

i +
h

∑
f=1

Rb
f db

i )

s.t. ∑n
j=1 xijλj + dx

i = xik , i = 1, . . . , m ,

∑n
j=1 grjλj − dg

r − ξgrk = grk , r = 1, . . . , s ,

∑n
j=1 b f jλj + db

f + ξb f k = b f k , f = 1, . . . , h ,
dx

i ≥ 0 , i = 1, . . . , m ,
dg

r ≥ 0 , r = 1, . . . , s ,
db

f ≥ 0 , f = 1, . . . , h ,
ξ Unrestricted

(1)

where the unrestricted parameter ξ denotes an unknown inefficiency rate expressing the gap between
the efficiency frontier and an empirical group of undesirable and desirable outputs. The parameter ε

takes the value of 0.0001 in this work to minimize the influence of slack variables. If the restriction
∑n

j=1 λj = 1 is added to Model (1), then the obtained model is a VRS (Model (1∗)).
The first restriction in equation systems ((1), (1∗)) explores the values of λj to create a

composite unit, considering inputs such as: ∑n
j=1 xijλj = − dx

i + xik , i = 1, . . . , m. The values of
the inputs can be decreased when the positive slack variables dx

i are present. This may unquestionably
vary the given rates, which implies that the system presents some inefficiencies.
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In the same way, the second restriction, ∑n
j=1 grjλj = dg

r + ξgrk + grk , r = 1, . . . , s, indicates that

the desirable outputs can be maintained or increased by making an increase of the slack variable dg
r

and a radial expansion ξgrk.
The third restriction, ∑n

j=1 b f jλj = − db
f − ξb f k + b f k , f = 1, . . . , h, shows the decrease of the

inputs, and then, we could reduce the undesirable outputs both in their slack variables and radially.
The objective function considers that two origins of inefficiency may be established. A k-policy

can be considered efficient when the following two conditions are met: (a) ξ = 0 ; (b) dx
i = 0, dg

r = 0,
db

f = 0. In this case, the k-policy belongs to the efficiency frontier, since it fulfills the constraints
present in equation systems ((1), (1∗)), and consequently, the objective function takes a value of zero.
Otherwise, the value of the objective function for non-efficient policies is greater than zero, due to
possible displacements in the slack variables and radial movements.

The natural efficiency is then computed by:

θ∗ = 1−
[

ξ∗ + ε (
m

∑
i=1

Rx
i dx∗

i +
s

∑
r=1

Rg
r dg∗

i +
h

∑
f=1

Rb
f db∗

i )

]

The value of this unified efficiency measure ranges between zero and one. If the k-policy is
efficient, then the objective function of equation systems ((1), (1∗)) is zero, and hence, the efficiency
score equals θ∗ = 1. Slack variables resulting in the optimality of the models represented in equation
systems ((1), (1∗)) show the level of inefficiency.

2.2. Managerial Disposability

The managerial efficiency of the k-th policy is evaluated by the following CRS and VRS radial
model [37]:

s.t. ∑n
j=1 xijλj − dx

i = xik , i = 1, . . . , m ,

∑n
j=1 grjλj − dg

r − ξgrk = grk , r = 1, . . . , s ,

∑n
j=1 b f jλj + db

f + ξb f k = b f k , f = 1, . . . , h ,
dx

i ≥ 0 , i = 1, . . . , m ,
dg

r ≥ 0 , r = 1, . . . , s ,
db

f ≥ 0 , f = 1, . . . , h ,
ξ Unrestricted

(2)

Similarly, if the restriction ∑n
j=1 λj = 1 is added to Model (2), then the obtained model is a VRS

(Model (2∗)). In this model (2), increasing the inputs is allowed since new technologies that emit less
CO2 emissions to the atmosphere can be used.

By using the VRS models, we can obtain the returns to scale (RTS) and damage to scale (DTS)
(see [37] for a better understanding). It is clear that for the natural efficiency, the returns to scale have
to be increasing, and for managerial efficiency, the damages to scale have to be decreasing. Otherwise,
the technical units are not working well and should correct the imbalances, using the information of
the efficient units to which they have to be similar (peers).

3. Energy Policies for Data Centers at a Glance

The following set of energy efficiency policies for shutting down underutilized machines have
been developed in this work as an evolution of those presented in [24], which have been adapted to
the more complex reality of the cloud-computing paradigm:

• Never: prevents any shut-down process.
• Always: shuts down every server running in an idle state.
• Load: shuts down machines when data-center load pressure fails to reach a given threshold.
• Margin: assures that a determined number of machines are turned on and available before

shutting down any machine.
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• Random: shuts down machines randomly by means of a Bernoulli distribution with parameter 0.5.
• Exponential: shuts down machines when the probability of one incoming task negatively

impacting on the data-center performance is lower than a given threshold. This probability
is computed by means of the exponential distribution.

• Gamma: shuts down machines when the probability of incoming tasks oversubscribing to the
available resources in a particular time period is lower than a given threshold; this probability is
computed by means of the Gamma distribution.

4. Scheduling Models for Data Centers at a Glance

Cluster schedulers constitute a core part of cloud computing systems, since they are responsible
for optimal task assignation to computing nodes. Several degrees of parallelism have been added
to overcome the limitations present in central monolithic scheduling approaches when complex and
heterogeneous systems with a high number of incoming jobs are considered. The following scheduling
models are studied in this work:

• Monolithic: A centralized and single scheduler is responsible for scheduling all tasks in the
workload in this model [44]. This scheduling approach may be the perfect choice when real-time
responses are not required [45,46], since the omniscient algorithm performs high-quality task
assignations by considering all restrictions and features of the data-center [47–50] at the cost
of longer latency [46]. The scheduling process of a monolithic scheduler, such as that given by
Google Borg [51], is illustrated in Figure 1.

B1 B2 S1 S2 

M1 

M9 

M2 

M10 

M3 

M11 

M4 

M12 

M5 

M13 

M6 

M14 

M7 

M15 

M8 

M16 

Scheduler 

Scheduling logic 

Figure 1. Monolithic scheduler architecture. M, worker node; S, service task; B, batch task [52].

• Two-level: This model achieves a higher level of parallelism by splitting the resource allocation
and the task placement: a central manager blocks the whole cluster every time a scheduler makes
a decision to offer computing resources to schedulers; and a set of parallel application-level
schedulers performs the scheduling logic against the resources offered. This strategy enables the
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development of sub-optimal scheduling logic for each application, since the state of the data-center
is not shared with the central manager, nor with the application schedulers. The workflow of the
Two-level schedulers [53,54] is represented in Figure 2.

B1 B2 S1 S2 

M1 

M9 

M2 

M10 

M3 

M11 

M4 

M12 

M5 

M13 

M6 

M14 

M7 

M15 

M8 

M16 

Resource Scheduler 

R1 R2 
M1 

M9 

M2 

M10 

M1 

M9 

M2 

M10 

M7 

M15 

M8 

M16 

M7 

M15 

M8 

M16 

SA2 SA1 

C1 C2 
O1 O2 

Figure 2. Two-level scheduler architecture. C, commit; O, resource offer; SA-, scheduler agent [52].

• Shared-state schedulers: On the other hand, in shared-state schedulers, such as Omega [55],
the state of the data-center is available to all the schedulers. The central manager coordinates all
the simultaneous parallel schedulers, which perform the scheduling logic against an out-of-date
copy of the state of the data-center. The scheduling decisions are then committed to the central
manager, which strives to apply these decisions. The utilization of stale views of the cluster by the
schedulers can result in conflicts, since the chosen resources may not longer be available. In such
a scenario, the local view of the state of the data-center stored in the scheduler is refreshed before
the repetition of the scheduling process. The workflow of the shared-state scheduling model is
represented in Figure 3.
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B1 B2 S1 S2 

M1 

M9 

M2 

M10 

M3 

M11 

M4 

M12 

M5 

M13 

M6 

M14 

M7 

M15 

M8 

M16 

U1 U2 

SA2 SA1 

C1 C2 

Cluster state 

Figure 3. Shared-state scheduler architecture. U, cluster state update [52].

5. Methodology

In these next sections, the experimental environment designed for the implementation of the
natural CRS DEA analysis is presented. The workflow followed in this work is shown in Figure 4.

Selection of 
inputs/
outputs 

Generation of 
theoretical DMUs 
(combination of 

parameters) 

Simulation 
of 

Decision-
making 
Units 

(DMUs) 

DEA analysis 
with 

simulation 
results 

Figure 4. Methodology workflow employed in this work. DEA, data envelopment analysis.

5.1. Simulation Tool

The SCORE simulator [52] is employed in this work, since simulation is the best alternative in
scenarios where the implementation of the proposed strategies on real large-scale data-centers remains
unfeasible. This simulator provides us with the tools for the development and application of the
energy policies described in Section 3 and the scheduling models presented in Section 4 on realistic
large-scale cloud computing systems.
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5.2. Environment and DMU Definition

Following the trends presented in [56,57], two utilization environments have been simulated in
this paper for seven days of operation:

• the low-utilization scenario, which represents highly over-provisioned infrastructures and
achieves an average utilization of approximately 30%.

• the high-utilization scenario, which represents facilities of a more efficient nature that use
approximately 65% of available resources on average.

These scenarios are applied to three data-center sizes: (a) Small: composed of 1000 computing
servers; (b) Medium: composed of 5000 computing servers; and (c) Large: composed of 10,000
computing servers. Each server is equipped with four CPU cores and 8 GB of RAM.

Decision-making units (DMUs) are defined by the following elements: (a) an energy efficiency
policy; (b) a scheduling model; and (c) a workload scenario.

5.3. Energy Model

The following states are presented for each resource in the energy model applied in this work:
(a) Idle: when the machine is not executing tasks; and (b) Busy: otherwise.

Let ti
idle represent the time the i-th resource is idle, and let ti

busy denote the time during which the

machine is computing tasks. In the same way, Pi
idle and Pi

busy represent the power required for the
machines to run in these states, respectively.

The time a machine spends on executing a job may be defined as follows:

tij
busy = max

t∈Tasksi
Ct (3)

where Tasksij represents the tasks of the j-th job assigned to Mi and Ct denotes the completion time of
the t-th task of the j-th job.

In the same way, the total time a machine is executing tasks and the total time it is in an idle state
may be defined as follows:

ti
busy =

j

∑
j=1

tij
busy (4)

ti
idle = ti

total − ti
busy (5)

where ti
total represents the total operation time. Therefore, we can express the energy consumption

as follows:

m

∑
i=1

(Pi
busy ∗ ti

busy + Pi
idle ∗ ti

idle) (6)

The considered power states, transitions and values for the energetic model are shown in Figure 5.
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Figure 5. Machine power states [52].

5.4. DEA Inputs and Outputs

The inputs and outputs considered in DEA analysis and representative experimentation values
are shown in Tables 1 and 2, respectively. One hundred and eight DMUs were analyzed, which
were the result of the combination of all energy policies, scheduling models, data-center sizes and
workload types described in Sections 3, 4 and 5.2, respectively. However, for clarity, a subset of the
most interesting eighteen DMUs i shown in this paper. Each environment presents the following
inputs and outputs:

• Inputs: Two inputs are considered in this work: (a) the number of machines in the data-center
(D.C.), as shown in Section 5.2; and (b) the number of shut-down operations performed.
These inputs may be reduced or kept equal.

• Outputs: One desirable output and two undesirable outputs are considered in this paper: (a) the
time used to perform tasks’ operations. The longer the time, the less idle the data-center. This good
input can be maximized or kept equal; (b) the energy consumption of the data-center. The lower
the energy consumption, the more efficient the data-center. This bad input may be reduced or
kept equal; and (c) the average time jobs spend in a queue until they are scheduled. The shorter
the time, the more performant the system is. This bad input may be reduced or kept equal.

Table 1. DEA inputs and outputs. Action column arrows mean whether the input/output value may
be decreased (down arrow), increased (up arrow) or kept equal.

Parameter Description Action

Inputs

Data-center size Number of machines in the data-center ↓Ö

#shut-downs Number of shut-down operations ↓Ö

Outputs

Computation time Total amount of useful task computation ↑Ö

Energy consumption Total data-center energy consumption ↓Ö

Queue time Average time until jobs are fully scheduled ↓Ö
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Table 2. Sample from the dataset for DEA analysis. The full dataset showing the results for the
108 DMUs analyzed can be found as the Supplementary Material. Energy policies, scheduling
models, data-center sizes and workload types can be found in Sections 3, 4 and 5.2, respectively.
D.C., data-center.

DMU Inputs Outputs

Energy Scheduling Work- D.C. #Shut- Computing MWh Queue
Policy Model Load Size Downs Time (h) Consumed Time (ms)

Always Monolithic High 1000 37,166 104.42 49.01 90.10
Margin Mesos High 1000 13,361 104.26 49.65 1093.00
Gamma Omega High 1000 14,252 104.17 49.60 0.10
Always Mono. Low 1000 36,404 49.25 23.92 78.30

Exponential Mesos Low 1000 19,671 49.63 24.65 1188.70
Load Omega Low 1000 32,407 49.34 24.19 1.10

Margin Mono. High 5000 6981 99.96 237.09 126.20
Gamma Mono. High 5000 9877 99.96 235.92 129.80
Random Mesos High 5000 33,589 100.03 234.90 1122.60
Margin Omega High 5000 8578 100.26 239.13 0.70

Exponential Omega High 5000 11,863 100.26 236.95 1.00
Margin Omega Low 5000 15,452 46.70 115.82 0.50

Margin Mono. High 10,000 9680 101.56 481.36 325.20
Gamma Mono. High 10,000 11,388 101.56 479.36 327.90
Margin Omega High 10,000 18,150 101.63 486.11 2.60
Gamma Omega High 10,000 18,409 101.63 484.69 2.50
Gamma Mesos Low 10,000 29,707 45.83 228.31 1107.60
Random Omega Low 10,000 40,772 46.09 233.50 3.80

6. Natural CRS DEA Results

The whole dataset included as an Appendix is analyzed by means of natural CRS and VRS DEA.
However, only the most relevant natural CRS DEA results for the most representative DMUs, which
are presented in Table 2, are described in this section.

An efficiency analysis depending on the data-center size and on the energy policy is shown in
Tables 3 and 4. The following conclusions can be drawn:

• The best efficiency levels are achieved for small data-centers. The data-center size input
is predominant in this group of DMUs, since no major differences between energy policies,
scheduling frameworks and workload scenarios are present (σ = 0.01, x = 0.99).

• Mid-size data-centers should use the margin energy policy and monolithic or Omega schedulers
and should avoid all other energy policies and the Mesos scheduler. Moreover, high workload
scenarios are also more efficient than low workload scenarios. In addition, the following DMUs
achieve a good level of efficiency, but they do not belong to the efficiency frontier: (a) the DMU
combining the Gamma energy policy and the monolithic or Omega schedulers; (b) the DMU
combining the exponential energy policy and the Omega scheduler.

• No DMU is efficient in large-scale data-centers. However, the following DMUs present good
levels of efficiency: (a) the DMUs combining the Gamma, exponential or margin energy policy
with the high workload scenario and the monolithic scheduler; and (b) the DMUs combining the
Gamma or margin energy policy with the high workload scenario and the Omega scheduler.

• In high-loaded scenarios, the monolithic scheduler presents the lowest deviation regardless of the
data-center size (σ = 0.32).

We can determine that it is always inefficient to operate in a low utilization scenario in
medium-sized and large data-centers. Moreover, both the margin and the probabilistic energy policies
(Gamma and exponential) perform more efficiently than the rest of the energy policies, as shown in
Figure 6. The monolithic scheduler seems to achieve good results even for large-scale data-centers,
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while the two-level scheduling approach has a negative impact on data-center performance. However,
the trends show that the performance of the monolithic scheduling approach suffers from degradation
on larger data-centers and higher workload pressure, and hence, lower efficiency levels are to be
expected if larger sizes and higher utilization scenarios are to be considered.

Energy-efficiency Policy
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Figure 6. Summary of DEA natural constant returns to scale (CRS) efficiency results for energy
efficiency policies.

The actions proposed for the improvement of efficiency of the most relevant DMUs are shown in
Table 5.

Table 3. Efficiency analysis for data-center sizes.

Scheduling Workload Data-Center Size Efficiency

Model Scenario 1000 5000 10,000 σ x

Monolithic High 1.00 0.60 0.37 0.32 0.66
Monolithic Low 0.98 0.33 0.18 0.43 0.49

Mesos High 1.00 0.47 0.18 0.41 0.55
Mesos Low 0.97 0.32 0.17 0.43 0.49

Omega High 1.00 0.62 0.27 0.36 0.63
Omega Low 0.97 0.32 0.17 0.43 0.49

σ 0.01 0.14 0.08
x 0.99 0.44 0.23

0.40 0.55
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Table 4. Efficiency analysis of energy policies.

Scheduling Model

Energy Monolithic Mesos Omega Efficiency

Policy 1000 5000 10,000 1000 5000 10,000 1000 5000 10,000 σ x

Always 0.99 0.33 0.18 0.99 0.33 0.18 0.99 0.33 0.18 0.37 0.50
Random 0.99 0.33 0.18 0.98 0.32 0.18 0.98 0.33 0.18 0.37 0.50

Load 0.99 0.33 0.18 0.99 0.33 0.18 0.99 0.33 0.18 0.37 0.50
Margin 0.99 0.66 0.42 0.99 0.53 0.18 0.99 0.66 0.30 0.31 0.63

Exp. 0.99 0.54 0.31 0.99 0.40 0.18 0.99 0.58 0.22 0.33 0.58
Gamma 0.99 0.58 0.38 0.98 0.47 0.18 0.99 0.61 0.29 0.31 0.61

6.1. Proposed Corrections for a Sample DMU

DMU #104 is selected to illustrate how corrective actions are proposed by DEA in order to achieve
efficiency. This DMU is defined by the combination of the random energy efficiency policy, the Omega
scheduling model and a low utilization workload scenario.

DMU #104 presents a natural efficiency of 0.1697. This means it is far from being efficient.
The following corrective actions are suggested for it to belong to the efficiency frontier, as shown in
Table 6:

• The time the data-center spends on task computation must be increased by 38.28 h (+83%).
• Energy consumption must be reduced by 193.88 MWh (−83%).
• The average time jobs wait in a queue must be reduced by 3.23 s (−83%).
• The number of servers must be reduced by 9190 (−92%).
• Shut-down operations must be reduced by 9680 (−24%).

In addition to these corrective actions, the peers this DMU should emulate are #13, #34 and #18.
This means that the workload must be increased, and better energy efficiency policies, such as margin
and always, must be used. The full dataset containing all the DMUs and DEA analysis and corrections
can be found as Supplementary Material in the Appendix.

Some of the proposed changes involve the switching of the scheduling framework, which is hardly
achievable with the current resource manager systems. To implement these corrections, a resource
managing system able to dynamically change the scheduling framework during runtime would be
necessary. Such a system is an interesting improvement to the current state of the art that the DEA
analysis leads us to develop.
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Table 5. Resulting proposed corrections following DEA analysis. Peer projections for a DMU indicate
which DMU it should emulate. The following actions may be taken for each input and output: ↑ when
the parameter must be increased; ↓ if the parameter must be reduced; and Ö if no further actions are
needed to achieve efficiency.

DMU Peer Corrections

Energy Sched. Work- Projec- D.C. #Shut- Comp. Energy Queue
# Policy Model load tions Size downs Time Cons. Time

1 Always Mono. High Ö Ö Ö Ö Ö Ö

10 Margin Mesos High 4 (88%) ↓ Ö ↑ ↓ ↓
18 Gamma Omega High Ö Ö Ö Ö Ö Ö

19 Always Mono. Low Ö ↓ ↓ ↑ ↓ ↓
29 Exp. Mesos Low 23 (56%) ↓ ↓ ↑ ↓ ↓22 (48%)
33 Load Omega Low 31 (100%) ↓ ↓ ↑ ↓ Ö

40 Margin Mono. High Ö Ö Ö Ö Ö Ö

42 Gamma Mono. High 6 (59%) ↓ Ö ↑ ↓ ↓41 (41%)
44 Random Mesos High 7 (100%) ↓ Ö ↑ ↓ ↓
52 Margin Omega High Ö Ö Ö Ö Ö Ö

53 Exp. Omega High 16 (63%) ↓ Ö ↑ ↓ ↓52 (36%)
70 Margin Omega Low 18 (72%) ↓ ↓ ↑ ↓ ↓

76 Margin Mono. High 6 (55%) ↓ Ö ↑ ↓ ↓40 (45%)
78 Gamma Mono. High 6 (90%) ↓ Ö ↑ ↓ ↓
88 Margin Omega High 18 (95%) ↓ Ö ↑ ↓ ↓
90 Gamma Omega High 18 (96%) ↓ Ö ↑ ↓ ↓
102 Gamma Mesos Low 1 (49%) ↓ Ö ↑ ↓ ↓22 (38%)

104 Random Omega Low 13 (53%) ↓ ↓ ↑ ↓ ↓34 (36%)

7. Conclusions and Policy Implications

In this work, we have confirmed the hypothesis that DEA constitutes a powerful tool for the
analysis of technical efficiency in cloud-computing scenarios where large-scale data-centers provide
the computational core.

Data envelopment analysis provides cloud-computing operators with the means for the
identification of which data-center configuration better suits their requirements, both in terms of
performance and energy efficiency.

This methodology allows us to analyze several energy efficiency policies that shut down idle
servers, so that their behavior and differences can be compared in various data-center environments.
It has been proven that policies based on a security margin and those that use statistical tools to predict
the future workload, such as exponential and Gamma, deliver better results than policies based on
data-center workload pressure and random strategies.

In addition, it has been empirically shown that even under medium and high workload pressure,
in data-centers composed of up to 10,000 machines, monolithic schedulers perform better than other
scheduling models, such as the two-level and shared-state approaches.
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Table 6. Corrections proposed for DMU #104.

Results for DMU #104

Natural Efficiency = 0.1697

Projection Summary:

Variable Original Radial Slack Projected
Value Movement Movement Value

Output Computation (h) 46.09 +83% 0 84.37
Output MWh consumed 233.50 −83% 0 39.62
Output Queue time (ms) 3.80 −83% 0 0.6

Input #Servers 10,000 0 −9190 810
Input #Shut-downs 40,772 0 −9680 31,092

Listing of Peers:

Peer Lambda Weight

#13 53%

#34 36%

#18 11%

Finally, cloud-computing infrastructure managers are provided with empirical knowledge of
which data-centers are not being used optimally, and hence, they can make decisions regarding the
shut-down of machines in order to achieve higher utilization levels of the cloud-computing system as
a whole.

As future work related to the limitations of the presented work, we may include:

• The addition of different kind of workload patterns, as well as real workload traces.
• The analysis of other scheduling models, such as distributed and hybrid models.
• The development of a new-generation resource-managing system that could dynamically apply

the optimal scheduling framework depending on the environment and workload.
• The analysis of simulation data with other DEA approaches, such as Bayesian and probabilistic

models, which could minimize the impact of the noise in current DEA models.

Supplementary Materials: Supplementary Materials are available online at http://www.mdpi.com/1996-1073/
11//2053/s1.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

The Earth is the cradle of humanity, but mankind cannot stay in the cradle

forever

Konstantin Tsiolkovsky

9.1 Conclusions

This thesis dissertation focuses on the problem resource efficiency in data

centers, from both the energy-efficiency and the performance points of view.

Nowadays, such a topic is critical, since huge-scale data-center energy efficiency

impacts, not only to the economic balance of large companies worldwide, but

on our environment in a moment where global warming is worsening.

Moreover, this thesis dissertation explores and utilizes several models to ac-

complish the aforementioned ambitious and complex goals, such as: a) ener-
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gy-policies which shut-down idle machines; b) complex energy-aware schedul-

ing algorithms; c) models based on games theory; and d) DEA productive

efficiency analysis.

It has been proved that highly-utilized realistic large-scale cloud-computing

clusters can cut down their electricity consumption by more than 20% when

the proposed models are employed. The presented results encourage data-

center administrators to employ not only efficiency policies related to hardware

and cooling, but software solutions to achieve energy proportionality.

Furthermore, the negative impact of the application of such models is not

significant in comparison to the energy consumption reduction, and the related

economic and environmental costs.

Simulation tools have been developed in order to analyze energy consumption

and performance at large-scale cloud-computing data centers, whereby several

energy-saving, scheduling algorithms and resource managers have been stud-

ied. This tool has been widely tested in order to obtain reliable results, and

has been published and shared within the European network COST Action

IC1406: High-Performance Modelling and Simulation for Big Data

Applications (cHiPSet).

9.2 Future work

This thesis dissertation has led to new research interests and collaborations

which will be explored in the future, including:

– Dynamic management of resource managers depending on operational

and workload behaviour. This research line is being currently explored,

and as a first result of this work we published an international conference

paper with the colleagues of Lyon and Cracow entitled ”Quality of cloud

services determined by the dynamic management of scheduling models

for complex heterogeneous workloads”.
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9.2 Future work

– Extensive analysis of the proposed models in centralized Two-level and

Shared-state resource managers.

– Adaptation of the proposed models to non-centralized resource managers,

such as distributed and hybrid schedulers.

– Development of new energy-efficiency policies focused on the shut-down

of idle machines based on artificial intelligence, such as Support Vector

Machines (SVM) and Artificial Neural Networks (ANN).

– Adaptation of the proposed models to federated clouds which are usually

employed in fog computing and Internet of the Things (IoT) scenarios.

– Development of more complex energy-aware operation models based on

games theory to efficiently manage the concurrency between scheduling

agents, scheduling algorithms and resource managers.
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