318 research outputs found

    Early Detection of Disease using Electronic Health Records and Fisher\u27s Wishart Discriminant Analysis

    Get PDF
    Linear Discriminant Analysis (LDA) is a simple and effective technique for pattern classification, while it is also widely-used for early detection of diseases using Electronic Health Records (EHR) data. However, the performance of LDA for EHR data classification is frequently affected by two main factors: ill-posed estimation of LDA parameters (e.g., covariance matrix), and linear inseparability of the EHR data for classification. To handle these two issues, in this paper, we propose a novel classifier FWDA -- Fisher\u27s Wishart Discriminant Analysis, which is developed as a faster and robust nonlinear classifier. Specifically, FWDA first surrogates the distribution of potential inverse covariance matrix estimates using a Wishart distribution estimated from the training data. Then, FWDA samples a group of inverse covariance matrices from the Wishart distribution, predicts using LDA classifiers based on the sampled inverse covariance matrices, and weighted-averages the prediction results via Bayesian Voting scheme. The weights for voting are optimally updated to adapt each new input data, so as to enable the nonlinear classification

    Statistical and Stochastic Learning Algorithms for Distributed and Intelligent Systems

    Get PDF
    In the big data era, statistical and stochastic learning for distributed and intelligent systems focuses on enhancing and improving the robustness of learning models that have become pervasive and are being deployed for decision-making in real-life applications including general classification, prediction, and sparse sensing. The growing prospect of statistical learning approaches such as Linear Discriminant Analysis and distributed Learning being used (e.g., community sensing) has raised concerns around the robustness of algorithm design. Recent work on anomalies detection has shown that such Learning models can also succumb to the so-called \u27edge-cases\u27 where the real-life operational situation presents data that are not well-represented in the training data set. Such cases have been the primary reason for quite a few mis-classification bottleneck problems recently. Although initial research has begun to address scenarios with specific Learning models, there remains a significant knowledge gap regarding the detection and adaptation of learning models to \u27edge-cases\u27 and extreme ill-posed settings in the context of distributed and intelligent systems. With this motivation, this dissertation explores the complex in several typical applications and associated algorithms to detect and mitigate the uncertainty which will substantially reduce the risk in using statistical and stochastic learning algorithms for distributed and intelligent systems

    Time-Series Embedded Feature Selection Using Deep Learning: Data Mining Electronic Health Records for Novel Biomarkers

    Get PDF
    As health information technologies continue to advance, routine collection and digitisation of patient health records in the form of electronic health records present as an ideal opportunity for data-mining and exploratory analysis of biomarkers and risk factors indicative of a potentially diverse domain of patient outcomes. Patient records have continually become more widely available through various initiatives enabling open access whilst maintaining critical patient privacy. In spite of such progress, health records remain not widely adopted within the current clinical statistical analysis domain due to challenging issues derived from such “big data”.Deep learning based temporal modelling approaches present an ideal solution to health record challenges through automated self-optimisation of representation learning, able to man-ageably compose the high-dimensional domain of patient records into data representations able to model complex data associations. Such representations can serve to condense and reduce dimensionality to emphasise feature sparsity and importance through novel embedded feature selection approaches. Accordingly, application towards patient records enable complex mod-elling and analysis of the full domain of clinical features to select biomarkers of predictive relevance.Firstly, we propose a novel entropy regularised neural network ensemble able to highlight risk factors associated with hospitalisation risk of individuals with dementia. The application of which, was able to reduce a large domain of unique medical events to a small set of relevant risk factors able to maintain hospitalisation discrimination.Following on, we continue our work on ensemble architecture approaches with a novel cas-cading LSTM ensembles to predict severe sepsis onset within critical patients in an ICU critical care centre. We demonstrate state-of-the-art performance capabilities able to outperform that of current related literature.Finally, we propose a novel embedded feature selection application dubbed 1D convolu-tion feature selection using sparsity regularisation. Said methodology was evaluated on both domains of dementia and sepsis prediction objectives to highlight model capability and generalisability. We further report a selection of potential biomarkers for the aforementioned case study objectives highlighting clinical relevance and potential novelty value for future clinical analysis.Accordingly, we demonstrate the effective capability of embedded feature selection ap-proaches through the application of temporal based deep learning architectures in the discovery of effective biomarkers across a variety of challenging clinical applications

    Decoding gait phases from neural activity in rat

    Get PDF
    Tese de mestrado integrado em Engenharia Biomédica e Biofísica, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2017Introdução. A assistência médica prevista em casos de traumatismo na medula espinhal é escassa, o que em conjunto com a incapacidade de autorregeneração do sistema nervoso central, implica que a recuperação após trauma seja lenta e muitas vezes impossível. O conceito de uma interface cérebro-espinhal aparece quando exploramos o potencial da estimulação elétrica epidural como técnica de restauração da locomoção após trauma na medula espinhal. Esta técnica já provou ser eficaz em macacos, porém não em ratos. O modelo do rato é significativamente diferente, especialmente quando consideramos a complexidade da sua organização neuronal. Partindo desta problemática procurámos descobrir se é possível decodificar fases da marcha a partir da atividade neuronal em ratos. Este projeto foi desenvolvido durante um estágio de seis meses no laboratório de Gregoire Courtine, localizado no EPFL (École Polytechnique Fédérale de Lausanne), Suíça. Este laboratório especializa-se em neuro-reabilitação e neuro-regeneração. Ao longo desta dissertação será feita a análise e discussão deste projeto. Revisão da literatura. A marcha humana é produzida por uma série de contrações de músculos extensores e flexores a um ritmo predeterminado. Duas fases podem ser identificadas, uma fase de apoio seguida de uma fase de balanço. Os mecanismos que controlam a locomoção ainda não são completamente conhecidos, e a maioria da evidência encontrada surge de estudos realizados em modelos animais. No entanto, podem fornecer alguma orientação. Atualmente, sabe-se que não é necessário controlo supra-espinhal para produzir o ritmo básico da marcha, e que este padrão pode ser gerado por circuitos neuronais que existem na medula espinhal. Porém, várias estruturas do cérebro controlam e regulam as variantes da marcha em situações que envolvem uma marcha mais precisa e criteriosa. Os propriocetores musculares também têm um papel importante neste processo. Contudo considera-se que a marcha de um ser humano está mais dependente de um controlo cerebral. O córtex motor tem um papel de supervisão durante o decorrer da marcha e é a estrutura com o maior nível de abstração em termos da sua atividade elétrica, comparativamente a outras estruturas envolvidas na marcha. Apresenta muita atividade, especialmente quando um movimento requer a ativação de vários grupos musculares. Aquando de uma lesão espinhal, técnicas de reabilitação como a fisioterapia e a estimulação elétrica são utlizadas com algum grau de sucesso. Geralmente, o foco da reabilitação encontra-se em readquirir alguma qualidade de vida e destreza motora por parte do doente. No entanto nos casos em que a gravidade da lesão é tal que não existem células neuronais que mantenham qualquer ligação da espinhal medula as perspetivas de reabilitação tornam-se significativamente inferiores. Técnicas que potenciem a plasticidade neuronal e técnicas que viabilizem a regeneração neuronal devem ser então exploradas. A interface cérebro-espinhal utiliza a estimulação elétrica neuronal, controlando o seu ritmo, recorrendo a primitivas descodificadas de atividade neuronal que identificam momentos específicos do ciclo da marcha. Procuramos então obter uma prova de conceito, de que é possível obter variáveis discretas de locomoção a partir de atividade neuronal usando o modelo do rato. Métodos. A área que é conhecida por codificar informações sobre a locomoção no rato é o córtex sensoriomotor primário. Esta informação é transmitida através do caminho descendente do córtex sensoriomotor através da medula para os nervos eferentes que acionam os grupos musculares necessários na locomoção, garantindo a flexão e a extensão faseadas dos membros inferiores. Nos casos onde há uma lesão na medula espinhal e subsequente paralisia dos membros inferiores, a gravidade dos danos neuronais impedem a transmissão do sinal. O objetivo da interface cérebroespinal é capturar a atividade neuronal relacionada com a locomoção implantando uma matriz de microeléctrodos de 32 canais no córtex sensorimotor primário direito e usando métodos de classificação para prever momentos específicos do ciclo da marcha, que neste caso foram: o aplanamento e o impulso do pé. A nomenclatura usada para estes dois momentos foi de foot strike e foot off , respetivamente. Dois ratos fêmeas da raça Lewis designados por r263 e r328 receberam o implante cortical. Após o tempo de recuperação recomendado pós-cirurgia, prosseguimos com os ensaios, que consistiam na execução de aproximadamente um metro e meio de caminhada quadrupede. Um sistema de captura e análise de movimentos tridimensionais (Vicon Motion Systems®) foi utilizado para gravar as variáveis cinemáticas e o vídeo. No total, considerámos vinte e quatro sessões para r263 e trinta e uma sessão para r328. Após a análise das variáveis obtidas pelo sistema Vicon, extraímos o tempo real dos dois momentos do ciclo da marcha: foot strike e foot off. Os potenciais de campo locais (LFPs) obtidos durante os ensaios foram processados de modo a obter três componentes diferentes do signal: uma no domínio do tempo (LPC), e outras duas no domínio das frequências (TRFT-low and TRFT-high). Primeiramente, o sinal sofreu common average re-referencing e os ensaios e canais anormais foram removidos. Depois, para obtermos a LPC aplicamos um filtro Savitzky-Golay de segunda ordem. As outras duas componentes foram obtidas através da utilização de uma transformada de Fourier. A identificação da banda de frequência de TRFT-high e TRFT-low foi feita olhando para os valores de SNR ( Signal-to-noise ratio ). Para r263 TRFT-high estava entre os 3 e 15 Hz e TRFT-low entre os 39 e os 747 Hz. Para r328 TRFT-high estava entre os 3 e 21 Hz e TRFT-low entre os 105 e os 693 Hz. No final, para cada evento (foot strike, foot off e baseline) um total de 93 características foram extraídas sendo usadas para treinar um classificador de análise discriminante regularizado. Usando o método de validação cruzada, treinamos diferentes classificadores com diferentes combinações de parâmetros e selecionámos os valores de informação mútua como preditor do modelo que seria o ótimo. Toda a análise relativa à atividade neuronal foi feita com o auxílio do software Matlab®. Resultados & Discussão. Dos três componentes de sinal extraídos, TRFT-low demonstrou possuir a informação mais relevante em torno do momento de cada evento. O valor mais alto de informação mútua obtido para eventos relativos ao lado esquerdo da marcha foi de 0,617, considerando 1 o máximo. Relativamente aos eventos do lado direito, o desempenho do algoritmo foi 25-30% mais baixo, comparativamente. Facto este que pode ser justificado visto que o implante foi colocado no córtex sensório-motor direito. A continuação deste trabalho, requer mais ensaios e se possível num maior número de ratos. Conjuntamente, um algoritmo mais sofisticado e com uma maior precisão deve ser estudado. Também é importante continuar os esforços no sentido de perceber a dinâmica neuronal e de que maneira todos os sistemas se integram para garantir funções motoras num estado saudável de modo a otimizar a abordagem terapêutica em patologias que comprometem estes sistemas. Conclui-se dizendo que a ideia de uma interface cérebroespinal revela-se viável usando o modelo do rato, uma vez que é possível descodificar primitivas de marcha utilizando a atividade neuronal registada a partir do córtex sensório-motor. No entanto, isto foi apenas o primeiro passo no desenvolvimento de uma interface cérebroespinal completamente funcional.Introduction. Clinical assistance when it comes to nerve damage and spinal cord trauma falls short, and rehabilitation and recovery can sometimes be impossible due to the inability to self-regenerating. The brain spinal interface (BSI) is a concept that arises when exploring epidural electrical stimulation as a potential technique that is able to restore locomotion after a spinal cord injury. BSI’s in monkeys and humans have already been proven successful, however not in rats. The rat model is significantly different from the other ones, especially when it comes to its neural organization and complexity. For this reason we searched for proof that it is also possible to decode gait phases from neural activity in rat. This thesis was originated from the work done in a six month internship in Gregoire Courtine laboratory, based in Switzerland. Background. In rats the area that is known to encode information about movement is the primary sensorimotor cortex. This information is passed on through the descending neural pathway in the medulla and then on to the efferent nerves that trigger the necessary muscle groups that enforce motion and ensure time specific flexion and extension. In case of a spinal cord injury and subsequent lower limbs paralyses, the nerves are severed in such a way that this signal is lost. The BSI aims to capture gait related neural activity by implanting a 32-channel microelectrode array (Tucker-Davis Technologies (TDT), Alachua, FL, USA) in the right sensorimotor cortex and use classification methods to obtain quantitative prediction outputs. For the purposes of this thesis these outputs were the conditions of foot strike and foot off. Methods. We implanted two female Lewis rats designated by r263 and r328 and used a dedicated motion capture system (Vicon Motion Systems®) to record 3D kinematics and video. After sufficient recovery time after the surgery we proceeded to do the overground recordings. Each recording session consisted of one rat performing a full length runway walk walking quadrupely. We had 24 sessions for r263 and 31 for r328. From the Vicon files we extracted the real time of left foot off and left foot strike. The data sets containing the neural activity were pre-processed, and at the end we preserved 31 channels and extracted three different signal components (LPC, TRFT-low, TRFT-high). For each event (left foot off, left foot strike and baseline) we had a total of 93 extracted features that were used to train a regularized discriminant analysis classifier. Using cross-validation we trained different classifiers using different combinations of model parameters and choose the mutual information values to be our predictor for the optimum detection model. Results & Discussion. From the three extracted signal components, the TRFT-low showed the most information around the time of the event. The highest mutual information value found was of 0.617, considering that 1 was the highest possible number. We also built a decoder for predicting right side events, however it had a performance around 25-30 percent lower, comparatively to the left side prediction. This is justified by the fact that the implant was placed on the right sensorimotor cortex. The idea of a BSI, proves to be feasible on the rat model since it is possible to decode gait primitives using neural activity recorded from the sensorimotor cortex

    Improved Alzheimer’s disease detection by MRI using multimodal machine learning algorithms

    Get PDF
    Dementia is one of the huge medical problems that have challenged the public health sector around the world. Moreover, it generally occurred in older adults (age > 60). Shockingly, there are no legitimate drugs to fix this sickness, and once in a while it will directly influence individual memory abilities and diminish the human capacity to perform day by day exercises. Many health experts and computing scientists were performing research works on this issue for the most recent twenty years. All things considered, there is an immediate requirement for finding the relative characteristics that can figure out the identification of dementia. The motive behind the works presented in this thesis is to propose the sophisticated supervised machine learning model in the prediction and classification of AD in elder people. For that, we conducted different experiments on open access brain image information including demographic MRI data of 373 scan sessions of 150 patients. In the first two works, we applied single ML models called support vectors and pruned decision trees for the prediction of dementia on the same dataset. In the first experiment with SVM, we achieved 70% of the prediction accuracy of late-stage dementia. Classification of true dementia subjects (precision) is calculated as 75%. Similarly, in the second experiment with J48 pruned decision trees, the accuracy was improved to the value of 88.73%. Classification of true dementia cases with this model was comprehensively done and achieved 92.4% of precision. To enhance this work, rather than single modelling we employed multi-modelling approaches. In the comparative analysis of the machine learning study, we applied the feature reduction technique called principal component analysis. This approach identifies the high correlated features in the dataset that are closely associated with dementia type. By doing the simultaneous application of three models such as KNN, LR, and SVM, it has been possible to identify an ideal model for the classification of dementia subjects. When compared with support vectors, KNN and LR models comprehensively classified AD subjects with 97.6% and 98.3% of accuracy respectively. These values are relatively higher than the previous experiments. However, because of the AD severity in older adults, it should be mandatory to not leave true AD positives. For the classification of true AD subjects among total subjects, we enhanced the model accuracy by introducing three independent experiments. In this work, we incorporated two new models called Naïve Bayes and Artificial Neural Networks along support vectors and KNN. In the first experiment, models were independently developed with manual feature selection. The experimental outcome suggested that KNN 3 is the optimal model solution because of 91.32% of classification accuracy. In the second experiment, the same models were tested with limited features (with high correlation). SVM was produced a high 96.12% of classification accuracy and NB produced a 98.21% classification rate of true AD subjects. Ultimately, in the third experiment, we mixed these four models and created a new model called hybrid type modelling. Hybrid model performance is validated AU-ROC curve value which is 0.991 (i.e., 99.1% of classification accuracy) has achieved. All these experimental results suggested that the ensemble modelling approach with wrapping is an optimal solution in the classification of AD subjects

    Mining the brain to predict gait characteristics: a BCI study

    Get PDF
    Tese de mestrado integrado em Engenharia Biomédica e Biofísica, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, em 2018A locomoção é uma das atividades mais comuns e relevantes da vida quotidiana, sendo que envolve a ativação dos sistemas nervoso e músculo-esquelético. Os distúrbios da locomoção são comuns principalmente na população idosa, sendo que frequentemente estão associados a uma diminuição da qualidade de vida. A ocorrência destes distúrbios aumenta com a idade, estimando-se que aproximadamente 10% das pessoas com idades entre 60 e 69 anos sofram de algum tipo de distúrbio da locomoção, enquanto esse número aumenta para mais de 60% em pessoas com idade superior a 80 anos. Os padrões da locomoção são influenciados por doenças, condições físicas, personalidade e humor, sendo que um padrão anormal ocorre quando uma pessoa não é capaz de andar da maneira usual, maioritariamente devido a lesões, doenças ou outras condições subjacentes. As causas dos distúrbios da marcha incluem condições neurológicas e músculo-esqueléticas. Um grande número de condições neurológicas pode causar um padrão de marcha anormal, como por exemplo um acidente vascular cerebral, paralisia cerebral ou a doença de Parkinson. Por outro lado, as causas músculo-esqueléticas devem-se principalmente a doenças ósseas ou musculares. A avaliação ou análise da marcha, inclui a medição, descrição e avaliação das variáveis que caracterizam a locomoção humana. Como resultado, este estudo permite o diagnóstico de várias condições, bem como avaliar a progressão da reabilitação e desenvolver estratégias de intervenção. Convencionalmente, a marcha é estudada subjetivamente com protocolos observacionais. No entanto, recentemente foram desenvolvidos métodos mais objetivos e viáveis. Os métodos de análise da marcha podem ser classificados em laboratoriais ou portáteis. Embora a análise baseada em laboratório utilize equipamentos especializados, os sistemas portáteis permitem o estudo da marcha em ambientes naturais e durante atividades da vida diária. A análise laboratorial da marcha é baseada principalmente em informações de imagem e vídeo, embora sensores de piso e placas de força também sejam comuns. Por outro lado, os sistemas portáteis consistem em um ou vários sensores, ligados ao corpo. A adaptação da locomoção é um dos mais relevantes conceitos na análise da mesma, sendo que a sua origem e dinâmica neuronal têm sido amplamente estudadas nos últimos anos. A adaptação da marcha reflete a capacidade de um sujeito em mudar de velocidade e direção, manter o equilíbrio ou evitar obstáculos. Em termos da reabilitação neurológica, a adaptação da locomoção interfere na dinâmica neuronal, permitindo que os pacientes restaurem certas funções motoras. Atualmente, os dispositivos robóticos para membros inferiores e os exoesqueletos são cada vez mais usados não só para facilitar a reabilitação motora, mas também para apoiar as funções da vida diária. No entanto, a sua eficiência e segurança depende da sua eficácia em detetar a intenção humana de mover e adaptar a locomoção. Recentemente, foi demonstrado que o ritmo auditivo tem um forte efeito no sistema motor. Consequentemente, a adaptação tem sido estudada com base em ritmos auditivos, onde os pacientes seguem tons de estimulação para melhorar a coordenação da marcha. A imagem motora (MI), uma prática emergente em BCI, ou interface cérebro-máquina, é definida como a atividade de simular mentalmente uma determinada ação, sem a execução real do movimento. O desempenho da classificação da MI é importante para desenvolver ambientes robustos de interface cérebro-máquina, para neuro-reabilitação de pacientes e controle de próteses robóticas. O desempenho da classificação da MI é importante para desenvolver ambientes robustos de interface cérebro-máquina, para neuro-reabilitação de pacientes e controle de próteses robóticas, uma vez que, estudos anteriores, concluíram que realizar uma sessão de MI ativa parcialmente as mesmas regiões cerebrais que o desempenho da tarefa real. Inicialmente, a tarefas de MI centravam-se apenas nos movimentos dos membros superiores, no entanto, recentemente, estas começaram também a focar-se nos movimentos dos membros inferiores, de modo a estudar a locomoção humana. A deteção da intenção motora em tarefas de MI enfrenta vários desafios, mesmo para duas classes (esquerda / direita, por exemplo), sendo que um dos principais desafios se deve ao número, localização e tipo de elétrodos de EEG usados. Recentemente, um número crescente de estudos investigou a atividade cerebral durante a locomoção humana. Esses estudos, baseados maioritariamente no EEG, encontraram várias relações entre regiões cerebrais e ações ou movimentos específicos. Por exemplo, concluiu-se que a atividade cerebral aumenta durante a caminhada ou a preparação para caminhar e que a potência nas bandas μ e β diminui durante a execução voluntária do movimento. Em termos de adaptação da marcha, foi demonstrado que a atividade eletrocortical varia de acordo com a tarefa motora executada. Recentemente, as Interfaces Cérebro-Máquina permitiram o desenvolvimento de novas terapias de reabilitação para restaurar as funções motoras em pessoas com deficiências na locomoção, envolvendo o SNC para ativar dispositivos externos. Na primeira parte desta tese, foram realizadas várias tarefas de MI, juntamente com os movimentos reais dos membros inferiores, de modo a comparar o desempenho da classificação de um sistema wireless de 16 elétrodos secos com um sistema wireless de 32 elétrodos com gel condutor. A extração e classificação das características do sinal foram também avaliadas com mais de um método (LDA e CSP). No final, a combinação de um filtro beta passa-banda com um filtro RCSP mostrou a melhor taxa de classificação. Embora durante a aquisição do EEG todos os canais tenham sido utilizados, durante os métodos de processamento, foram escolhidas duas configurações específicas, onde os elétrodos foram selecionados de acordo com sua posição relativamente ao córtex motor. Desde modo, infere-se que uma seleção cuidada da localização dos elétrodos é mais importante do que ter um denso mapa de elétrodos, o que torna os sistemas EEG mais confortáveis e de fácil utilização. Os resultados mostram também a viabilidade do uso doméstico de sistemas de elétrodos secos com um reduzido número de sensores, e a possibilidade de diferenciar entre as tarefas de MI (esquerda e direita), para ambos os membros, com uma precisão relativamente alta. Por outro lado, a segunda parte desta tese apresenta um esquema de adaptação da marcha em ambientes naturais. De modo a avaliar a adaptação da marcha, os sujeitos seguem um tom rítmico que alterna entre três modos distintos (lento, normal e acelerado). As características da locomoção foram extraídas com base numa câmara RGB, sendo que os sinais de EEG foram monitorados simultaneamente. De seguida, estas características bem como as informações do tempo de reação foram utilizadas para extrair as etapas de adaptação da marcha versus etapas de não adaptação. De modo a remover os artefactos presentes no EEG, devidos maioritariamente ao movimento do sujeito, o sinal for filtrado com uma filtro passa-banda e sujeito a uma análise de componentes independentes (ICA). Posteriormente, as características de adaptação da marcha do EEG foram investigadas com base em dois problemas de classificação: i) classificação dos passos em direito ou esquerdo e ii) etapas de adaptação versus não adaptação da marcha. As características foram extraídas com base em padrões espaciais comuns (CSP) e padrões espaciais comuns regularizados (RCSP). Os resultados mostram que é possível discriminar com sucesso a adaptação versus não adaptação com mais de 90% de precisão. Este procedimento permite a monitoração dos participantes em ambientes mais realistas, sem a necessidade de equipamentos especializados, como sensores de pressão. Este método demonstrou que é possível detetar a adaptação com mais de 90% de precisão, quando os participantes tentam adaptar sua velocidade de marcha para uma velocidade maior ou menor.Gait adaptation is one of the most relevant concepts in gait analysis and its neuronal origin and dynamics has been extensively studied in the past few years. In terms of neurorehabilitation, gait adaptation perturbs neuronal dynamics and allows patients to restore some of their motor functions. In fact, lower-limbs robotic devices and exoskeletons are increasingly used to facilitate rehabilitation as well as supporting daily life functions. However, their efficiency and safety depend on how well they can detect the human intention to move and adapt the gait. Motor imagery (MI), an emerging practise in Brain Computer Interface (BCI), is defined as the activity of mentally simulating a given action, without the actual execution of the movement. MI classification performance is important in order to develop robust brain computer interface environments for neuro-rehabilitation of patients and robotic prosthesis control. In the first section of this thesis, it was performed a number of motor imagery tasks along with actual movements of the limbs to compare the classification performance of a dry 16-channel and a wet, 32-channel, wireless (Electroencephalography) EEG system. Results showed the feasibility of home use of dry electrode systems with a small number of sensors, and the possibility to discriminate between left and right MI tasks for both arms and legs, with a relatively high accuracy. The second part of this thesis presents a gait adaptation scheme in natural settings. This procedure allows the monitorization of subjects in more realistic environments without the requirement of specialized equipment such as treadmill and foot pressure sensors. Gait characteristics were extracted based on a single RGB camera, and EEG signals are monitored simultaneously. This method demonstrated that it is possible to detect adaptation steps with more than 90% accuracy, when subjects tries to adapt their walking speed to a higher or lower speed

    Multiple kernel learning with random effects for predicting longitudinal outcomes and data integration

    Get PDF
    Predicting disease risk and progression is one of the main goals in many clinical research studies. Cohort studies on the natural history and etiology of chronic diseases span years and data are collected at multiple visits. Although kernel-based statistical learning methods are proven to be powerful for a wide range of disease prediction problems, these methods are only well studied for independent data but not for longitudinal data. It is thus important to develop time-sensitive prediction rules that make use of the longitudinal nature of the data. In this paper, we develop a novel statistical learning method for longitudinal data by introducing subject-specific short-term and long-term latent effects through a designed kernel to account for within-subject correlation of longitudinal measurements. Since the presence of multiple sources of data is increasingly common, we embed our method in a multiple kernel learning framework and propose a regularized multiple kernel statistical learning with random effects to construct effective nonparametric prediction rules. Our method allows easy integration of various heterogeneous data sources and takes advantage of correlation among longitudinal measures to increase prediction power. We use different kernels for each data source taking advantage of the distinctive feature of each data modality, and then optimally combine data across modalities. We apply the developed methods to two large epidemiological studies, one on Huntington's disease and the other on Alzheimer's Disease (Alzheimer's Disease Neuroimaging Initiative, ADNI) where we explore a unique opportunity to combine imaging and genetic data to study prediction of mild cognitive impairment, and show a substantial gain in performance while accounting for the longitudinal aspect of the data

    Learning Algorithms for Fat Quantification and Tumor Characterization

    Get PDF
    Obesity is one of the most prevalent health conditions. About 30% of the world\u27s and over 70% of the United States\u27 adult populations are either overweight or obese, causing an increased risk for cardiovascular diseases, diabetes, and certain types of cancer. Among all cancers, lung cancer is the leading cause of death, whereas pancreatic cancer has the poorest prognosis among all major cancers. Early diagnosis of these cancers can save lives. This dissertation contributes towards the development of computer-aided diagnosis tools in order to aid clinicians in establishing the quantitative relationship between obesity and cancers. With respect to obesity and metabolism, in the first part of the dissertation, we specifically focus on the segmentation and quantification of white and brown adipose tissue. For cancer diagnosis, we perform analysis on two important cases: lung cancer and Intraductal Papillary Mucinous Neoplasm (IPMN), a precursor to pancreatic cancer. This dissertation proposes an automatic body region detection method trained with only a single example. Then a new fat quantification approach is proposed which is based on geometric and appearance characteristics. For the segmentation of brown fat, a PET-guided CT co-segmentation method is presented. With different variants of Convolutional Neural Networks (CNN), supervised learning strategies are proposed for the automatic diagnosis of lung nodules and IPMN. In order to address the unavailability of a large number of labeled examples required for training, unsupervised learning approaches for cancer diagnosis without explicit labeling are proposed. We evaluate our proposed approaches (both supervised and unsupervised) on two different tumor diagnosis challenges: lung and pancreas with 1018 CT and 171 MRI scans respectively. The proposed segmentation, quantification and diagnosis approaches explore the important adiposity-cancer association and help pave the way towards improved diagnostic decision making in routine clinical practice
    corecore