1,043 research outputs found

    The reliability of cephalometric tracing using AI

    Full text link
    Introduction : L'objectif de cette étude est de comparer la différence entre l'analyse céphalométrique manuelle et l'analyse automatisée par l’intelligence artificielle afin de confirmer la fiabilité de cette dernière. Notre hypothèse de recherche est que la technique manuelle est la plus fiable des deux méthodes. Méthode : Un total de 99 radiographies céphalométriques latérales sont recueillies. Des tracés par technique manuelle (MT) et par localisation automatisée par intelligence artificielle (AI) sont réalisés pour toutes les radiographies. La localisation de 29 points céphalométriques couramment utilisés est comparée entre les deux groupes. L'erreur radiale moyenne (MRE) et un taux de détection réussie (SDR) de 2 mm sont utilisés pour comparer les deux groupes. Le logiciel AudaxCeph version 6.2.57.4225 est utilisé pour l'analyse manuelle et l'analyse AI. Résultats : Le MRE et SDR pour le test de fiabilité inter-examinateur sont respectivement de 0,87 ± 0,61mm et 95%. Pour la comparaison entre la technique manuelle MT et le repérage par intelligence artificielle AI, le MRE et SDR pour tous les repères sont respectivement de 1,48 ± 1,42 mm et 78 %. Lorsque les repères dentaires sont exclus, le MRE diminue à 1,33 ± 1,39 mm et le SDR augmente à 84 %. Lorsque seuls les repères des tissus durs sont inclus (excluant les points des tissus mous et dentaires), le MRE diminue encore à 1,25 ± 1,09 mm et le SDR augmente à 85 %. Lorsque seuls les points de repère des tissus mous sont inclus, le MRE augmente à 1,68 ± 1,89 mm et le SDR diminue à 78 %. Conclusion: La performance du logiciel est similaire à celles précédemment rapportée dans la littérature pour des logiciels utilisant un cadre de modélisation similaire. Nos résultats révèlent que le repérage manuel a donné lieu à une plus grande précision. Le logiciel a obtenu de très bons résultats pour les points de tissus durs, mais sa précision a diminué pour les tissus mous et dentaires. Nous concluons que cette technologie est très prometteuse pour une application en milieu clinique sous la supervision du docteur.Introduction: The objective of this study is to compare the difference between manual cephalometric analysis and automatic analysis by artificial intelligence to confirm the reliability of the latter. Our research hypothesis is that the manual technique is the most reliable of the methods and is still considered the gold standard. Method: A total of 99 lateral cephalometric radiographs were collected in this study. Manual technique (MT) and automatic localization by artificial intelligence (AI) tracings were performed for all radiographs. The localization of 29 commonly used landmarks were compared between both groups. Mean radial error (MRE) and a successful detection rate (SDR) of 2mm were used to compare both groups. AudaxCeph software version 6.2.57.4225 (Audax d.o.o., Ljubljana, Slovenia) was used for both manual and AI analysis. Results: The MRE and SDR for the inter-examinator reliability test were 0.87 ± 0.61mm and 95% respectively. For the comparison between the manual technique MT and landmarking with artificial intelligence AI, the MRE and SDR for all landmarks were 1.48 ± 1.42mm and 78% respectively. When dental landmarks are excluded, the MRE decreases to 1.33 ± 1.39mm and the SDR increases to 84%. When only hard tissue landmarks are included (excluding soft tissue and dental points) the MRE decreases further to 1.25 ± 1.09mm and the SDR increases to 85%. When only soft tissue landmarks are included the MRE increases to 1.68 ± 1.89mm and the SDR decreases to 78%. Conclusion: The software performed similarly to what was previously reported in literature for software that use analogous modeling framework. Comparing the software’s landmarking to manual landmarking our results reveal that the manual landmarking resulted in higher accuracy. The software operated very well for hard tissue points, but its accuracy went down for soft and dental tissue. Our conclusion is this technology shows great promise for application in clinical settings under the doctor’s supervision

    Osteoporosis Risk Prediction for Bone Mineral Density Assessment of Postmenopausal Women Using Machine Learning

    Get PDF
    PURPOSE: A number of clinical decision tools for osteoporosis risk assessment have been developed to select postmenopausal women for the measurement of bone mineral density. We developed and validated machine learning models with the aim of more accurately identifying the risk of osteoporosis in postmenopausal women compared to the ability of conventional clinical decision tools. MATERIALS AND METHODS: We collected medical records from Korean postmenopausal women based on the Korea National Health and Nutrition Examination Surveys. The training data set was used to construct models based on popular machine learning algorithms such as support vector machines (SVM), random forests, artificial neural networks (ANN), and logistic regression (LR) based on simple surveys. The machine learning models were compared to four conventional clinical decision tools: osteoporosis self-assessment tool (OST), osteoporosis risk assessment instrument (ORAI), simple calculated osteoporosis risk estimation (SCORE), and osteoporosis index of risk (OSIRIS). RESULTS: SVM had significantly better area under the curve (AUC) of the receiver operating characteristic than ANN, LR, OST, ORAI, SCORE, and OSIRIS for the training set. SVM predicted osteoporosis risk with an AUC of 0.827, accuracy of 76.7%, sensitivity of 77.8%, and specificity of 76.0% at total hip, femoral neck, or lumbar spine for the testing set. The significant factors selected by SVM were age, height, weight, body mass index, duration of menopause, duration of breast feeding, estrogen therapy, hyperlipidemia, hypertension, osteoarthritis, and diabetes mellitus. CONCLUSION: Considering various predictors associated with low bone density, the machine learning methods may be effective tools for identifying postmenopausal women at high risk for osteoporosis.ope

    Applications of artificial intelligence in dentistry: A comprehensive review

    Get PDF
    This work was funded by the Spanish Ministry of Sciences, Innovation and Universities under Projects RTI2018-101674-B-I00 and PGC2018-101904-A-100, University of Granada project A.TEP. 280.UGR18, I+D+I Junta de Andalucia 2020 project P20-00200, and Fapergs/Capes do Brasil grant 19/25510000928-3. Funding for open-access charge: Universidad de Granada/CBUAObjective: To perform a comprehensive review of the use of artificial intelligence (AI) and machine learning (ML) in dentistry, providing the community with a broad insight on the different advances that these technologies and tools have produced, paying special attention to the area of esthetic dentistry and color research. Materials and methods: The comprehensive review was conducted in MEDLINE/ PubMed, Web of Science, and Scopus databases, for papers published in English language in the last 20 years. Results: Out of 3871 eligible papers, 120 were included for final appraisal. Study methodologies included deep learning (DL; n = 76), fuzzy logic (FL; n = 12), and other ML techniques (n = 32), which were mainly applied to disease identification, image segmentation, image correction, and biomimetic color analysis and modeling. Conclusions: The insight provided by the present work has reported outstanding results in the design of high-performance decision support systems for the aforementioned areas. The future of digital dentistry goes through the design of integrated approaches providing personalized treatments to patients. In addition, esthetic dentistry can benefit from those advances by developing models allowing a complete characterization of tooth color, enhancing the accuracy of dental restorations. Clinical significance: The use of AI and ML has an increasing impact on the dental profession and is complementing the development of digital technologies and tools, with a wide application in treatment planning and esthetic dentistry procedures.Spanish Ministry of Sciences, Innovation and Universities RTI2018-101674-B-I00 PGC2018-101904-A-100University of Granada project A.TEP. 280.UGR18Junta de Andalucia P20-00200Fapergs/Capes do Brasil grant 19/25510000928-3Universidad de Granada/CBU

    Detection of osteoporosis from percussion responses using an electronic stethoscope and machine learning

    Get PDF
    Osteoporosis is an asymptomatic bone condition that affects a large proportion of the elderly population around the world, resulting in increased bone fragility and increased risk of fracture. Previous studies had shown that the vibroacoustic response of bone can indicate the quality of the bone condition. Therefore, the aim of the authors' project is to develop a new method to exploit this phenomenon to improve detection of osteoporosis in individuals. In this paper a method is described that uses a reflex hammer to exert testing stimuli on a patient's tibia and an electronic stethoscope to acquire the impulse responses. The signals are processed as mel frequency cepstrum coefficients and passed through an artificial neural network to determine the likelihood of osteoporosis from the tibia's impulse responses. Following some discussions of the mechanism and procedure, this paper details the signal acquisition using the stethoscope and the subsequent signal processing and the statistical machine learning algorithm. Pilot testing with 12 patients achieved over 80% sensitivity with a false positive rate below 30% and accuracies in the region of 70%. An extended dataset of 110 patients achieved an error rate of 30% with some room for improvement in the algorithm. By using common clinical apparatus and strategic machine learning, this method might be suitable as a large population screening test for the early diagnosis of osteoporosis, thus avoiding secondary complications

    Machine Learning Approach for the Early Prediction of the Risk of Overweight and Obesity in Young People

    Get PDF
    Obesity is a major global concern with more than 2.1 billion people overweight or obese worldwide which amounts to almost 30% of the global population. If the current trend continues, the overweight and obese population is likely to increase to 41% by 2030. Individuals developing signs of weight gain or obesity are also at a risk of developing serious illnesses such as type 2 diabetes, respiratory problems, heart disease and stroke. Some intervention measures such as physical activity and healthy eating can be a fundamental component to maintain a healthy lifestyle. Therefore, it is absolutely essential to detect childhood obesity as early as possible. This paper utilises the vast amount of data available via UK’s millennium cohort study in order to construct a machine learning driven model to predict young people at the risk of becoming overweight or obese. The childhood BMI values from the ages 3, 5, 7 and 11 are used to predict adolescents of age 14 at the risk of becoming overweight or obese. There is an inherent imbalance in the dataset of individuals with normal BMI and the ones at risk. The results obtained are encouraging and a prediction accuracy of over 90% for the target class has been achieved. Various issues relating to data preprocessing and prediction accuracy are addressed and discussed

    파노라마 영상에서 측두하악관절 골관절염 진단을 위한 인공지능 연구

    Get PDF
    학위논문(박사) -- 서울대학교대학원 : 치과대학 치의과학과, 2021.8. 박희경.Orthopantomogram (OPG) is important for primary diagnosis of temporomandibular joint osteoarthritis (TMJ OA), because of cost and the radiation associated with computed tomograms (CT). The aims of this study were to develop an artificial intelligence (AI) model and compare its TMJ OA diagnostic performance from OPGs with that of an oromaxillofacial radiology (OMFR) expert. An AI model was developed using Karas’ ResNet model and trained to classify images into three categories: normal, indeterminate OA, and definite OA. This study included 1,189 OPG images confirmed by cone-beam CT (CBCT) and evaluated the results by model (accuracy, precision, recall, and F1 score) and diagnostic performance (accuracy, sensitivity, and specificity). The model performance was unsatisfying when AI was developed with 3 categories. After the indeterminate OA images were reclassified as normal, OA, or omission, the AI diagnosed TMJ OA in a similar manner to an expert and was in most accord with CBCT when the indeterminate OA category was omitted (accuracy: 0.78, sensitivity: 0.73, and specificity: 0.82). Our deep learning model showed a sensitivity equivalent to that of an expert, with a better balance between sensitivity and specificity, which implies that AI can play an important role in primary diagnosis of TMJ OA from OPGs in most general practice clinics where OMFR experts or CT are not available.파노라마 영상은 측두하악관절 골관절염의 일차 진단에서 일반적으로 사용된다. 본 연구의 목적은 파노라마 영상을 이용하여 측두하악관절 골관절염을 진단하는 인공지능 모델을 개발하고, 그 진단 성능을 영상치의학 전문가와 비교하는 것이다. Karas’ResNet 모델을 사용하여 인공지능 모델을 개발하였다. 파노라마 영상을 no osteoarthritis, indeterminate osteoarthritis 및 definite osteoarthritis의 세 가지 범주로 분류하도록 훈련했다. 본 연구는 cone beam CT로 확인된 1,189개의 파노라마 영상을 포함하고 있으며, 모델 성능(정확도, 정밀도, 재현율 및 F1 score) 및 진단 성능(정확도, 민감도 및 특이도)을 평가했다. 인공지능 모델이 세 가지 범주를 가지고 개발되었을 때, 측두하악관절 골관절염 진단 모델의 정확도, 정밀도, 재현율, F1 score는 각각 0.51, 0.55, 0.51, 0.53의 결과값을 나타냈다. 따라서 Indeterminate for osteoarthritis 영상을 no osteoarthritis(Trial 1), osteoarthritis(Trial 2) 및 생략(Trial 3)으로 재분류하여 평가하였다. Trial 3의 경우 인공지능 모델의 정확도, 민감도, 특이도는 각각 0.78, 0.73, 0.82 였으며, 영상치의학 전문가는 각각 0.85, 0.72, 0.97이었다. 또한 McNemar's test를 이용하여 인공지능 모델과 CBCT 결과를 비교한 결과 통계적으로 유의한 차이를 보이지 않았다(p value = 0.366). 본 연구의 인공지능 모델은 측두하악관절 골관절염 진단에 있어서 전문가에 상응하는 민감도와 특이도를 보인다. 이는 영상 치의학전문의가 부재하거나 CT 촬영이 불가능한 상황에서 파노라마 영상을 기반으로 측두하악관절 골관절염의 일차 진단이 이뤄질 때, 인공지능이 중요한 역할을 할 수 있다는 것을 보여준다.I. INTRODUCTION 4 II. REVIEW OF LITERATURE 6 III. MATERIALS AND METHODS 14 IV. RESULTS 20 V. DISCUSSION 22 VI. CONCLUSIONS 30 REFERENCES 31 TABLES 41 FIGURES 47 KOREAN ABSTRACT 52박

    Recognition of Morphometric Vertebral Fractures by Artificial Neural Networks: Analysis from GISMO Lombardia Database

    Get PDF
    BACKGROUND: It is known that bone mineral density (BMD) predicts the fracture's risk only partially and the severity and number of vertebral fractures are predictive of subsequent osteoporotic fractures (OF). Spinal deformity index (SDI) integrates the severity and number of morphometric vertebral fractures. Nowadays, there is interest in developing algorithms that use traditional statistics for predicting OF. Some studies suggest their poor sensitivity. Artificial Neural Networks (ANNs) could represent an alternative. So far, no study investigated ANNs ability in predicting OF and SDI. The aim of the present study is to compare ANNs and Logistic Regression (LR) in recognising, on the basis of osteoporotic risk-factors and other clinical information, patients with SDI≥1 and SDI≥5 from those with SDI = 0. METHODOLOGY: We compared ANNs prognostic performance with that of LR in identifying SDI≥1/SDI≥5 in 372 women with postmenopausal-osteoporosis (SDI≥1, n = 176; SDI = 0, n = 196; SDI≥5, n = 51), using 45 variables (44 clinical parameters plus BMD). ANNs were allowed to choose relevant input data automatically (TWIST-system-Semeion). Among 45 variables, 17 and 25 were selected by TWIST-system-Semeion, in SDI≥1 vs SDI = 0 (first) and SDI≥5 vs SDI = 0 (second) analysis. In the first analysis sensitivity of LR and ANNs was 35.8% and 72.5%, specificity 76.5% and 78.5% and accuracy 56.2% and 75.5%, respectively. In the second analysis, sensitivity of LR and ANNs was 37.3% and 74.8%, specificity 90.3% and 87.8%, and accuracy 63.8% and 81.3%, respectively. CONCLUSIONS: ANNs showed a better performance in identifying both SDI≥1 and SDI≥5, with a higher sensitivity, suggesting its promising role in the development of algorithm for predicting OF
    corecore