3,386 research outputs found

    Acoustic echo and noise canceller for personal hands-free video IP phone

    Get PDF
    This paper presents implementation and evaluation of a proposed acoustic echo and noise canceller (AENC) for videotelephony-enabled personal hands-free Internet protocol (IP) phones. This canceller has the following features: noise-robust performance, low processing delay, and low computational complexity. The AENC employs an adaptive digital filter (ADF) and noise reduction (NR) methods that can effectively eliminate undesired acoustic echo and background noise included in a microphone signal even in a noisy environment. The ADF method uses the step-size control approach according to the level of disturbance such as background noise; it can minimize the effect of disturbance in a noisy environment. The NR method estimates the noise level under an assumption that the noise amplitude spectrum is constant in a short period, which cannot be applied to the amplitude spectrum of speech. In addition, this paper presents the method for decreasing the computational complexity of the ADF process without increasing the processing delay to make the processing suitable for real-time implementation. The experimental results demonstrate that the proposed AENC suppresses echo and noise sufficiently in a noisy environment; thus, resulting in natural-sounding speech

    The voice activity detection (VAD) recorder and VAD network recorder : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Computer Science at Massey University

    Get PDF
    The project is to provide a feasibility study for the AudioGraph tool, focusing on two application areas: the VAD (voice activity detector) recorder and the VAD network recorder. The first one achieves a low bit-rate speech recording on the fly, using a GSM compression coder with a simple VAD algorithm; and the second one provides two-way speech over IP, fulfilling echo cancellation with a simplex channel. The latter is required for implementing a synchronous AudioGraph. In the first chapter we introduce the background of this project, specifically, the VoIP technology, the AudioGraph tool, and the VAD algorithms. We also discuss the problems set for this project. The second chapter presents all the relevant techniques in detail, including sound representation, speech-coding schemes, sound file formats, PowerPlant and Macintosh programming issues, and the simple VAD algorithm we have developed. The third chapter discusses the implementation issues, including the systems' objective, architecture, the problems encountered and solutions used. The fourth chapter illustrates the results of the two applications. The user documentations for the applications are given, and after that, we analyse the parameters based on the results. We also present the default settings of the parameters, which could be used in the AudioGraph system. The last chapter provides conclusions and future work

    Storage of up-converted telecom photons in a doped crystal

    Full text link
    We report on an experiment that demonstrates the frequency up-conversion of telecommunication wavelength single-photon-level pulses to be resonant with a Pr3+\mathrm{Pr}^{3+}:Y2SiO5\mathrm{Y}_2\mathrm{Si}\mathrm{O}_5 crystal. We convert the telecom photons at 1570 nm1570\,\mathrm{nm} to 606 nm606\,\mathrm{nm} using a periodically-poled potassium titanyl phosphate nonlinear waveguide. The maximum device efficiency (which includes all optical loss) is inferred to be ηdevmax=22±1 \eta_{\mathrm{dev}}^{\mathrm{max}} = 22 \pm 1\,% (internal efficiency ηint=75±8 \eta_{\mathrm{int}} = 75\pm8\,%) with a signal to noise ratio exceeding 1 for single-photon-level pulses with durations of up to 560 \,ns. The converted light is then stored in the crystal using the atomic frequency comb scheme with storage and retrieval efficiencies exceeding ηAFC=20 \eta_{\mathrm{AFC}} = 20\,% for predetermined storage times of up to 5 μs5\,\mu\mathrm{s}. The retrieved light is time delayed from the noisy conversion process allowing us to measure a signal to noise ratio exceeding 100 with telecom single-photon-level inputs. These results represent the first demonstration of single-photon-level optical storage interfaced with frequency up-conversion

    Passive detection of moving aerial target based on multiple collaborative GPS satellites

    Get PDF
    Passive localization is an important part of intelligent surveillance in security and emergency applications. Nowadays, Global Navigation Satellite Systems (GNSSs) have been widely deployed. As a result, the satellite signal receiver may receive multiple GPS signals simultaneously, incurring echo signal detection failure. Therefore, in this paper, a passive method leveraging signals from multiple GPS satellites is proposed for moving aerial target detection. In passive detection, the first challenge is the interference caused by multiple GPS signals transmitted upon the same spectrum resources. To address this issue, successive interference cancellation (SIC) is utilized to separate and reconstruct multiple GPS signals on the reference channel. Moreover, on the monitoring channel, direct wave and multi-path interference are eliminated by extensive cancellation algorithm (ECA). After interference from multiple GPS signals is suppressed, the cycle cross ambiguity function (CCAF) of the signal on the monitoring channel is calculated and coordinate transformation method is adopted to map multiple groups of different time delay-Doppler spectrum into the distance−velocity spectrum. The detection statistics are calculated by the superposition of multiple groups of distance-velocity spectrum. Finally, the echo signal is detected based on a properly defined adaptive detection threshold. Simulation results demonstrate the effectiveness of our proposed method. They show that the detection probability of our proposed method can reach 99%, when the echo signal signal-to-noise ratio (SNR) is only −64 dB. Moreover, our proposed method can achieve 5 dB improvement over the detection method using a single GPS satellite

    Dynamical Decoupling in Optical Fibers: Preserving Polarization Qubits from Birefringent Dephasing

    Get PDF
    One of the major challenges in quantum computation has been to preserve the coherence of a quantum system against dephasing effects of the environment. The information stored in photon polarization, for example, is quickly lost due to such dephasing, and it is crucial to preserve the input states when one tries to transmit quantum information encoded in the photons through a communication channel. We propose a dynamical decoupling sequence to protect photonic qubits from dephasing by integrating wave plates into optical fiber at prescribed locations. We simulate random birefringent noise along realistic lengths of optical fiber and study preservation of polarization qubits through such fibers enhanced with Carr-Purcell-Meiboom-Gill (CPMG) dynamical decoupling. This technique can maintain photonic qubit coherence at high fidelity, making a step towards achieving scalable and useful quantum communication with photonic qubits.Comment: 8 pages, 5 figure

    Using heterogeneous satellites for passive detection of moving aerial target

    Get PDF
    Passive detection of a moving aerial target is critical for intelligent surveillance. Its implementation can use signals transmitted from satellites. Nowadays, various types of satellites co-exist which can be used for passive detection. As a result, a satellite signal receiver may receive signals from multiple heterogeneous satellites, causing difficult in echo signal detection. In this paper, a passive moving aerial target detection method leveraging signals from multiple heterogeneous satellites is proposed. In the proposed method, a plurality of direct wave signals is separated in a reference channel first. Then, an adaptive filter with normalized least-mean-square (NLMS) is adopted to suppress direct-path interference (DPI) and multi-path interference (MPI) in a surveillance channel. Next, the maximum values of the cross ambiguity function (CAF) and the fourth order cyclic cumulants cross ambiguity function (FOCCCAF) correspond into each separated direct wave signal and echo signal will be utilized as the detection statistic of each distributed sensor. Finally, final detection probabilities are calculated by decision fusion based on results from distributed sensors. To evaluate the performance of the proposed method, extensive simulation studies are conducted. The corresponding simulation results show that the proposed fusion detection method can significantly improve the reliability of moving aerial target detection using multiple heterogeneous satellites. Moveover, we also show that the proposed detection method is able to significantly improve the detection performance by using multiple collaborative heterogeneous satellites

    Full-duplex acoustic interaction system for cognitive experiments with cetaceans

    Get PDF
    Cetaceans show high cognitive abilities and strong social bonds. Acoustics is their primary modality to communicate and sense the environment. Research on their echolocation and vocalizations with conspecifics and with humans typically uses visual and tactile systems adapted from research on primates or birds. Such research would benefit from a purely acoustic communication system in which signals flow in both directions simultaneously. We designed and implemented a full duplex system to acoustically interact with cetaceans in the wild, featuring digital echo-suppression. We pilot tested the system in Arctic Norway and achieved an echo suppression of 18 dB leaving room for technical improvements addressed in the discussion. Nevertheless, the system enabled vocal interaction with the underwater acoustic scene by allowing experimenters to listen while producing sounds. We describe our motivations, then present our pilot deployment and give examples of initial explorative attempts to vocally interact with wild orcas and humpback whales

    Design of a video teleconference facility for a synchronous satellite communications link

    Get PDF
    The system requirements, design tradeoffs, and final design of a video teleconference facility are discussed, including proper lighting, graphics transmission, and picture aesthetics. Methods currently accepted in the television broadcast industry are used in the design. The unique problems associated with using an audio channel with a synchronous satellite communications link are discussed, and a final audio system design is presented
    • …
    corecore