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ABSTRACT

In the big data era, statistical and stochastic learning for distributed and intelligent systems focuses

on enhancing and improving the robustness of learning models that have become pervasive and

are being deployed for decision-making in real-life applications including general classification,

prediction, and sparse sensing. The growing prospect of statistical learning approaches such as

Linear Discriminant Analysis and distributed Learning being used (e.g., community sensing) has

raised concerns around the robustness of algorithm design. Recent work on anomalies detection

has shown that such Learning models can also succumb to the so-called ’edge-cases’ where the

real-life operational situation presents data that are not well-represented in the training data set.

Such cases have been the primary reason for quite a few mis-classification bottleneck problems

recently. Although initial research has begun to address scenarios with specific Learning mod-

els, there remains a significant knowledge gap regarding the detection and adaptation of learning

models to ’edge-cases’ and extreme ill-posed settings in the context of distributed and intelligent

systems. With this motivation, this dissertation explores the complex in several typical applications

and associated algorithms to detect and mitigate the uncertainty which will substantially reduce the

risk in using statistical and stochastic learning algorithms for distributed and intelligent systems.
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CHAPTER 1: INTRODUCTION

Statistical learning is regarded as one of the most beautifully developed branches of artificial in-

telligence. It provides the theoretical basis for many of today’s machine learning algorithms. The

learning theory helps to explore what permits to draw valid conclusions from empirical data. The

statistical learning begins with a class of hypotheses and uses empirical data to select one hy-

pothesis from the class. If the data generating mechanism is benign, then it is observed that the

difference between the training error and test error of a hypothesis from the class is small. The

statistical learning generally avoids metaphysical statements about aspects of the true underlying

dependency, and thus is precise by referring to the difference between training and test error.

The goals of statistical learning are understanding and prediction. Learning falls into many cat-

egories, including supervised learning, unsupervised learning, online learning, and reinforcement

learning. From the perspective of statistical learning theory [1], supervised learning is best un-

derstood. Supervised learning involves learning from a training set of data. Every point in the

training is an input-output pair, where the input maps to an output. The learning problem consists

of inferring the function that maps between the input and the output, such that the learned function

can be used to predict the output from future input.

Depending on the type of output, supervised learning problems are either problems of regression

or problems of classification. If the output takes a continuous range of values, it is a regression

problem. In facial recognition, for instance, a picture of a person’s face would be the input, and

the output label would be that person’s name. The input would be represented by a large multidi-

mensional vector whose elements represent pixels in the picture. After learning a function based

on the training set data, that function is validated on a test set of data, data that did not appear in

the training set.
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1.1 Motivation

Many statistical learning algorithms and models are described in terms of being stochastic. This is

because many optimization and learning algorithms both must operate in stochastic domains and

because some algorithms make use of randomness or probabilistic decisions.

Stochastic domains are those that involve uncertainty. This uncertainty can come from a target or

objective function that is subjected to statistical noise or random errors. It can also come from the

fact that the data used to fit a model is an incomplete sample from a broader population. Finally,

the models chosen are rarely able to capture all of the aspects of the domain, and instead must

generalize to unseen circumstances and lose some fidelity.

Most statistical learning algorithms are stochastic because they make use of randomness during

learning. Using randomness is a feature, not a bug. It allows the algorithms to avoid getting stuck

and achieve results that deterministic (non-stochastic) algorithms cannot achieve. For example,

some machine learning algorithms even include “stochastic” in their name such as: Stochastic

Gradient Descent [2]. Stochastic gradient descent optimizes the parameters of a model, such as an

artificial neural network, that involves randomly shuffling the training dataset before each iteration

that causes different orders of updates to the model parameters. In addition, model weights in a

neural network are often initialized to a random starting point.

1.1.1 Stochasticity and Randomness

Due to that fact that many machine learning algorithms make use of randomness, their nature

(e.g. behavior and performance) is also stochastic. The stochastic nature of machine learning

algorithms is most commonly seen on complex and nonlinear methods used for classification and

regression predictive modeling problems. These algorithms make use of randomness during the
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process of constructing a model from the training data which has the effect of fitting a different

model each time same algorithm is run on the same data. In turn, the slightly different models

have different performance when evaluated on a hold out test dataset. This stochastic behavior

of nonlinear machine learning algorithms is challenging for researchers who assume that learning

algorithms will be deterministic, e.g. fit the same model when the algorithm is run on the same

data. This stochastic behavior also requires that the performance of the model must be summarized

using summary statistics that describe the mean or expected performance of the model, rather than

the performance of the model from any single training run. In summary, stochastic is one of the

most important characteristics of statistical learning and I will discuss additional advantages of

leveraging the stochastic optimization to address some practical issues in distributed intelligent

systems in next section.

1.1.2 Limitations in Modern Distributed Systems

With increasing the volume of “big data”, mining/training such tremendous data models with a

single machine can be very slow [3]. Not only that, large-scale data problem is not just the size

of the data to be mined but also its location and homogeneity. Data may be distributed crossed

a set of locations or machines for several reasons. For example, several data sets concerning

medical (personal) information (e.g. allergic history) might be owned by separate hospitals that

have reasons for keeping the data private. The traditional statistical learning algorithm is no longer

fitting the big data scenario, where the famous “the curse of dimensionality” [4] will degrade

significantly the performance of them. To handle the above issues, various distributed/parallelized

machine learning algorithms were proposed, e.g., distributed decision tree [5], parallel support

vector machine [6] and parallel rule induction [7, 8].

In addition to distributed learning, Multi-Party computing [9, 10] becomes one of popular com-
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puting paradigm due to the increasing needs of distributed data collection, storage and processing,

where it also benefits the privacy-preserved manner in different kinds of applications. In most

multi-party computing platform, “no raw data sharing” is an important pre-condition, where a ma-

chine learning model should be trained using all data stored in distributed machines (i.e., parties)

without any cross-machine raw data sharing. Specifically, such multi-party distributed machine

learning algorithms can be accelerated by parallel computing and typically be divided into two

types – data-centric and model-centric methods [3, 11–17]. On each machine, the data-centric

algorithm first estimates the same set of parameters (of the model) using the local data, then ag-

gregates the estimated parameters via model-averaging for global estimation. The model with

aggregated parameters is considered as the trained model based on the overall data (from multiple

parties) and before aggregated these parameters can be estimated through parallel computing struc-

ture in an easy way. Meanwhile, model-centric algorithms require multiple machines to share the

same loss function with “updatable parameters”, and allow each machine to update the parameters

in the loss function using the local data so as to minimize the loss. Based on this characteris-

tic, model-centric algorithm commonly updates the parameters sequentially so that the additional

time consumption in updating is sometimes a tough nut for specific applications. Even so, com-

pared with the data-centric, the model-centric methods usually can achieve better performances,

as it minimizes the risk of the model [11, 15, 18]. To advance the distributed performance of

classical statistical learning algorithms, Tian and Gu et al. [19] proposed a data-centric algorithm,

which leverages the advantage of parallel computing. Although it is intuitive that the model-centric

counterpart for statistical learning algorithm could receive better performance, few work has been

carried out due to the challenge in terms of efficiency (i.e., the time consumption in sequential

updating) through parallel computing.
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1.2 Contributions and Organization

To address the issue of "the curse of dimensionality" in statistical and stochastic learning algo-

rithm in bid data era, we improve the performance of the classical linear discriminant analysis,

one of the most common used statistical learning algorithm, by proposing a causality/covariance

regularization and a de-biased estimation. These two key designs will be discussed in Chapter 2.

To fill the gap between the centralized statistical learning and popular distributed statistical learn-

ing, we are motivated to design a novel model-centric learning framework. In Chapter 3,4, and

5, we mainly discuss the contribution we made for building such framework to improve the per-

formance of statistical learning algorithm in distributed intelligent systems. Not only our proposal

can achieve a better performance provided by the model-centric algorithm, it also promotes the

efficiency of the algorithm through parallel computing mechanism. Specifically, the gossip-based

stochastic gradient descent plays an important role in the optimization and federated learning,

which demonstrates that stochastic as one of the key characteristics can naturally benefit the dis-

tributed learning patterns. Compared with the approach in [20], which aggregates all data on a

single machine to learn the model, our proposal can effectively approximate to the optimal solution

without sharing any raw data. Compared with [19], which aggregates the locally learned mod-

els through model-averaging and hard-thresholding, our models and minimizes a distributed loss

function based on specific statistical learning model, parameterized with global/local estimates,

straightforwardly. Moreover, compared to normal single thread model-centric algorithm [21], our

design additionally processing parallel computing when estimating the model parameters to im-

prove the performance with fast convergence rate.

In the following chapters, I will separately introduce the proposed research topic on top of different

applications to illustrate how am I pursuing the solution of adapting statistical learning via stochas-

tic optimization to embracing the distributed learning context in modern intelligent systems. The
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flow will start with a introduction of classical statistical learning algorithm with its application.

Then, the innovative modification to fit the distributed scenarios will be discussed. Finally, I will

make a conclusion and cast a future direction on this topic.
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CHAPTER 2: DISCRIMINANT ANALYSIS FOR INTELLIGENT

MEDICAL SYSTEMS

Fisher’s Linear Discriminant Analysis (FLD) [22] is a well-known technique for feature extraction

and dimension reduction [23]. It has been widely used in many applications, such as face recogni-

tion [24], image retrieval, etc. An intrinsic limitation of classical FLD is that its objective function

relies on the well-estimated and non-singular covariance matrices.

For many applications, such as the micro-array data analysis, all scatter matrices can be singular

or ill-posed since the data is often with high dimension but low sample size (HDLSS) [25].

The classical FLD classifier relies on two key parameters – the mean vector of each type and the

precision matrix. Under the HDLSS settings, the sample precision matrix (a.k.a., the inverse of

sample covariance matrix) used in FLD is usually ill-estimated and quite different from the inverse

of population/true covariance matrix [25]. For example, the largest eigenvalue of the sample co-

variance matrix is not a consistent estimate of the largest eigenvalue of the population covariance

matrix, and the eigenvectors of the sample covariance matrix can be nearly orthogonal to the truth

when the number of dimensions is greater than the number of samples [26]. Such inconsistency

between the true and the estimated precision matrices degrades the accuracy of FLD classifiers

under the HDLSS settings [27].

A plethora of excellent work has been conducted to address such HDLSS data classification prob-

lem for FLD. For example, Krzanowski et al. [28] suggested to use pseudo-inverse to approximate

the inverse covariance matrix, when the sample covariance matrix is singular. However, the pre-

cision of pseudo-inverse FLD is usually low and not well guaranteed. Other techniques include

the two-stage algorithm PCA+FLD [29], FLD based on Kernels [30] and/or other nonparametric
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statistics [31]. To overcome the singularity of the sample covariance matrices, instead of estimat-

ing inverse covariance matrix and mean vectors separately, [20] proposed to estimate the projection

vector for discrimination directly. More popularly, regularized FLD approaches [28, 32] are pro-

posed to solve the problem. These methods can improve the performance of FLD either empirically

or theoretically [33,34], while few of them can directly address the ill-estimated inverse covariance

matrix estimation issue.

One representative regularization approach is Covariance-Regularized FLD [32] that replaces the

precision matrix used in FLD with a shrunken estimator, such as Graphical Lasso [35], so as to

achieve a “superior prediction”. Intuitively, through replacing precision matrix used in FLD with

a sparse regularized estimation, the ill-posed problem caused by the HDLSS settings can be well

addressed. The sparse estimators usually converge to the inverse of true/population covariance

matrix faster than the sample estimators [25]. With the asymptotic properties, the sparse FLD

should be close to the optimal FLD. However, the way that the sparsity and the convergence rate

of the precision matrix estimator would affect the classification accuracy is not well studied in

literature.

Further, with induced sparsity, the inverse covariance estimator becomes biased [36]. The perfor-

mance of sparse FLD is frequently bottlenecked due to the bias of the sparse estimators. Recently,

researchers tried to de-bias the Lasso estimator [36], through adjusting the `1-penalty for the reg-

ularized estimation, so as to achieve a better regression performance. Inspired by this line of re-

search, we propose to improve sparse FLD with different purposes in this chapter. In the following

subsections, we will illustrate varieties of learning approaches to overcome the above-mentioned

ill-posed problems in three common-seen scenarios (case studies).
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2.1 Preliminaries

In this section, we first briefly introduce the binary classifier using FLD, then present the practice

of CRLD based on Graphical Lasso.

2.1.1 FLD for Binary Classification

To use the Fisher’s Linear Discriminant Analysis (FLD), given the i.i.d. labeled data pairs (x1, `1) . . .

(xm, `m), we first estimate the sample covariance matrix Σ̄ using the pooled sample covariance ma-

trix estimator with respect to the two classes [22], then estimate the sample precision matrix as

Θ̄ = Σ̄−1. Further, µ̄+ and µ̄− are estimated as the mean vectors of the positive samples and the

negative samples in the m training samples, respectively.

Given all estimated parameters Σ̄ (and Θ̄ = Σ̄−1), µ̄+ and µ̄−, the FLD model classifies a new data

vector x as the result of:

f̄ (x) = argmax
`∈{−,+}

δ (x,Θ̄, µ̄`,π`), where

δ (x,Θ̄, µ̄`,π`) = x>Θ̄µ̄`−
1
2

µ̄
>
` Θ̄µ̄`+ logπ`,

(2.1)

where π+ and π− refer to the (foreknown) frequencies of positive samples and negative samples in

the whole population, respectively.

2.1.2 Covariance-Regularized FLD via Graphical Lasso

This algorithm, referred to as the Covariance-Regularized FLD (CRLD) via Graphical Lasso, was

derived from the Scout family of FLD introduced by Witten et al. in [32]. Compared to the clas-
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sical FLD, this baseline algorithm leverages Graphical Lasso estimator to replace the precision

matrix estimated using sample covariance matrix. The proposed algorithm is implemented using

the discriminant function defined in Eq. 2.1, as:

f̂ (x) = argmax
`∈{−,+}

δ (x,Θ̂, µ̄`,π`), (2.2)

where Θ̂ refers to the Graphical Lasso estimator based on the sample covariance matrix Σ̄:

Θ̂ = argmin
Θ>0

(
tr(Σ̄Θ)− logdet(Θ)+λ ∑

j 6=k
|Θ jk|

)
. (2.3)

Note that, as a linear classifier, the CRLD decision rule introduced in Eq. 2.2 can be re-formulated

in a linear model, such as:

f̂ (x) = sign
(

δ (x,Θ̂, µ̄+,π+)−δ (x,Θ̂, µ̄−,π−)
)

= sign
(

x>β̂
G + cg

)
,

(2.4)

where sign(·) function returns +1 if the input is non-negative, and −1 when the input is negative.

The vector β̂ G = Θ̂(µ̄+− µ̄−) and the scalar cg =−1
2 · (µ̄++ µ̄−)

>β̂ G + log(π+/π−). Obviously,

β̂ G is the vector of projection coefficients for linear classification.

2.2 CRLEDD: Regularized Causalities Learning for Early Detection of Diseases

2.2.1 Backgrounds

The early disease detection is one of the most prevalent tasks in statistical learning and machine

learning, and it plays an important role in modern medical diagnosis and pre-treatment systems.
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From the aspect of feature extraction, image is the mainstream data type for discovering the latent

correlation among the factor of diseases and thereby helps us recognize or classify them. For

example, [37, 38] propose to use SAR [39] image data to process the object recognition and the

target segmentation, where the statistical-based texture features such as KWE [40] and KCE [41]

are well-studied [42] as the basis to support the classification. From the aspect of learning model,

[43] propose a hierarchical learning architecture which integrates the well-known CNN [44] and

MLP [45] to recognize the target image object. However, most of theses preliminary work are

based on the image data, where sometimes it is difficult to collect such highly related image data

in disease detection task due to the privacy and technical issue (e.g., for some disease, we do not

even know the source of the lesion). Fortunately, for general diagnosis, we still have the common

electronic health records associated with each patient, which has been wide-used in the medical

systems.

Electronic Health Records (EHR) [46] play a critical role in modern health information manage-

ment and service innovations. A patient’s EHR contains his/her medical visit history, medication,

diagnoses, treatment plans, allergies and so on. One significant feature is the interchangeability of

EHR, as a standard protocol for medical/health data generation, storage and communication. The

health information is built and managed by authorized institutions in a unified digital format (e.g.,

ICD-9/10, CPT-9/10 used in EHR standards) such that researchers and scientists can share and

analyze the EHR data to enable innovative health services, such as providing computer-assisted

diagnosis and offering medication advice. Among these services, early detection of diseases, us-

ing their past longitudinal health information of the EHR system, has recently attracted significant

attention from the research community. There has been a series of works [46–51], which attempt to

predict future disease of patients, through data mining techniques using EHR data. Prior literature

usually first selected important features, such as diagnosis-frequencies [46], pairwise diagnosis

transitions [49], and graphs of diagnosis sequences [51], to represent the EHR data of the patients.
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Then, a wide range of supervised learning algorithms were adopted to build predictive models for

early disease detection, on top of well-represented EHR data.

Specifically, supervised learning tools such as Linear Classification, Logistic Regression, Lin-

ear Discriminant Analysis (LDA), Decision Tree (DT), Random Forest (RF), and Bayesian Net-

work [46, 49] have been adopted to train various predictive models, where a critical step is to

learn model parameters from training dataset. However, from the viewpoint of “inverse prob-

lem” [37, 52, 53], learning parameters from training data is frequently ill-posed [54]. It is difficult

to recover the patterns of causalities between variables (e.g., evidence of diagnosis in EHR data),

when the number of training samples is limited but the dimension of EHR data (e.g., types of

evidence used in prediction) is large. Such causalities consist of discriminative information and

thus are the keys to build predictive models. For example, to train a linear classifier for discrim-

inant projection, we need to first learn an optimal Slope Vector. Literature [55] has shown that

when the size of training data is less than the dimension of the data (aka EHR data), the estimated

slope vector would be “ill-posed” with weak capacity of discrimination, when using traditional

Ordinary Least Squares (OLS) or Maximum Likelihood Estimation (MLE) estimator [56, 57]. In

this case, the performance of such linear classifiers with ill-posed estimation of parameters will be

degraded significantly [58]. Thus, we consider the key challenge of training predictive models for

EHR-based early detection of diseases as a type of ill-posed inverse problem.

To understand the ill-posed inverse problem in machine learning, Vapnik and Chervonekis pro-

posed Structural Risk Minimization (SRM) theory [59]. The SRM theory decomposes the error

of predictive model into two parts: training error and generalization error. According to the SRM

theory [60], the training of traditional models mainly focuses on minimizing the training error

over the training set, without appropriately controlling the generalization error. To understand the

generalizability of the model, they further proposed VC dimension [61] (Vapnik-Chervonenkis di-

mension) as a measure of potential generalization error, leveraging the complexity of the model.
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More recently, they proposed the regularization method to balance training error and generaliza-

tion error, with respect to the VC dimension of the trained model, to tackle the ill-posed inverse

problem in parameter learning. Usually, these regularization methods intend to approximate the

sparse(st) parameter estimation, while lowering the training error [62].

For example, to regularize linear classification, Support Vector Machine (SVM) [63] has been pro-

posed to leverage the sparse estimation of the slope vector for discriminative linear projection,

where a Lasso [64] estimator is used to balance the training error and `1-norm of the slope vec-

tor [65] (which is closely related to the VC dimension of linear classification model). Another

example, to improve the performance of Logistic Regression [66], `1-norm regularization has been

applied to balance the trade-off between training error and generalization error. Further, even for

more complicated classification tools such as neural network [67], the regularization is frequently

used to avoid over-fitting (control the generalization error) of the model.

2.2.2 Framework of CRLEDD

In this section, we introduce the CRLEDD framework. CRLEDD consists of three phases as shown

in Figure 2.1. First, we use diagnosis-frequency vectors to represent the EHR data. Then, we

estimate the covariance matrices used in LDA with respect to our problem formulation and estimate

sparse covariance matrix via Graphical Lasso. After that, we adopt LDA with newly estimated

parameters to predict whether the new patient will develop the targeted disease.

Phase I: EHR Data Representation — There are many existing approaches to represent EHR data

including the use of diagnosis-frequencies [46, 47], pairwise diagnosis transition [49], and graph

representations of diagnosis sequences [51]. Among these approaches, the diagnosis-frequency is

a common way to represent EHR data.
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Figure 2.1: Overview of the three-phase framework: CRLEDD – Regularized Causalities Learn-
ing for Early Detection of Diseases using Electronic Health Record (EHR) Data. Depending on
the functionality, the framework are divided into three phases which are Data Representation,
Correlation Analysis, Supervised Learning and Prediction.

Given each patient’s EHR data, the proposed method first retrieves the diagnosis codes [68] recorded

during each visit. Next, the frequency of each diagnosis in all past visits is counted, followed by

further transforming the frequency of each diagnosis into a vector of frequencies. For example,

〈1,0, . . . ,3〉, where 0 means that the second disease has not been diagnosed in any of the past visits.

In this paper, we denote the dimension of diagnosis-frequency vectors as p. Note that the dimen-

sion p≥ 15,000 when using ICD-9 codes, p≥ 250 even when using clustered ICD-9 codes [69],

while the number of samples for training m is significantly less than p.

Phase II: Correlation Analysis — Given the patients’ EHR data as a training set, this phase esti-

mates the sparse precision matrices for each type of the disease for two classes of patients (diag-

nosed with target disease or not) with following two steps:
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1. Sample Covariance Matrix Estimation with Extracted Diagnosis-frequency Vector —

CRLEDD combines diagnosis-frequency vector for each patient with his/her label (indicating

whether the patient has been diagnosed with the targeted disease). Then we estimate the

sample covariance matrices using maximized likelihood estimator.

2. Sparse Precision Matrix Estimation Using Graphical Lasso — Given sample covariance

matrices Σ̄, CRLEDD estimates the sparse precision matrix using Graphical Lasso estimator.

Note that the covariance matrices for the two classes of patients are estimated in this phase through

a unified process.

Phase III: Supervised Learning and Prediction — Given the estimated matrices Σ̄ as well as the

training samples, this phase first trains the optimal model for LDA prediction. Then, it uses the

LDA model for new patient prediction.

Given all parameters Σ̄, µ̄+1 (the mean vector of the sample consisting of the patients with target

disease), and µ̄−1 (the mean vector of sample consisting of the patients without target disease), the

LDA model classifies a new patient’s data x as the result of:

argmax
l∈{+1,−1}

(
xT

Σ̄
−1

µ̄l−
1
2

µ̄
T
l Σ̄
−1

µ̄l + logαl

)
, (2.5)

where l is the label needs to be identified to predict if a certain patient is diagnosed with the target

disease or not. l can be either positive one or negative one. Positive one means the patient will be

predicted to have the target disease, while negative one means the patient will not be predicted to

have the target disease. α+1 and α−1 refer to the empirical frequencies of positive samples (i.e.,

patients with the target disease) and negative samples (i.e., patients without the target disease) in

the whole population.
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2.2.3 Implementation of the Log-Divergence Minimization Algorithm via Graphical Lasso

Suppose we have m samples with dimension p and sample covariance matrix Σ̄. In order to solve

the optimization problem in Eq. 2.3 to obtain the Θ̂, the Graphical Lasso algorithm [35] is used to

estimate Θ̂−1 and recover Θ̂ after convergence. The details of this algorithm are listed as follow.

Let W = Θ−1 and S = Σ̄, then partitioning W and S

W =

W11 w12

wT
12 w22

 ,S =

S11 s12

sT
12 s22

 (2.6)

The solution for w12 satisfies

w12 = argmin
y

{
yT W−1

11 y : |y− s12|∞ ≤ λ
}

(2.7)

This is a box-constrained quadratic program that was once solved by Banerjee et al. [70] using an

interior point procedure. It has been illustrated that the iterates in this procedure remain positive

definite and invertible, even if P > N when the procedure is initialized with a positive definite

matrix. Thus, here the SPD of W can be ensured.

Using convex duality, Banerjee et al. [70] showed that solving Eq. 2.7 is equivalent to solving the

dual problem

min
β

{
1
2

∣∣∣∣W 1
2
11β −b

∣∣∣∣2 +λ |β |1

}
, (2.8)

where b = W
1
2
11s12. If β solves Eq. 2.8, then w12 = W11β solves Eq. 2.7. Expression of Eq. 2.8

resembles a Lasso form, and is the basis for the approach of Graphical Lasso.
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To verify the equivalence of the solutions between Eq. 2.3 and Eq. 2.8 directly, the relation WΘ= I

can be expanded as below:

W11 w12

wT
12 w22


Θ11 θ12

θ T
12 θ22

=

 I 0

0T 1

 . (2.9)

Now the sub-gradient equation [71] for the maximization of the log-likelihood of Eq. 2.3 is

W−S−λSign(Θ) = 0, (2.10)

using the fact that the derivative of logdet(Θ) equals Θ−1 = W.

The upper right block of the gradient equation from Eq. 2.10 is

w12− s12−λSign(θ12) = 0. (2.11)

On the other hand, the sub-gradient equation from Eq. 2.8 works out to be

W11β − s12 +λSign(β ) = 0, (2.12)

where w12 = −W11θ12/θ22 = W11β . The equivalence of the first two terms is obvious. For the

sign terms, since W11θ12 +w12θ22 = 0 from Eq. 2.10, we have that θ12 = −θ22W−1
11 w12. Since

θ22 > 0, it follows that Sign(θ12) = −Sign(W−1
11 w12) = −Sign(β ). This proves the equivalence.

Thus, we can solve the Lasso problem Eq. 2.8 instead of solving the original Eq. 2.3.

In terms of inner products, the lasso estimates for the pth variable on the others take S11 and s12

as the input data , where p is the dimension of the samples. To solve Eq. 2.8, we instead use W11
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and s12, where W11 is our current estimate of the upper block of W. We then update w and cycle

through all of the variables until convergence. The main steps of this estimation process are shown

in the following Algorithm.

Algorithm: The `1-penalized Log-divergence Minimization via Graphical Lasso
1, Initialize W = S+λ I. The diagonal of W remains

unchanged in what follows.

2, Repeat for j = 1,2, ...p,1,2, ...p, ... until convergence:

(a) Partition the matrix W into two parts.
Part 1: all but the jth row and column.
Part 2: the jth row and column.

(b) Solve the estimating equation
W11β − s12 +λSign(β ) = 0

using the cyclical coordinate-descent algorithm for the
modified Lasso.

(c) Update w12 = W11β̂ .

3, In the final cycle (for each j) solve for θ̂12 =−β̂ · θ̂22,
with 1/θ̂22 = w22−wT

12β̂ .

Note that the Lasso [64] problem in step (b) above can be efficiently solved by cyclical coordinate-

descent algorithm [72]. Here are the details. Let V = W11, then the update has the form

β̂i← S((s12) j−∑
k 6= j

Vk jβ̂k,λ )/Vj j (2.13)

for j = 1,2, ...p,1,2, ...p, ..., where S is the soft-threshold operator:

S(x, t) = sign(x)(|x|− t)+. (2.14)

It cycles through the predictors until convergence.
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Although step 2 has estimated Θ̂−1 = W, it can recover Θ̂ = W−1 relatively cheaply. Note that

from the partitioning in Eq. 2.10, we have

W11θ12 +w12θ22 = 0

wT
12θ12 +w22θ22 = 1,

(2.15)

from which we derive the standard partitioned inverse expressions

θ12 =−W−1
11 w12θ22

θ22 = 1/(w22−wT
12W−1

11 w12).

(2.16)

According to Eq. 2.16, θ̂22 and θ̂12 can be easily computed in step 3. The Graphical Lasso algo-

rithm stores all the coefficients β for each of the p problems in a p× p matrix, and compute θ̂ after

convergence. As was discussed in [70], the estimator θ̂ should be Symmetric Positive-Definite

(SPD) and Sparse. Furthermore, the recent work [73] leverages the similar method to estimate

covariance matrix and proves its superiority under HDLSS settings.

2.2.4 Evaluation

In this section, we first introduce the data preprocessing based on the raw EHR data. After that,

the existing algorithms that will be used as the baseline settings when comparing with CRLEDD

are given. Then, the experimental results are demonstrated and discussed.
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2.2.4.1 Data Preparation

To evaluate CRLEDD, we select the de-identified EHR data of 10 participating schools from the

entire dataset including 31 student health centers across the U.S. with totally over 1 million patients

and 6 million visits records provided by the College Health Surveillance Network (CHSN) [74].

The available information includes ICD-9 diagnostic codes, CPT procedural codes, and limited

demographic information. There are over 200,000 enrolled students in those 10 schools represent-

ing all geographic regions of the U.S. The demography of enrolled students (sex, race/ethnicity,

age, undergraduate/graduate status) in the selected dataset closely matches the demography of the

students in the universities throughout the U.S.

We select the most common mental health disorders, anxiety and mood disorders from primary

care data, as the target disease for early detection. Thousands of ICD-9 codes are clustered into

283 categories according to the AHRQ Clinical Classification Software and expert opinions [69].

We use his/her diagnosis-frequency vector based on the clustered code set to represent each patient,

where four clustered codes (i.e., 651, 657, 658, 662) represent anxiety and mood disorders.

Note that in our research, we do not predict these four types of mental disorders separately, as these

four disorders are often co-occurring in clinical practices [75]. Further, patients with less than two

visits were excluded from the analysis.

Notably, the visit data and corresponding diagnosis information within one-month of the first di-

agnosis of anxiety/depression in the target group is excluded for the aim of early detection at least

one to three-month prior to diagnosis. The diagnosis-frequency vectors are used as predictors in

our experiment and only include the diagnosis frequency of non-mental health diagnoses with all

mental health related information removed. In this case, our experiment is equivalent to predicting

whether a patient is likely to have or develop a mental health disorder based on their diagnosis
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history.

2.2.4.2 Baseline Algorithms and Comparison Settings

To understand the performance impact of CRLEDD beyond classic LDA, we first propose two

kinds of baseline approaches to compare against CRLEDD, then two types of discriminative learn-

ing models are prepared for the comparison:

Regularized LDA Classifiers (three algorithms) – First, we use the typical LDA classifier, which

employs the sample covariance estimation. Then, we consider the Shrinkage LDA [76] using

shrinkage covariance estimator with the sparsity parameter β . Finally, we propose to use DIAG–a

special Shrinkage with β = 0.0.

Downstream Classifiers (four algorithms) – We start with Support Vector Machine (SVM, with reg-

ularization parameter C = 1.0) [46], and then use Logistic Regression (Log. Reg.) [77]. Finally, we

adopt two Adaboost classifiers ensembling 10 and 50 logistic regression classifiers (AdaBoost(10)

and AdaBoost(50)).

With the seven baseline algorithms, we perform experiments with training samples and testing

samples. We randomly select 50, 100, 150, 200, and 250 patients with mental health disorders

as the positive training samples, and randomly select the same number of patients without a

mental health diagnosis as negative training samples to maintain the balance. In terms of testing

samples, we randomly select 500, 1000, 1500, and 2000 patients from each of the two patient

classes (positive/negative) to build the testing set.

Then, we reveal the initial settings of some key parameters in proposed CRLEDD algorithm. The

L1 regularization parameter λ is set to be 1, 10, 100 for comparison. The tolerance to declare

convergence for graphical lasso is set to be 10−4, and the number of maximum iteration for its
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optimization is set to be 100. For each setting, we execute the seven algorithms and repeat 30

times. Then, we compare the accuracy and F1-Score of different algorithms.

Also we perform an experiment to compare `1-norm error of estimator between LDA and CRLEDD

with different sample sizes. Specifically, we randomly select 100 and 200 patients from each of

the two patient classes (positive/negative) to build the testing samples.

2.2.4.3 Experiment Results

In this experiment, two types of comparison results are demonstrated:

1) Accuracy and F1-Score Comparison: Figures 2.2 and 2.3 present the performance in terms

of accuracy and F1-score of our method and baselines with various sizes of testing samples given

different training sample sizes (more results are attached in the appendix). As can be seen from the

experiment results, CRLEDD clearly outperforms the baseline algorithms in terms of overall ac-

curacy, and F1-score, in all settings. Specifically, CRLEDD achieves 3.1%-20.9% higher accuracy

and 11.7%-31.9% higher F1-score, compared to the typical LDA; CRLEDD achieves 7.5%-15.7%

higher accuracy and 13.8%-41.9% higher F1-score, compared to the DIAG; CRLEDD achieves

6.7%-19.2% higher accuracy and 12.3%-71.6% higher F1-score, compared to the Shrinkage. Com-

pared to those robust classifiers such as SVM, Logistic Regression, and AdaBoost, CRLEDD still

clearly outperforms these baseline algorithms. Thus we can conclude that CRLEDD overall out-

performs the baseline algorithms in all experimental settings.

2) Sensitivity and Specificity Comparison: Table 2.1 additionally presents the performance with

regards to sensitivity and specificity. The sensitivity is the percentage of patients who are correctly

diagnosed as having the corresponding disease. As can be seen in the table, when training sample

is 100 and testing sample is 1000, the sensitivity of CRLEDD is 0.842 in average, obviously higher
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Figure 2.2: Accuracy Performance Comparison between CRLEDD and Baselines with Small
Training Datasets (Testing Sample Size =500× 2, 1000× 2, 1500× 2, 2000× 2 from left top
to right bottom, 90 days in advance).

than the sensitivity of SVM that have the highest value 0.633 among other baseline algorithms,

which can explain that the CRLEDD has greater ability to correctly detect patients than the other

baseline algorithms. The specificity which measures the proportion of people who are correctly

identified as not having the disease, provided by the CRLEDD is lower than the other baseline

algorithms. According to the table, CRLEDD achieves the highest value of the specificity as 0.510

when λ = 1, which is still lower than the LDA that have the lowest value 0.571 among other base-

line algorithm. Similarly, this also occurs when the training sample is 500 and the testing sample

is 4000. While, the CRLEDD is not better than the baseline algorithms in regards to specificity, it
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(b) F1-Score (1000×2 Testing Samples)
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Figure 2.3: F1-Score Performance Comparison between CRLEDD and Baselines with Small Train-
ing Datasets (Testing Sample Size =500× 2, 1000× 2, 1500× 2, 2000× 2 from left top to right
bottom, 90 days in advance).

performs better with regards to correctly identifying those individuals with the disease. Further, we

expect a high number of false positives because mental health disorders are often unrecognized in

primary care settings such as the student health centers. This oversight leads to adverse outcomes

and higher costs when patients with anxiety/depression cannot receive proper treatment on time.

Trade-off. Moreover, we can observe that the CRLEDD sacrifices some specificity to achieve high

sensitivity to some degree (33% gain in sensitivity VS 17% loss in Specificity when comparing

with LDA). However, we see the utility of CRLEDD as an opportunity to perform psychological

screening (e.g.; PHQ-9 [78]) in a primary care setting which could further identify the student’s
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Table 2.1: Sensitivity and Specificity Comparison

Accuracy F1-Score Sensitivity Specificity
Training Set:50× 2, Testing Set: 500×2

AdaBoost (×10) 0.627 ± 0.045 0.562 ± 0.091 0.498 ± 0.135 0.756 ± 0.073
AdaBoost (×50) 0.627 ± 0.036 0.547 ± 0.091 0.471 ± 0.137 0.783 ± 0.072
CRLEDD (λ = 1.0) 0.651 ± 0.026 0.694 ± 0.026 0.793 ± 0.057 0.510 ± 0.060
CRLEDD (λ = 10.0) 0.656 ± 0.017 0.713 ± 0.008 0.855 ± 0.027 0.456 ± 0.055
CRLEDD (λ = 100.0) 0.640 ± 0.029 0.710 ± 0.010 0.878 ± 0.034 0.402 ± 0.088
LDA 0.560 ± 0.020 0.554 ± 0.032 0.548 ± 0.054 0.571 ± 0.046
Logistic Regression 0.621 ± 0.037 0.523 ± 0.100 0.440 ± 0.148 0.801 ± 0.081
SVM 0.616 ± 0.017 0.621 ± 0.029 0.633 ± 0.065 0.599 ± 0.064
DIAG 0.573 ± 0.023 0.528 ± 0.050 0.484 ± 0.076 0.662 ± 0.060
Shrinkage (β = 0.25) 0.569 ± 0.028 0.495 ± 0.169 0.469 ± 0.169 0.670 ± 0.122
Shrinkage (β = 0.5) 0.566 ± 0.025 0.488 ± 0.166 0.459 ± 0.164 0.672 ± 0.118
Shrinkage (β = 0.75) 0.570 ± 0.016 0.540 ± 0.039 0.509 ± 0.063 0.630 ± 0.045

Training Set:250× 2, Testing Set: 2000×2
AdaBoost (×10) 0.633 ± 0.027 0.536 ± 0.089 0.447 ± 0.140 0.818 ± 0.086
AdaBoost (×50) 0.631 ± 0.026 0.535 ± 0.087 0.445 ± 0.137 0.818 ± 0.085
CRLEDD (λ = 1.0) 0.686 ± 0.006 0.721 ± 0.009 0.813 ± 0.029 0.558 ± 0.026
CRLEDD (λ = 10.0) 0.675 ± 0.007 0.720 ± 0.006 0.838 ± 0.021 0.512 ± 0.028
CRLEDD (λ = 100.0) 0.671 ± 0.009 0.719 ± 0.004 0.844 ± 0.028 0.497 ± 0.043
LDA 0.648 ± 0.009 0.648 ± 0.018 0.651 ± 0.037 0.644 ± 0.025
Logistic Regression 0.628 ± 0.028 0.520 ± 0.095 0.427 ± 0.146 0.828 ± 0.090
SVM 0.666 ± 0.009 0.672 ± 0.014 0.687 ± 0.030 0.644 ± 0.023
DIAG 0.635 ± 0.015 0.621 ± 0.030 0.601 ± 0.053 0.668 ± 0.032
Shrinkage (β = 0.25) 0.638 ± 0.012 0.631 ± 0.027 0.621 ± 0.051 0.656 ± 0.032
Shrinkage (β = 0.5) 0.642 ± 0.011 0.635 ± 0.026 0.626 ± 0.050 0.657 ± 0.032
Shrinkage (β = 0.75) 0.641 ± 0.010 0.635 ± 0.024 0.628 ± 0.046 0.655 ± 0.030

risk of a mental health disorder. Because of this, we focus more on correctly diagnosing those

patients with the target disease.

3) Estimator Error Comparison: We assume CRLEDD improves LDA because that the sparse

precision matrix used in CRLEDD is more “precise” than the sample precision matrix used in

simple LDA models when the training sample size is limited. Thus, we compare the `1-norm error

of these two estimators and the results show that CRLEDD can always outperform with less error

in different sample sizes. Figure 2.4 presents the average error between precision matrices in `1-

norm. The results show that, compared to LDA (Σ−1
S ), the precision matrix estimated in CRLEDD
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Figure 2.4: `1-norm Error Comparisons of Estimators on Different Sample Sizes

(Θ̂) using small samples is closer to the precision matrix estimated using large samples. Note that

we repeat the comparison in each setting for 30 times to estimate the average errors.

4) Causality Graph Visualization: To validate the key algorithm of CRLEDD, we draw a causality

graph based on the precision matrix in Eq. 2.3. Specifically, we randomly select a training set with

4000 balanced samples and threshold [79] the Graphical Lasso (λ = 0.1) at level

Φ
−1(1− α

p(p−1)
)σ̂i j/

√
n (2.17)

where α = 0.05 and σ̂2
i j = Θ̂iiΘ̂ j j + Θ̂2

i j. We leverage this threshold to pick up the strong causal-

ities node pairs at the 95% significance level. As shown in Figure 2.5, each node in the graph

represents a category of disorder and the thickness of the edge shows the intensity of the causal-
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Figure 2.5: Causality Graph

ity. Further, we present the undirected disorder pairs by ranking their causality in the Figure 2.6.

According to our results, we speculate that the disorders can be grouped into those that are related

to anxiety and mood disorders such as other upper respiratory infections, other connective tissue

diseases, and administrative/social admission. Other diagnoses are the ones that are unrelated to

anxiety/depression such as immunizations and screening for infectious disease, and contraceptive

and procreative management. We hypothesize that in the highest risk level that their are pairs of

which both or only one of diagnoses are related to anxiety/depression in the higher risk group. For

example, prior epidemiological studies suggest that upper respiratory infections affect mood and

cognition, and psychological stress which is a significant risk factor for upper respiratory infec-

tions [80, 81]. Further clinical investigation is needed to fully understand these disorder pairs, but

in general, these findings are informative for the early detection of anxiety/depression.
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Figure 2.6: Causality Ranking of Disorders Pairs (Undirected).

2.2.4.4 Conclusion on Experiment Results

In the experiments, we evaluate CRLEDD using the empirical EHR datasets, and compare the

algorithm with other classifiers under the same balanced dataset settings. The overall evaluation

result shows that our algorithm significantly outperforms the existing linear discriminant analysis

classifiers and other downstream classifiers, with both higher accuracy and F1-score. The case

studies based on the estimated precision matrix show that the Graphical Lasso estimator used
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in CRLEDD can reduce the `1-norm estimation error and improve the accuracy of classification,

on top of the classical LDA classifiers. Further, we visualize the graph of casualties discovered

from the data, which makes sense in the medical contexts [80, 81]. It is reasonable to conclude

that, through lowering the error of precision matrix estimation, CRLEDD efficiently recovers the

casualties between diagnoses related to the social anxiety/depression population from the data, then

it improves the classification accuracy/F1-score by incorporating the well-recovered casualties.

Note that our algorithm, along with all other baseline algorithms, is evaluated under balanced

settings.

Efficiency Comparison. Also, we compare the time consumption of CRLEDD algorithm with

most competitive algorithm SVM (500 patients for training and 2000 patients for testing). On

average, CRLEDD takes 334.75 seconds for training and testing which is slightly more than the

SVM algorithm (295.21 seconds) but achieve 15% better accuracy. (The experiment platform is

Windows OS with 2.8GHz CPU).

2.3 DBLD: The De-Biased Estimation for Covariance-Regularized FLD

In this section, we introduce our proposed algorithm DBLD— De-Biased Fisher’s Linear Dis-

criminant Analysis (via Graphical Lasso), then present the theoretical analysis on the theoretical

properties of the proposed algorithms.

Given the i.i.d. labeled data pairs (x1, `1) . . . (xm, `m) drawn from the two classes with certain

priors, as shown in Algorithm . The algorithm first (i) estimates the sample estimation of covari-

ance matrices and the mean vectors, then (ii) leverages CRLD to estimate the shrunken projection

vector β̂ G. Further, DBLD (iii) proposes a de-biased estimator (denoted as DeBias function) to

de-bias β̂ G and obtain the projection vector β̂ D. Finally, we introduce a decision rule that enables
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classification using the estimated β̂ D.

Algorithm: DBLD Estimation Algorithm (Algorithm 1)
1: procedure DBLD((x1, `1) . . . (xm, `m))
2: /*(i) Sample Estimators for Mean and Covariance */
3: X+← PositiveSampleSet((x1, `1)..(xm, `m));
4: X−← NegativeSampleSet((x1, `1)..(xm, `m));
5: µ̄+← 1

|X+| ·∑x∈X+
x, µ̄−← 1

|X−| ·∑x∈X−x;

6: Σ̄+← 1
|X+| ·∑x∈X+

(x− µ̄+)(x− µ̄+)
>;

7: Σ̄−← 1
|X−| ·∑x∈X−(x− µ̄−)(x− µ̄−)

>;

8: µ̄ ← |X+|·µ̄++|X−|·µ̄−
|X+|+|X−| , Σ̄← |X+|·Σ̄++|X−|·Σ̄−

|X+|+|X−| ;

9: /*(ii) CRLD Estimator (to obtain β̂ G) */
10: Θ̂← GraphicalLasso(Σ̄,λ );
11: β̂ G← Θ̂(µ̄+− µ̄−);
12: /*(iii) DBLD Estimator (to obtain β̂ D) */
13: X← [x1,x2, ...xm]; /*p×m matrix */
14: L← [`1, `2, . . . `m]

>; /*m×1 matrix */
15: U← [µ̄, µ̄, . . . µ̄];
16: /*U is an m× p matrix, every column is µ̄*/
17: c←−µ̄>β̂ G;
18: C← [c,c, . . . ,c]>;
19: /*C is a m×1 matrix, every row is c*/
20: β̂ D← β̂ G + 1

m · Θ̂(X−U)
(

2 ·L−X>β̂ G−C
)

21: return β̂ D;
22: end procedure

In the following section, we present the design of the De-Biased Estimator (denoted as DeBiasing

function in Algorithm ) to obtain β̂ D, then introduce the decision rule for optimal classification.

Later we analyze the theoretical properties of β̂ D.

2.3.1 The De-Biased Estimator

Inspired by the De-biased Lasso [82], we propose to improve the performance of CRLD through

de-biasing β G. Given m labeled training data (x1, `1),(x2, `2), . . .(xm, `m) with balanced labels,

30



the Graphical Lasso estimator Θ̂ on the data and the CRLD model (i.e., β̂ G), we propose a novel

de-biased estimator of β̂ D that takes the form as

β̂
D← β̂

G +
1
m
· Θ̂(X−U)

(
2 ·L−X>β̂

G−C
)
, (2.18)

where we denote X as an p×m matrix where 1 ≤ i ≤ m and the ith column is xi; L as an m× 1

matrix (i.e., vector) whose ith row is `i ∈ {±1}; U is a p×m matrix where each column is µ̄ (as

line 7 in Algorithm ); and C is an m×1 matrix where each row is c (as line 16 in Algorithm ).

2.3.1.1 The DBLD Classifier

Given the de-biased estimator β̂ D, the DBLD classifies the input vector x using the following rule:

f̂ D(x) = sign

((
x>− µ̄++ µ̄−

2

)>
β̂

D + log(π+/π−)

)
. (2.19)

In the following section, we present the analytical results of DBLD, including the computational

complexity of de-biasing and statistical rate of convergence.

2.3.1.2 Complexity Analysis of DBLD

In this section, we analyze the computational complexity for the three steps of Algorithm 1. The

step (i) estimates the sample covariance matrices and mean vectors, which consumes at most

O(p2 ·m) operations. The step (ii) performs Graphical Lasso and matrix multiplication, where

the complexity based on standard implementation [35] is upper-bounded by O(p3). The step (iii)

de-biasing is implemented as an exact formula with O(p2) complexity.

Remark 1. All three steps of Algorithm 1 are scalable on both the number of dimensions (p) and
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the number of training samples (m). The overall complexity of the three steps is O(p3 + p2 ·m).

Under the HDLSS setting p > m, the computational complexity of DBLD is upper-bounded by

O(p3). On the other hand, with large sample setting where m ≥ p, the worst case computational

complexity of DBLD is bounded by O(p2 ·m). Obviously, the proposed de-biasing estimator (i.e.,

step (iii)) with complexity O(p2) would not bound the performance, when compared to the first

two steps.

2.3.1.3 Convergence Analysis of DBLD

In order to analyze the performance of DBLD, we first define the linear projection vector of

the optimal FLD as β ∗. Given m samples (x1, `1), . . .(xm, `m) drawn i.i.d. from N (µ∗+,Σ
∗)

and N (µ∗−,Σ
∗) with the equal priors for training, the optimal projection vector should be β ∗ =

Θ∗(µ∗+−µ∗−) and Θ∗ = Σ∗−1. We intend to understand how close β̂ G and β̂ D approximate to the

optimal estimation β ∗.

Assumption 1. We follow the assumptions made in [83] that a positive constant K having

1/K ≤ λmin(Σ
∗)≤ λmax(Σ

∗)≤K

exists. The operators λmin(·) and λmax(·) denote the smallest and largest eigenvalues respectively.

In this way, there exists ‖Σ∗‖2 ≤K and ‖Θ∗‖2 ≤K .

Assumption 2. We further follow the assumption that, the data vectors for training are all realized

from a random vector X and there exists an constant B having |X |2 ≤B. Thus there has |µ̄+|2 ≤

B and |µ̄−|2 ≤B.

Theorem 1. With appropriate setting of tuning parameter λ �
√

logp/m (in Eq 2.3), the `2-vector-
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norm convergence rate of CRLD β̂ G approximating to the optimal estimation β ∗ is:

|β̂ G−β
∗|2 = Op

(√
(p+d) log p

m

)
, (2.20)

where d = max1≤i≤p|{ j : Σ∗
−1

i, j 6= 0}| refers to the maximal degree of the graph (i.e., population

inverse covariance matrix).

Proof. Here, we first prove the upper bound of |β̂ G−β ∗|∞. As was defined β̂ G = Θ̂(µ̄+− µ̄−),

then we have:

|β̂ G−β
∗|2 = |Θ̂(µ̄+− µ̄−)−Θ

∗(µ∗+−µ
∗
−)|2. (2.21)

Considering the inequities |x+ y|2 ≤ |x|2 + |y|2 and |Ax|2 ≤ ||A||2 · |x|2, we have

|β̂ G−β
∗|2 ≤ ||(Θ̂−Θ

∗)||2 · |µ̄+− µ̄−|2

+‖Θ∗‖2
(
|µ̄+−µ

∗
+|2 + |µ̄−−µ

∗
−|2
)
. (2.22)

According to [83], when λ �
√

logp/m, we consider the spectral-norm convergence rate ‖Θ̂−

Θ∗‖2 ≤ ‖Θ̂−Θ∗‖F = Op(
√
(p+d) · log p/m), the asymptotic rate of sample mean vector [84] is

|µ̄+− µ∗+|2 = Op(
√

p/m) and |µ̄−− µ∗−|2 = Op(
√

p/m), with the increasing number of dimen-

sions p and number of samples m.

Further, there has ‖Θ∗‖2 ≤K (Assumption 1) and `2-norms of all mean vectors are bounded by

B. In this way, there must exist positive constants C1 and C2 having:

|β̂ G−β
∗|2 ≤C1 ·2B

√
(p+d) log p

m
+C2K

√
p
m
. (2.23)
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Thus, according to the definition of asymptotic rate, we conclude the convergence rate as:

|β̂ G−β
∗|2 = Op

(√
(p+d) log p

m

)
. (2.24)

Theorem 2. With appropriate setting of tuning parameter λ (in Eq 2.3), the `2-vector-norm con-

vergence rate of DBLD β̂ G approximating to the optimal estimation β ∗ is:

|β̂ D−β
∗|2 = Op

(√
p log p

m

)
. (2.25)

Proof. Here, we prove the upper bound of |β̂ D−β ∗|∞. Consider the definition of the de-biased

FLD estimator β̂ D introduced in Eq. 2.18, we have

β̂
D = β̂

G +
2
m
· Θ̂XL− 2

m
· Θ̂UL− 1

m
· Θ̂(X−U)(X−U)>β̂

G. (2.26)

With the assumption of equal priors (π+ = π− = 0.5), L is a m× 1 label matrix that half of its

elements are +1 while the rest are all −1. X refers to a p×m matrix, where each column is a

sample of data e.g., x1,x2, . . . ,xm. As was defined β̂ G = Θ̂(µ̄+− µ̄−) =
2
m · Θ̂XL. As U is a matrix

in which each column is a constant vector (µ̄++ µ̄−)/2 and L is a vector with half elements as 1

and half elements as −1, thus 2
m · Θ̂UL = 2

m · Θ̂(UL) = 0. As each column of X refers to a sample

drawn from the original data distribution, thus 1
m(X−U)(X−U)> = Σ̄s is the sample covariance

matrix estimator. With all above in mind, we have

β̂
D = β̂

G +
(

I− Θ̂Σ̄s

)
β̂

G, (2.27)

where I refers to a p× p identity matrix. Note that
(

I− Θ̂Σ̄

)
β̂ G can be considered as the de-
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sparsification term that de-biases β̂ G.

Thus, considering the asymptotic rate of sample mean vector [84] is |µ̄+−µ∗+|2 =Op(
√

p/m) and

|µ̄−−µ∗−|2 = Op(
√

p/m), we have

|β̂ D−β
∗|2 ≤

∣∣∣∣∣∣(2 · I− Θ̂Σ̄s

)
Θ̂−Θ

∗
∣∣∣∣∣∣

2
|µ̄+− µ̄−|2 + |Θ∗(µ̄+−µ

∗
+− µ̄−+µ

∗
−)|2

≤ 2B
∣∣∣∣∣∣(2 · I− Θ̂Σ̄s

)
Θ̂−Θ

∗
∣∣∣∣∣∣

2
+C2K

√
p
m
.

(2.28)

According to [79], with appropriate setting of λ , the spectral-norm convergence rate of the de-

sparisified estimator Θ̂D =
(

2 · Θ̂− Θ̂Σ̄sΘ̂
)

under mild conditions should be ‖Θ̂D−Θ∗‖∞ =Op(
√

log p/m),

then there exists ‖Θ̂D−Θ∗‖2 = Op(
√

p log p/m), with the varying number of dimensions p and

number of samples m. In this way, with high probability, we conclude the convergence rate:

|β̂ D−β
∗|2 = Op

(√
p log p

m

)
. (2.29)

Remark 2. Compared to CRLD’s projection vector β̂ G, our method DBLD recovers the linear

projection vector β̂ D with a faster asymptotic rate, i.e.,
√

p log p/m v.s.
√
(p+d) log p/m in a

mild condition. Thus, it would benefit to some applications, such as dimensionality reduction and

feature selection. Our later experimental results show that DBLD outperforms CRLD with higher

classification accuracy, due to the faster statistical rate of convergence.

Remark 3. The proposed algorithm provides a sub-optimal solution, when compared to [20].

Our work intend to propose an estimator of β ∗ through approximating Σ∗, µ∗+ and µ∗− separately,

while [20] approximates β̂ ∗ straightforwardly via so-called “direct estimation”.
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2.3.2 Evaluation

To validate our algorithms, we evaluate our algorithms on a synthesized dataset (imported from [20]),

which is obtained through a pseudo-random simulation. The synthetic data are generated by two

predefined Gaussian distributions N (µ∗+,Σ
∗) and N (µ∗−,Σ

∗) with equal priors. The settings of

µ∗+, µ∗− and Σ∗ are as follows: Σ∗ is a p× p symmetric and positive-definite matrix, where each

element Σ∗i, j = 0.8|i− j|, 1≤ i≤ p and 1≤ j≤ p. µ∗+ and µ∗− are both p-dimensional vectors, where

µ∗+ = 〈1,1, . . . ,1,0,0, . . . ,0〉T (the first 10 elements are all 1’s, while the rest p−10 elements are

0’s) and µ∗− = 0. In our experiment, we set p = 200. To simulate the HDLSS settings, we train

CRLD and DBLD, with 20 to 200 samples randomly drawn from the distributions with equal pri-

ors, and test the two algorithms using 500 randomly generated samples. For each settings, we

repeat the experiments for 100 times and report the averaged results, in a cross-validation manner.
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Figure 2.7: More Performance Comparison based on Pseudo-Random Synthesized Data

In this experiment, we compare DBLD, CRLD and FLD (with pseudo inverse). The results of FLD

is not included here, as it performs extremely worse than both CRLD and DBLD under the HDLSS
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settings. Figure. 2.8(a) presents the comparison between DBLD and CRLD, in terms of accuracy,

where each algorithm is fine tuned with the best parameter λ . A detailed example of parameter

tuning is reported in Figure. 2.8(b), where we run both algorithms, with training set size as 160,

when varying λ from 1 to 70. From Figure. 2.8(a), it is obvious that DBLD outperforms CRLD

marginally. The λ tuning comparison addressed in Figure. 2.8(b) shows that, given a small λ , both

CRLD and DBLD cannot perform well, as the sparse approximation of β̂ G and β̂ D cannot be well

recovered in such case [32]. When λ ≥ 6, DBLD starts outperforming CRLD, while the advantage

of DBLD to CRLD decreases when increasing λ . However, even with an extremely large λ , DBLD

still outperforms CRLD. In Figure 2.7(a), we present the evaluation results based on unbalanced

datasets, where the accuracy of algorithms using m = 160 training samples drawn with varying

priors is illustrated. The proportion of positive training samples is varying from 10% to 40%. It is

obvious that all algorithms achieve their best performance when the proportion of positive training

sample is 10% (the most unbalanced case).
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Figure 2.8: Classification Accuracy of DBLD vs. CRLD on Pseudo-Random Synthesized Data
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To further verify our algorithms, we propose the optimal FLD classifier β ∗ = Θ∗(µ∗+−µ∗−), which

is all based on the population parameters. We compare the β̂ D, β̂ G and β̄ estimated by DBLD,

CRLD and FLD (with pseudo-inverse) to β ∗. Figure. 2.7(b) presents the comparison among |β̂ D−

β ∗|∞, |β̂ G−β ∗|∞ and |β̄ −β ∗|∞. It is obvious that β̂ D is more close to β ∗ than β̂ G and β̄ . This

observation further verifies the Theorem 1 and 2. We also compare the accuracy of β ∗ to CRLD,

DBLD and FLD. β ∗ outperforms these algorithms and the accuracy of β ∗ is around 84.4% It is

reasonable to conclude that DBLD outperforms CRLD, because β̂ D is more close to β ∗.
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Figure 2.9: Performance Comparison on Benchmark Datasets (p = 300 and p� m, D-Tree: De-
cision Tree, R-Forest: Random Forest, K-SVM: Kernel SVM, and L-SVM:Linear SVM)

2.3.2.1 Benchmark Evaluation Results

In Figure. 2.9(a), we compare DBLD and other FLD algorithms, including FLD with pseudo-

inverse, Sparse FLD via Graphical Lasso (CRLD) and Ye-FLD derived from [29], on the Web

datasets [85]. To simulate the HDLSS settings (p�m), we vary the training sample sizes from 30

to 120 while using 400 samples for testing. The numbers of dimensions p is 300. For each algo-

rithm, reported result is averaged over 100 randomly selected subsets of the training/testing data
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Table 2.2: Early Detection of Diseases Accuracy Comparison between DBLD and Baselines.

Training Set Size

Algorithm 100 200 300 400 500 600 700

DBLD 0.659±0.022 0.677±0.028 0.691±0.024 0.692±0.023 0.690±0.021 0.696±0.024 0.701±0.023

FLD 0.543±0.034 0.586±0.033 0.616±0.022 0.642±0.029 0.642±0.022 0.657±0.025 0.658±0.026

Ye-FLD 0.627±0.050 0.620±0.077 0.652±0.063 0.620±0.067 0.655±0.062 0.637±0.064 0.670±0.045

Decision Tree 0.621±0.046 0.649±0.031 0.652±0.041 0.655±0.030 0.671±0.028 0.665±0.031 0.668±0.040

Linear SVM 0.615±0.026 0.628±0.030 0.647±0.023 0.666±0.029 0.666±0.021 0.670±0.030 0.675±0.029

Kernel SVM 0.635±0.032 0.669±0.027 0.674±0.039 0.678±0.021 0.668±0.038 0.688±0.024 0.682±0.029

AdaBoost 0.631±0.035 0.630±0.039 0.620±0.028 0.622±0.027 0.621±0.022 0.617±0.025 0.626±0.070

CRLD 0.658±0.023 0.676±0.024 0.682±0.028 0.686±0.022 0.683±0.021 0.692±0.025 0.695±0.018

Random Forest 0.590±0.035 0.602±0.035 0.653±0.031 0.602±0.040 0.674±0.024 0.666±0.026 0.658±0.032

Table 2.3: Early Detection of Diseases F1-Score Comparison between DBLD and other Baselines.

Training Set

Algorithm 100 200 300 400 500 600 700

DBLD 0.690±0.028 0.708±0.027 0.722±0.024 0.729±0.018 0.727±0.0118 0.736±0.018 0.734±0.022

FLD 0.539±0.048 0.580±0.044 0.611±0.030 0.646±0.027 0.644±0.025 0.662±0.028 0.663±0.032

Ye-FLD 0.644±0.100 0.657±0.124 0.688±0.071 0.678±0.057 0.698±0.035 0.698±0.035 0.712±0.027

Decision Tree 0.626±0.120 0.671±0.074 0.675±0.088 0.703±0.032 0.695±0.034 0.676±0.078 0.690±0.097

Linear SVM 0.616±0.031 0.627±0.041 0.651±0.026 0.675±0.031 0.675±0.026 0.680±0.035 0.690±0.031

Kernel SVM 0.701±0.063 0.723±0.022 0.702±0.115 0.726±0.016 0.681±0.115 0.734±0.019 0.715±0.071

AdaBoost 0.560±0.081 0.533±0.107 0.498±0.065 0.503±0.078 0.500±0.080 0.482±0.066 0.503±0.070

CRLD 0.696±0.021 0.716±0.021 0.719±0.024 0.725±0.018 0.721±0.015 0.733±0.021 0.734±0.016

Random Forest 0.419±0.126 0.509±0.102 0.613±0.067 0.509±0.110 0.661±0.036 0.640±0.058 0.603±0.063

with equal priors. CRLD and DBLD are fine-tuned with the best λ . The experimental settings show

that DBLD consistently outperforms other competitors in different settings. The non-monotonic

trend of FLD with the increasing training set size is partially due to the poor performance of pseudo

inverse used in FLD.
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In addition to FLD classifiers, we also compared DBLD with other downstream algorithms includ-

ing Decision Tree, Random Forest, Linear Support Vector Machine (SVM) and Kernel SVM with

Gaussian Kernel. The comparison results are listed in Figure. 2.9(b). All algorithms are fine-tuned

with the best parameters under our experiment settings.

2.3.2.2 Early Detection of Diseases on EHR Datasets

To demonstrate the effectiveness of DBLD in handling the real problems, we evaluate DBLD on

the real-world Electronic Health Records (EHR) data for early detection of diseases [49]. In this

application, each patient’s EHR data is represented by a p = 295 dimensional vector, referring to

the outpatient record on the physical disorders diagnosed. Patients are labeled with either “posi-

tive” or “negative”, indicating whether he/she was diagnosed with depression & anxiety disorders.

Through supervised learning on the datasets, the trained binary classifier is expected to predict

whether a (new) patient is at-risk or would develop to the depression & anxiety disorders from

their historical outpatient records (physical disorder records) [49].

We evaluate DBLD and other competitors, including Linear Support Vector Machine, Nonlinear

SVM with Gaussian Kernel, Decision Tree, AdaBoost, Random Forest and other FLD baselines,

with varying training dataset size m from 100 to 700. Table 2.2 presents the comparison results. To

simplify the comparison, we only present the results of the algorithm with fine-tuned parameter,

which is selected through 10-fold cross-validation. It is obvious that DBLD and CRLD outperform

other baseline algorithms significantly, while DBLD performs better than CRLD. The advantage

of DBLD over other algorithms, such as SVM, is extremely obvious when the size of training

dataset m is small. With the increasing sample size, though the margins of DBLD over the rest

of algorithms decrease, DBLD still outperforms other algorithms. We also measured the F1-score

of all algorithms, DBLD still outperforms other competitors in the most cases. Please refer to
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Table 2.4: Description of Datasets for Classification

Datasets # Features # Samples

Leukemia 7,128 72 (47 / 25)
Colon 2,000 62 (40 / 22)

Table 2.3 for details.

2.3.2.3 Leukemia and Colon Cancer Datasets

We evaluate DBLD, CRLD and other baseline algorithms, including Decision Tree, Random Forest

and SVM, using leukemia and colon cancer datasets (derived from [85,86]) under HDLSS settings

(i.e., p = 7,128 and 2,000 vs. m = 20).

Table 2.4 presents the description of two datasets [85, 86] that we used to evaluate the proposed

and baseline algorithms. “Leukemia” refers to the leukemia cancer dataset [86] that includes 7,128

features and totally 72 samples (for training and testing). In this datasets, 47 samples are labeled

as “ALL” class while 25 samples are identified as “AML”. On the other hand, “Colon” refers to the

colon cancer datasets [85] that are with 2,000 features and totally 62 samples, where 40 samples

are negative and 22 samples are identified as positive. Both datasets are with a ultra-large number

of dimensions but with extremely low sample sizes (i.e., p� m).

To accurately estimate the performance of algorithms using these datasets under HDLSS settings,

we use cross-validation to limit the potential over-fitting. In each round of cross-validation, we first

randomly drawn 20 samples with equal prior from the datasets as the training set, and randomly

drawn 20 samples with equal prior from the disjoint set of training set as the testing set. For

each round of cross validation, there are no common samples shared by the two sets. We use
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Table 2.5: Accuracy and F1-Score Comparison between DBLD and other Baselines Based on
Colonar and Leuk Cancer Datasets.

Colon Leukemia

Algorithm Accuracy F1 Score Accuracy F1 Score

DBLD 0.803 0.802 0.964 0.964

CRLD 0.633 0.630 0.690 0.690

Decision Tree 0.669 0.658 0.804 0.800

Random Forest 0.801 0.798 0.957 0.956

SVM 0.797 0.812 0.906 0.914

the training set to train each classifier (i.e., p = 7,128 or 2,000 and m = 20 ), so as to simulate

the extremely HDLSS settings, then test the trained classifiers using the testing set. For each

experiment, we repeat the cross-validation for 100 rounds. All algorithms (including baselines and

DBLD) are tuned to have the best accuracy. The experiment results are shown in Table 2.5. All

results show that DBLD significantly improves CRLD, and it outperforms all baseline algorithms

with the highest accuracy and F1-score. Please note that though we trained classifiers using less

training data, baselines in our experiments perform comparably with the test errors reported in [86].

2.3.2.4 Summary of Experiment Results

We evaluate DBLD with a limited number of samples for training i.e., p > m or m 6� p, to un-

derstand its performance under HDLSS setting. For large sample scenario, i.e., when m� p, the

sample-based estimators may provide a robust estimation of LDA. In this case, singularity issues

might not exist, then regularization and further the de-biasing procedures are not mandatory.
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CHAPTER 3: MULTI-PARTY SPARSE DISCRIMINANT ANALYSIS

FOR DISTRIBUTED INTELLIGENT MEDICAL SYSTEMS

The Fisher’s Linear Discriminant Analysis (LDA) [22] is a method to find the linear combina-

tion of features that separates two or multiple classes, where it can be used in supervised learning

and feature selection. Considering a set of observations (training data), LDA can project the high-

dimensional data points to low dimensional space, and achieve optimal classification performances

by minimizing the overlaps between different classes in the low-dimensional space. Further, when

the number of measurements of each sample exceeds the number of samples in each class, where

it is so-called the High-Dimensional and Low Sample Size (HDLSS) settings, to improve the per-

formances of LDA, Sparse Discriminant Analysis (SDA) [20] has been proposed with sparsity

pursuit. While a wide variety of methods [20, 32, 87–90] have been proposed, Cai et al. [20] stud-

ied a direct estimator that can estimate SDA straightforwardly from labeled data with a provable

guarantee in asymptotic property and classification accuracy.

As far as we know, Multi-Party computing [9,10] becomes one of popular computing paradigm due

to the increasing needs of distributed data collection, storage and processing, where it also benefits

the privacy-preserved manner in different kinds of applications. In most multi-party computing

platform, “no raw data sharing” is an important pre-condition, where a machine learning model

should be trained using all data stored in distributed machines (i.e., parties) without any cross-

machine raw data sharing. Specifically, such multi-party distributed machine learning algorithms

can be accelerated by parallel computing and typically be divided into two types – data-centric

and model-centric methods [3,11–17]. On each machine, the data-centric algorithm first estimates

the same set of parameters (of the model) using the local data, then aggregates the estimated pa-

rameters via model-averaging for global estimation. The model with aggregated parameters is
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considered as the trained model based on the overall data (from multiple parties) and before ag-

gregated these parameters can be estimated through parallel computing structure in an easy way.

Meanwhile, model-centric algorithms require multiple machines to share the same loss function

with “updatable parameters”, and allow each machine to update the parameters in the loss func-

tion using the local data so as to minimize the loss. Based on this characteristic, model-centric

algorithm commonly updates the parameters sequentially so that the additional time consumption

in updating is sometimes a tough nut for specific applications. Even so, compared with the data-

centric, the model-centric methods usually can achieve better performances, as it minimizes the

risk of the model [11, 15, 18]. To advance the distributed performance of classical SDA, recently,

Tian and Gu et al. [19] proposed a data-centric SDA algorithm, which leverages the advantage of

parallel computing. Although it is intuitive that the model-centric counterpart for SDA could re-

ceive better performance, few work has been carried out due to the challenge in terms of efficiency

(i.e., the time consumption in sequential updating) through parallel computing.

To fill the gap, we are motivated to design a novel model-centric SDA learning algorithm for

multi-party parallelized discriminant learning. In this paper, we propose Multi-Party Parallelized

SDA (namely MP2SDA) that enables the direct estimation of SDA [20] to embrace the multi-party

parallel computing environment for sparse discriminant learning. Not only MP2SDA can achieve a

better performance provided by the model-centric algorithm, it also promotes the efficiency of the

algorithm through parallel computing mechanism. Specifically, MP2SDA first establishes multiple

threads (sets of machines) for parallel computing. In each thread, MP2SDA allocates the mean and

covariance matrix estimation tasks to each machine and allows each machine to estimate its local

mean vectors and covariance matrices based on the local data. Then, MP2SDA estimates the global

mean over all the data using the local means via the gossip-based stochastic gradient descent. Fur-

ther, MP2SDA proposes a distributed bootstrapping loss function and model the loss function using

the global mean and local covariance matrices. Finally, a gossip-based parallel stochastic gradient
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descent algorithm is employed to minimize the distributed bootstrapping loss function and estimate

the global discriminant projection vector. Compared with the approach in [20], which aggregates

all data on a single machine to learn the model, MP2SDA can effectively approximate to the optimal

solution without sharing any raw data. Compared with [19], which aggregates the locally learned

models through model-averaging and hard-thresholding, MP2SDA models and minimizes a dis-

tributed loss function based on SDA, parameterized with global/local estimates, straightforwardly.

Moreover, compared to normal single thread model-centric algorithm [21], MP2SDA additionally

processing parallel computing (multiple threads) when estimating the model parameters to improve

the performance with fast convergence rate.

3.1 Backgrounds

In this section, we first present the model of Fisher’s Linear Discriminant Analysis (LDA). Then,

we introduce the Direct Estimation of sparse linear discriminant analysis (SDA) proposed by Cai et

al [25]. Then we address the robust estimator under uncertain parameters using the “bootstrapping

loss function” minimization. Finally, we formulate the research problem of this paper.

3.1.1 Sparse Linear Discriminant Analysis

Fisher’s LDA Model: Linear Discriminant Analysis (LDA), which leverages a linear combination

of features that characterize or separate two or more classes of objects or events. LDA has been

shown to perform well and enjoy certain optimality as the sample size tends to infinity while the

dimension is fixed [20]. Given the LDA classifier ψF(Z) based on the given p-dimensional data

vector Z that is drawn from one of two distributions N (µ+,Σ) and N (µ−,Σ) with equal prior
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probabilities, the binary classification problem can be solved by

ψF(Z) = sign
{
(Z−µ)T

Θ(µ+−µ−)
}
, (3.1)

where µ = (µ+ + µ−)/2; Θ = Σ−1 is the inverse covariance matrix; µ+ and µ− are the mean

vectors of the positive samples and negative samples respectively; ψF(Z) classifies Z into positive

class if and only if ψF(Z) = 1. In practice, µ+, µ− and Θ are unknown, we need to estimate µ+, µ−

and Θ from observations. Specifically, we assume the data Z is randomly drawn from N (µ+,Σ)

and N (µ−,Σ) with equal priors.

A simple way to estimate µ+, µ− and Θ is to use their sample estimator: µ̄+, µ̄−, Θ̄ = Σ̄−1, where

Σ̄ is pooled sample covariance matrix estimation [91] with respect to the two classes. Note that,

under the High Dimensional Low Sample Size (HDLSS) settings, Σ̄ is often singular [54] and Σ̄−1

usually does not exist [92]. Thus, to train LDA, researchers [20,88] proposed to estimate the linear

discriminate projection vector β = Θ(µ+−µ−), instead of estimating Θ and µ+−µ− separately.

Loss Function of Direct SDA (Sparse β ) Estimation: Based on the eq. 3.1, Cai and Liu (2011) [20]

proposed a direct estimation method for sparse linear discriminant analysis by estimating β through

a constrained `1 minimization method:

argmin
β∈ℜp

{
|β |1 s.t.|Σ̄β − (µ̄+− µ̄−)|∞ ≤ ε

}
, (3.2)

where ε is a tuning parameter.
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3.1.1.1 Bootstrapping Loss Function Minimization

In this section, we introduce a robust estimator that can minimize the loss function with uncertain

parameters. Given a loss function L (ω|θ), where θ is an unknown parameter following a known

probabilistic distribution with density function P(θ). To approximate the optimal ω∗ that mini-

mizes the loss under the uncertainty of θ , we need a solution to minimize the expectation of loss

over θ

ω
∗ = argmin

ω

Eθ∼P (L (ω|θ)) . (3.3)

To simplify the computation, a bootstrapping solution is frequently used, where the algorithm

first randomly draws θ1,θ2, ...,θm from the distribution with the density function P(θ), and then

approximates ω∗ by minimizing the bootstrapping loss function

ω̂m = argmin
ω

m

∑
i=1

(L (ω|θi))/m. (3.4)

As θ1,θ2, ...,θm are drawn from the distribution randomly, the sum of loss functions can approx-

imate the expectation of loss function under Central-Limit Theorem [93] with large m, where

lim
m→∞

ω̂m = ω
∗. Recent studies [94,95] show that the bootstrapping loss function minimization can

obtain a robust estimation of ω under the uncertainty of θ .

3.1.1.2 Stochastic Gradient Descent

In order to solve the optimization problem in Eq. 3.4, a lot of optimization algorithms have been

proposed. Among them, Gradient Descent (GD) is an iterative optimization algorithm, where,

with an initial setting of ω , the algorithm updates ω using the gradient information of ω . The SGD

algorithm keeps updating ω iteratively, until the total number of iterations exceeds the maximum

allowed value or the updated error converges. Specifically, in each (the t + 1th) iteration, the GD
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algorithm updates ωt and obtains ωt+1 using the following scheme:

ωt+1← ωt−η ·
m

∑
i=1
5L (ωt |θi)/m, (3.5)

where η refers to the step size and ∑
m
i=15L (ω|θi) is the sum of gradients.

However, sometimes, the sum of gradient functions are not available. For example, in distributed

computing environments, θi’s are distributed in multiple machines and are not sharable. In this

case, Stochastic Gradient Descent (SGD) algorithm has been proposed to solve the optimiza-

tion problem in Eq. 3.4 in an ad-hoc manner. In each iteration, compared to GD, the SGD ran-

domly picks up one θi from θ1 . . .θm, and obtains ωt+1 using the gradient of a single loss function

L (θt |θi). Specifically, in the iteration, SGD randomly selects an integer i ∈ [1,m], then it updates

ω using

ωt+1← ωt−η ·5L (ωt |θi). (3.6)

Note that, in distributed optimization problems, where θi’s are distributed on different machines,

the aforementioned algorithm can be implemented as a gossip-based stochastic gradient descent

through exchanging the (updated) ω between machines to approximate the optimal solution.

3.1.1.3 Parallelized Stochastic Gradient Descent

To further accelerating the optimization process, we leverage the Parallelized SGD framework to

solve the optimization problem in Eq. 3.4. Suppose the SGD algorithm can be regarded as a single

thread with the index k, we reclaim the Eq. 6 as

ω
k
t+1← ω

k
t −η ·5L (ωk

t |θi), (3.7)
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where k ∈ {1...S}, S is the size of multiple threads (Leaders). Note that each kth thread runs an

independent SGD algorithm and the kth optimal result ω̂k can be obtained when the SGD algorithm

converged. Once we have all the converged ω̂k from S threads, the overall optimal result can be

averaged by

ω̄ ← 1
S

S

∑
k=1

ωk. (3.8)

Actually, the multi-thread process run the SGD algorithm in parallel and does not affect other

threads when passing the message among the selected machines. To demonstrate the speedup of

the Parallelized SGD algorithm, we briefly introduce the convergence analysis of the algorithm.

Specifically, according to the concentration for distribution [96], the Parallelized SGD algorithm is

converging to a stationary distribution exponentially faster than the traditional stochastic gradient

descent. Also, the guarantees for stationary distribution achieving have been proved [96].

3.1.1.4 Problem Formulation

Given m machines, where each (the jth) machine stores n labeled samples with sample estima-

tion of means and covariance matrix µ̄ j, µ̄
j
+, µ̄

j
− and Σ̄ j, our work intends to estimate the linear

discriminant projection vector β using the estimator listed in Eq. 3.2, while ensuring that the raw

data, µ̄ j, µ̄
j
+, µ̄

j
− and Σ̄ j on each machine are not shared with other machines.

Specifically, we assume the n data samples on each machine are randomly drawn from the proba-

bility distributions N (µ+,Σ) and N (µ−,Σ) with equal priors. Given µ̄ j, µ̄
j
+, µ̄

j
− and Σ̄ j estimated

using the local data stored on each (the jth) machine, with asymptotic properties that

lim
m→∞

1
m

m

∑
j=1

µ̄
j
+ = µ+, lim

m→∞

1
m

m

∑
j=1

µ̄
j
− = µ−, lim

m→∞

1
m

m

∑
j=1

Σ̄
j = Σ,
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our work intends to estimate/approximate β̂ ∗ that

β̂
∗ = argmin

β∈ℜp

{
|β |1 s.t.|Σβ − (µ+−µ−)|∞ ≤ ε

}
. (3.9)

Note that all computation tasks are allocated to run on each machine, while each machine can only

access the local raw data and local estimations i.e., µ̄ j, µ̄
j
+, µ̄

j
− and Σ̄ j. Raw data sharing or local

estimation (means and covariance matrix) sharing are not allowed.

3.2 Framework Design

In this section, we present the framework design of MP2SDA algorithm which consists of the

following two phases:

• Training Phase - Given the n labeled data pairs for training on each (the jth) machine,

MP2SDA sorts the n data into two sets – T j
+ and T j

− for the positive training samples and

negative training samples, respectively. A three-stage learning algorithm is employed to (in

Stage I) first estimate the local mean vectors µ̄ j, µ̄
j
+ and µ̄

j
− using T j

+ and T j
− for (each)

jth machine, and approximate the averaged global means µ̂∗, µ̂∗+ and µ̂∗− using the gossip-

based stochastic gradient descent over all m machines. Then, with the global mean vectors,

MP2SDA (in Stage II) estimates the local covariance matrix Σ̂ j on each (the jth) machine

using the local data but the global means. The algorithm further (in Stage III) estimates the

truncated linear discriminant projection vector β̂ ∗T using µ̂∗+, µ̂∗− and Σ̂ j (1≤ j≤m) with the

same gossip-based optimization paradigm. Finally, the training phase of MP2SDA outputs

β̂ ∗T and µ̂∗ as the model of SDA.

• Testing Phase - Suppose a new data vector Z arrives at a random machine. With the SDA

model β̂ ∗T and µ̂∗ learned in training phase, MP2SDA outputs the classification result (i.e.,
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±1) as the computing result of sign
(
(Z− µ̂∗)T β̂ ∗T

)
.

In the following sections, we present the detailed design of the three-stage algorithm for the

MP2SDA training.

3.2.1 Multi-Party Message Passing Mechanism

As shown in Fig. 1, the Multi-Party Random Message Passing Mechanism is proposed and adopted

in Stage I and Stage III. The whole process consists of three parts which are Initialization, Multi-

round of Message Passing and Averaging and Truncation. Specifically, in Initialization part,

through the leader selection, each leader can start initializing the required parameters and inde-

pendently possess a thread of machines for message passing. Each of the orange block stands for

the machine participated in the multi-party community and one or some of them are selected to be

the leaders for the following message passing job (e.g., red leader superscripts have been marked

on the machine 1 and machine 3). Then, in Multi-round Random of Message Passing, the randomly

selected machine (leader) in its thread updates the target value based on the receiving message and

passes to the next machine for another round until converged. The solid blue lines represent one

time of message passing from one machine to another machine and the machine received (marked

with received on top on machine block)the message will update the target value, while the machine

not received message will stay idle for this round of message passing. Note that the blue dotted

lines differentiate from the solid one due to the fact that it will run more than one round of massage

passing until converged. Finally, in Averaging and Truncation, the converged target value from

all threads are aggregated and truncated to obtain the optimal target value, where every machine

can receive the optimal target value by broadcasting in the end. The machine block marked by the

checked superscript represents the target value passing through that machine has been converged

and will be broadcasted to all the machines (solid blue line). Then each machine will process the
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last step to average and truncate the received value.
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Figure 3.1: Multi-Party Random Message Passing Mechanism

3.2.1.1 Stage I: Global Mean Estimation

Due to the parallelism of multi-party computing, MP2SDA needs specific “Leaders” which are

considered a group of starting machines, where these machines can initialize the parameters there

to be used and start independent threads among each other. As shown in Algorithm 1, among

m machines, MP2SDA first randomly pick up a set of machines (denote as the set LS with size

S ≤ m) through function LeaderSetSelection(), where each machine in LS initialize a group of

key factors (µ̂, µ̂+, µ̂−, t) as (0,0,0,1), where 0 refers to a p-dimensional vector with all zero

elements and 1 refers to the first update of the algorithm. Then, the initialized key factors will be
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sent to the next selected machine for Algorithm 2.

Algorithm: Leader Selection on the jth Machine (Algorithm 1)

begin
LS ← LearderSetElection(S);

if j ∈LS then
INITIALIZE (0,0,0,1) to (µ̂ , µ̂+, µ̂−, t);

Draw jnext ∈ {1 . . .m} uniformly at random;

SEND (µ̂ , µ̂+, µ̂−, t) to the jnext machine for Algorithm 2;

end

end

Given the local training samples T j
+ and T j

− on each machine j, MP2SDA first estimates the local

mean vectors µ̄ j, µ̄
j
+ and µ̄

j
−. Algorithm 2 is a gossip-based stochastic gradient decent algorithm

that intends to approximate the global means using the estimators listed in Eq. 3.10.

µ̂ = argmin
µ∈ℜ1×p

1
m

m

∑
j=1
|µ−µ

j|∞, µ̂+ = argmin
µ∈ℜ1×p

1
m

m

∑
j=1
|µ−µ

j
+|∞, µ̂− = argmin

µ∈ℜ1×p

1
m

m

∑
j=1
|µ−µ

j
−|∞,

(3.10)

Specifically, the Algorithm 1 first receives the input mean vectors (initialed as 0 in the first run),

then it updates the input mean vectors using the local means, and randomly picks up the next ma-

chine and sends the updated mean vectors for further updating. Algorithm. 1 keeps picking up the

next machine for the updating, until (1) the total number of updates t exceeds the maximal number

of updates, or (2) the updating process converges (i.e., max
{∣∣µ̂− µ̄ j

∣∣
∞
,
∣∣∣µ̂+− µ̄

j
+

∣∣∣
∞

,
∣∣∣µ̂−− µ̄

j
−

∣∣∣
∞

}
≤

∆max). Once the updating process completes, Algorithm. 1 broadcasts all m machines with the fi-

nal global mean estimations µ̂ , µ̂+ and µ̂− for Algorithm 2 computation. Note that the notation
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∇|µ̂− µ̄ j|∞ refers to the gradient of function |µ̂− µ̄ j|∞ over µ̂ and can be implemented as:

(
∇|µ̂− µ̄

j|∞
)

k =


sign((µ̂− µ̄

j)k), if |(µ̂− µ̄
j)k| is the maximal for 1≤ k ≤ p

0, else
(3.11)

where (·)k refers to the kth element in the input vector.

Algorithm: Global Mean Vectors Estimation Algorithm on jth Machine (Algorithm 2)
Data:
µ̄ j, µ̄

j
+, and µ̄

j
− — the local mean vectors based on training samples on the jth Machine

Parameter:
η — step size
∆max — maximumly allowed perturbation
tmax — maximum number of allowed updates
begin

/* On receiving the message from the previous machine */

RECEIVE (µ̂ , µ̂+, µ̂−, t)
/* Updating mean vectors on the jth machine */

µ̂ ← µ̂−η ·∇|µ̂− µ̄ j|∞
µ̂+← µ̂+−η ·∇|µ̂+− µ̄

j
+|∞

µ̂−← µ̂−−η ·∇|µ̂−− µ̄
j
−|∞

t← t +1
/* Checking convergence conditions */

∆ = max
{∣∣µ̂− µ̄ j

∣∣
∞
,
∣∣∣µ̂+− µ̄

j
+

∣∣∣
∞

,
∣∣∣µ̂−− µ̄

j
−

∣∣∣
∞

}
if ∆≥ ∆max AND t ≤ tmax then

/* Not converged, continuing the algorithm */

Draw jnext ∈ {1 . . .m} uniformly at random;
SEND (µ̂, µ̂+, µ̂−, t) to the jthnext machine;

else
/* Converged, sharing the estimates to all machines */

BROADCAST (µ̂, µ̂+, µ̂−) to All machines;
end

end
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3.2.1.2 Stage II: Local Covariance Matrix Estimation

At the beginning of the Algorithm 3, all machines receive the same group of global mean vectors

and average them to obtain the averaged global mean vectors. Based on the averaged global mean

vectors µ̂∗+ and µ̂∗−, MP2SDA runs Algorithm 3 in parallel on each machine without any inter-

machine communication requirement. Specifically, this stage first estimates the sample covariance

matrix Σ̄ j using the averaged global mean vectors. Then, to handle the High-Dimensional Low

Sample Size settings, the algorithm leverages the de-sparsified Graphical Lasso estimator [79]

(D̂ j) to improve the estimation of the inverse covariance matrix. Finally, matrix inverse is used to

estimate the covariance matrix Σ̂ j on the jth machine.

Moreover, Algorithm 3 also executes another LeaderSetElection() function to reselect “Leaders”

to run Algorithm 4 in the next stage. Specifically, MP2SDA randomly picks up a group of machines

and initializes (0,1) to (β̂ ∗, t) on these machines, where 0 refers to a p-dimensional vector with all

zero elements and 1 refers to the first update of the algorithm. Then, these initialized (β̂ ∗, t) pairs

are sent to the next selected machine for Algorithm 4.

3.2.1.3 Stage III: Sparse Discriminant Projection Vector Estimation

Given the local covariance matrix Σ̂ on each machine j and the averaged global mean vectors

µ̂∗+, µ̂∗−, this stage intends to approximate the global estimation of β̂ ∗ via gossip-based stochastic

gradient decent. Indeed, Algorithm 4 minimizes the following loss function over the m machines

through gossip-based stochastic gradient decent:

β̂
∗← argmin

β∈Rp
λ · |β |1 +

1
m

m

∑
j=1

∣∣∣Σ̂ j
β − (µ̂+− µ̂−)

∣∣∣
∞

, (3.12)
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Algorithm: Local Covariance Matrix Estimation (with Global Mean) on the jth Machine
(Algorithm 3)
Data:
T j — training sample on j = 1,2, ...,m machine
Parameter:
λ — Graphical Lasso regularization parameter
begin

RECEIVE and AVERAGE (µ̂, µ̂+, µ̂−)i from all machines;
/* i ∈ {1,2...S} (start from S leaders) */

(µ̂∗, µ̂∗+, µ̂
∗
−)← 1

S

S
∑

i=1
(µ̂, µ̂+, µ̂−)i;

/* Sample covariance matrix estimation */

Σ̄
j
+ = (T j

+− µ̂∗+)(T
j
+− µ̂∗+)

T

Σ̄
j
− = (T j

−− µ̂∗−)(T
j
−− µ̂∗−)

T

Σ̄ j = 1
2(Σ̄

j
++ Σ̄

j
−)

/* Precision matrix estimation through Graphical Lasso [97] */

Θ̂ j← glasso(Σ j,λ )
/* De-sparsify precision matrix */

D̂ j←
(

2Θ̂ j− Θ̂ jΣ̄ jΘ̂ j
)

/* Obtain the de-sparsified covariance matrix */

Σ̂ j← (D̂ j)−1

/* Continuing on next machine */

LS ← LearderSetElection(S);
if j ∈LS then

INITIALIZE (0,1) to (β̂ ∗, t);
Draw jnext ∈ {1 . . .m} uniformly at random;
SEND (β̂ ∗, t) to the jnext machine for Algorithm 4;

end
end

where λ is a regularization parameter. Specifically, Algorithm 4 first receives the input β̂ ∗ for up-

dating (initialed as 0 in the first run), then it updates the inputed β̂ ∗ vector using Σ̂ j and µ̂+/µ̂−, and

randomly picks up the next machine and sends the updated β̂ ∗ for further updating. Algorithm 4

keeps picking up the next machine for the updating, until (1) the times of updates t exceeds the

maximal number of updates, or (2) the updating process converges. Once the updating process

completes, Algorithm 4 broadcasts all m machines with the final global estimation of β̂ ∗. To this

end, each machine receives the same group of β̂ ∗ (start from S “Leaders”), which is shown in Al-

gorithm 5. The same as the Stage I, MP2SDA averages these received β ∗ and run the Truncate(x)
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function, where this function can set all elements in vector x with relatively small value (|x| ≤ 10−4)

to zero, to obtain the final β ∗T . Finally, each machine has the well estimated β ∗T and µ̂∗ as the trained

SDA model.

Algorithm: Averaging and Truncating on the jth Machine (Algorithm 5)

begin

RECEIVE and AVERAGE β̂ ∗i from all machines;
/* i ∈ {1,2...S} (start from S leaders) */

β̄ ∗← 1
S

S
∑

i=1
β̂ ∗i ;

β̂ ∗T ← Truncate(β̄ ∗);

end

3.2.2 Remark on the Algorithm

In this section, we first analyze the optimality of the algorithm in a Bayesian estimator point of

view, then we brief the algorithm in a multi-party computing viewpoint.

Convergence of β̂ ∗T . Suppose the size of training set on each machine n is sufficiently large and

all these samples are drawn i.i.d. from Gaussian distributions N (µ+,Σ) and N (µ−,Σ). We can

assume that the local sample covariance matrix Σ̄ j estimated from local raw data on each (the jth)

machine should follow an inverse wishart distribution W −1(Σ,v(n)), where v(n) is a function on n

for the degree of freedom. With infinite number of machines m→∞ and infinite number of gossip

message passing (i.e., t → ∞), the algorithm can converge to the minimum of R̂(β ) (as the loss

function R̂ is convex [20]), where

R̂(β ) = EΣ∼W −1(Σ,v(n)) (λ · |β |1 + |Σβ − (µ̂+− µ̂−)|∞) . (3.13)

According to the definition of Bayes estimator [98], this loss function can be viewed as a Bayes Es-
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timator based on the posterior expectation on risk. We first denote the optimal solution of original

sparse LDA listed Eq. 3.2, based on the population parameter Σ and µ+/µ−, as β ∗SDA. Regarding to

the asymptotic efficiency of the Bayes estimator, we conclude:

√
m×n · (β̂ ∗−β

∗
SDA)→N

(
0, I(β ∗SDA)

−1) ,
where I(β ∗SDA) refers to the fisher information of β ∗SDA.

Communication Complexity of MP2SDA Algorithm. Due to the property of parallelized stochas-

tic gradient descent adopted in our work, we mainly discuss the communication complexity of the

proposed MP2SDA algorithm. Suppose the total training sample size is N, the number of dimen-

sions of the data sample is p, the number of the machine is m and the total number of iteration is

T , then the communication complexity of MP2SDA is O(S · p ·T ).

Multi-Party Computing Properties. Apparently, the proposed algorithm works efficiently, with-

out sharing raw data directly between each machine. Thanks to `∞-norm loss function used for

global mean estimation, the local means on each machine are not shared with others directly. Fur-

ther, the local covariance matrices are not shared due to the same reason. Note that, according to the

above asymptotic analysis, the performance of MP2SDA is comparable to those centralized meth-

ods that raw data sharing is required. Our subsequent experimental analysis based on real-world

data will further verify this point – in most cases, MP2SDA achieves comparable performance to

the centralized method derived from [20] using all aggregated data, with similar Accuracy and

F1-Score.
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3.3 Evaluation

In this section, we use both synthetic data and real-world data to evaluate the performance of

MP2SDA algorithm. Specifically, we compare our algorithm with distributed SDA algorithm and

centralized SDA algorithm. For centralized SDA, all samples are collected on one machine based

on the algorithm proposed by [20]. For distributed SDA, we adopt the algorithm proposed by [19]

which estimate the global estimator by aggregating local unbiased estimators through averaging

with a hard threshold. Note that we fix the size of the leader set as 10% of the total number of ma-

chines in each setting as follow to observe the performance of the parallel computing mechanism.

3.3.1 Synthetic Data Experiments

Experiment Setup. To validate our algorithm, we evaluate our algorithm on a synthesized dataset,

which is obtained through a pseudo-random simulation. The synthetic data are generated by two

predefined Gaussian distributions N (µ∗+,Σ
∗) and N (µ∗−,Σ

∗) with equal priors. The settings of

µ∗+, µ∗− and Σ∗ are as follows: Σ∗ is a p× p symmetric and positive-definite matrix, where p = 200,

each element Σ∗i, j = 0.8|i− j|, 1≤ i≤ p and 1≤ j ≤ p. µ∗+ and µ∗− are both p-dimensional vectors,

where µ∗+ = 〈1,1, . . . ,1,0,0, . . . ,0〉T (the first 10 elements are all 1’s, while the rest p−10 elements

are 0’s) and µ∗− = 0. While noting that the number of samples from two Gaussian distributions are

equal on each machine. (Settings of the two Gaussian distributions first appear in [19].) In order

to evaluate the performance of algorithms for comparison, we obtain the accuracy, F1-score, ROC

curve and AUC from the classification results. Specifically, accuracy and F1-score are calculated

by maximizing the accuracy/F1-score across all possible cutoffs in ROC curve and AUC stands

for the area under the ROC curve. Usually, a higher AUC means the model has a better fit on the

datasets.
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Parameters Tuning: For the centralized SDA algorithm, there is only one regularization parame-

ter λGlasso in Algorithm 2. By the theoretical result in [20], we can tune a proper λGlasso in the order

of O
√

log(p)
N . Therefore, we set λGlasso = C

√
log(p)

N and tune C by grid search. For the proposed

algorithm MP2SDA, other than λGlasso, there is one more parameter to be tuned– λ in Algorithm 3.

We process a similar grid search directly on this λ . For the distributed SDA algorithm, we follow

the same procedure to tune key parameters described in the experiment section of [19] by Tian and

Gu (2016). We report the best results based on fine-tuned parameters for all methods. Also, we fix

the testing samples at 400 for all the following experiments.

For better comparing the proposed MP2SDA with centralized SDA and distributed SDA, we arti-

ficially set up two experimental settings. On the one hand, for distributed computing, the number

of workload is the critical factor which may affect the performance of the algorithm. In this case,

we keep the total number of sample fixed to all the algorithms to check whether varying number

of machines can bring some differences, which means the number of samples distributed on each

machine is decreasing with growth of the number of machines. Since the number of samples on

each machine represent the workload for each machine, this setting intend to measure the perfor-

mance trading-off between the parallelism and the computing power of the machines. The detailed

settings are illustrated in Setting 1. On the other hand, if we fix the number of samples on each

machine instead of fixing the total number of samples, the workload of each machine will be same

so as to guarantee the same computing power. In such a setting, the primary goal is to explore

how parallelism can benefit the party of machines without the limit of the total number of samples.

The detailed settings are presented in Setting 2. Note that the Setting 2 is more suitable to reveal

the effect of parallelism, while Setting 1 is more reasonable in practice since most of the time the

number total samples (data) are limited.

Setting 1 – Fix the total training sample size and vary the number of machines: To investigate

the effect of the number of machines m, we fix the total training sample size N = 20000 and vary
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the number of machines. Figure 2 shows how the accuracy, F1-score and AUC of MP2SDA (we

use MP2SDA in all the figures), centralized SDA and distributed SDA change as the number of

machines grows. For each m, we repeat each algorithm for 10 times and report the average value.

From Figure 2, we can find that MP2SDA algorithm outperforms distributed SDA algorithm on

accuracy, F1-score and AUC. It is unsurprising that centralized SDA outperforms both MP2SDA

and distributed SDA on accuracy, F1-score and AUC.
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Figure 3.2: Performance Comparison among MP2SDA, SDA(centralized) and SDA(Distributed) on
synthetic datasets. We compare the Accuracy, F1-Score, AUC and ROC curve of each algorithm
when the total training sample size is fixed as 20000. (Note that the ROC curve is drawn when
the number of machines is 100)

Setting 2 – Fix the training sample size on each machine and vary the number of machines:

We alter the settings to evaluate the effect of averaging. We increase the number of machines m
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linearly as the total training sample size N, that is, the sample size on each machine n is fixed.

More specifically, we choose n = 400. Figure 3 displays the accuracy, F1-score and AUC of the

three algorithms.

The result shows that the performance of MP2SDA still outperforms distributed SDA algorithm

on accuracy, F1-score and AUC. Similarly, centralized SDA outperforms both MP2SDA and dis-

tributed SDA algorithm. We notice that the performance of MP2SDA is close to the performance

(accuracy, F1-score and AUC) of centralized SDA when the number of machines is equal to or less

than 20. The same situation occurs when the number of machines is equal to or greater than 100.
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Figure 3.3: Performance Comparison among MP2SDA, SDA(centralized) and SDA(Distributed) on
synthetic datasets. We compare the Accuracy, F1-Score, AUC and ROC curve of each algorithm
when the training sample size on each machine is set as 400. (Note that the ROC curve is drawn
when the number of machines is 100)
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Supplement – Receiver Operating Characteristic (ROC) curves: Additionally, we present the

ROC curves of three algorithms as an auxiliary indicator to analyze the performances. The setting

is picked up among the above experiments. Specifically, we run the simulation at the setting

of 100 machines and choose the data from the last repeat to draw the ROC curve. When the total

training sample size is fixed, the ROC curve in Figure 1 shows that MP2SDA algorithm outperforms

distributed SDA, although it does not surpass the performance of centralized SDA. While when

the training sample size on each machine is fixed, the ROC curve of MP2SDA overlaps with or

even covers the ROC curve of centralized SDA in Figure 2, which shows that the performance of

MP2SDA algorithm is comparable to the performance of centralized SDA. This result is consistent

with the variation tendency of the result on accuracy, F1-score and AUC in Setting 2.

Summary: In synthetic data experiments, we compare the performance of MP2SDA with dis-

tributed SDA and centralized SDA in two settings. At most circumstance, centralized SDA has the

best performance compared to the other two algorithms. Typically, the performance of MP2SDA

can approach the performance of centralized SDA in Setting 2 with the sample size on each ma-

chine increased (> 100) or stayed relatively low (6 20). Note that, in both settings, MP2SDA

outperforms distributed SDA significantly.

Moreover, according to the stable trends of each of the indicators (accuracy, F1-Score and AUC),

we can conclude that the parallelism or the distributed assignment does not harm the overall per-

formance and reach the saturation interval for our specific settings. Then, the stable performance

provides us an excellent computing environment that we can fully leverage the advantages of the

multi-party computing, where we will show the high efficiency it can achieve in the next section.
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3.3.2 Benchmark Data Experiments

Experiment Setup: To verify the effectiveness of MP2SDA algorithm on real datasets, we use

Phishing, Splice and Mushrooms datasets [99] to conduct the comparison. Specifically, we set the

size of total training samples varied from 200 to 2000 with 400 testing samples, while the numbers

of dimensions p are p= 54 (Phishing), p= 35 (Splice) and p= 60 (Mushrooms), respectively. The

number of machines is fixed at 4. We repeat each algorithm for 10 times and report the average

value. The adopted well-tuned parameters for the regularization terms are as follow: For MP2SDA,

λ = 15 and λglasso = 1; For MPSDA, λ = 10 and λglasso = 1; For centralized SDA, λglasso = 0.01;

For distributed SDA, λglasso = 0.1.

In this experiment, we compare the classification accuracy and F1-score of MP2SDA with dis-

tributed SDA and centralized SDA on each benchmark datasets. Figure. 4(a)(b) presents the

performance of each algorithm on Phishing datasets. We can observe that MP2SDA obviously

outperforms distributed SDA and centralized SDA when the training sample size is smaller than

250, even when the training sample size is greater than 250, MP2SDA is still comparable to cen-

tralized SDA and obviously superior to distributed SDA. Figure. 4(c)(d) shows that MP2SDA

outperforms distributed SDA and centralized SDA on Mushrooms dataset. The performance gap

between MP2SDA and the other two alternatives tends to be stable when the training sample size

grows. In Figure. 4(e)(f), the performances of these three algorithms are close to each other on

Splice dataset. In most cases, MP2SDA slightly outperforms distributed SDA and centralized SDA.

Further, we compare MP2SDA algorithm with other centralized baseline algorithms in the same

setting. For comparison, we categorize MP2SDA and the baseline algorithms into groups of

distributed algorithms and centralized algorithms. The distributed algorithms include MP2SDA,

MPSDA and distributed SDA. The centralized algorithms include centralized SDA, centralized

two-stage LDA (Ye-LDA), centralized Linear SVM, centralized Kernel SVM, centralized Random
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Figure 3.4: Performance Comparison among MP2SDA, SDA(centralized) and SDA(Distributed)
with Different Benchmark Datasets (Testing Sample Size = 400 and Machine Number = 4).
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Forest and centralized Decision Tree. All the algorithms are fine-tuned. Table. 2-4 presents the

accuracy with the standard deviation of each algorithm in varying total training sample size. We

notice that for two groups, the centralized algorithms have overall better performance compared

to distributed algorithms. For comparison in the distributed group, MP2SDA significantly outper-

forms distributed SDA on Mushrooms and Phishing datasets. On Splice dataset, MP2SDA slightly

outperforms distributed SDA in most cases.

Efficiency Comparison. Also, we compare the time consumption of MP2SDA algorithm (0.61×

103 seconds, 2 leader machines) and MPSDA(1.13×103 seconds) with centralized SDA algorithm

(3.97 seconds) on Mushrooms datasets (4 machines with 2000 total training samples). Note that

the communication time between each machine account for a large proportion in the total time con-

sumption of MP2SDA. Actually, on each machine, MP2SDA and MPSDA only take 0.93 seconds

which is much less than the centralized SDA algorithm. (The experiment platform is Windows OS

with 2.8GHz CPU)

Table 3.1: Accuracy Comparison among MP2SDA, SDA(Centralized) and SDA(Distributed) on
Phishing Datasets.

Total Training Set Size

Algorithm 200 400 600 800 1000 1200 1400 1600 1800 2000

Distributed Algorithm (number o f machines, m = 4)

MP2SDA 0.918±0.001 0.918±0.001 0.918±0.000 0.918±0.000 0.919±0.002 0.918±0.000 0.918±0.000 0.918±0.002 0.918±0.000 0.918±0.000

MPSDA 0.914±0.001 0.911±0.005 0.909±0.001 0.911±0.001 0.914±0.001 0.914±0.001 0.914±0.000 0.916±0.001 0.914±0.000 0.914±0.000

SDA (Distributed) 0.885±0.000 0.885±0.000 0.888±0.000 0.878±0.000 0.885±0.000 0.885±0.000 0.888±0.000 0.885±0.000 0.885±0.000 0.885±0.000

Centralized Algorithm

SDA (Centralized) 0.898±0.000 0.890±0.000 0.908±0.000 0.910±0.000 0.918±0.000 0.915±0.000 0.915±0.000 0.915±0.000 0.913±0.000 0.913±0.000

Ye-LDA 0.932±0.024 0.949±0.017 0.947±0.020 0.954±0.016 0.954±0.018 0.948±0.019 0.951±0.015 0.945±0.020 0.953±0.016 0.950±0.017

Linear SVM 0.984±0.010 0.998±0.002 0.998±0.002 0.999±0.001 0.999±0.001 0.999±0.001 0.999±0.001 0.999±0.001 0.999±0.001 0.999±0.001

Kernel SVM 0.969±0.025 0.995±0.004 0.996±0.004 0.998±0.002 0.999±0.001 0.999±0.001 0.999±0.001 0.999±0.001 0.999±0.001 0.999±0.001

Random Forest 0.947±0.027 0.962±0.017 0.984±0.012 0.962±0.020 0.991±0.007 0.987±0.008 0.985±0.007 0.960±0.018 0.993±0.005 0.995±0.004

Decision Tree 0.981±0.016 0.994±0.006 0.998±0.002 0.997±0.003 0.997±0.003 0.999±0.001 0.998±0.002 0.998±0.002 0.998±0.002 0.999±0.001
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Table 3.2: Accuracy Comparison among MP2SDA, SDA(Centralized) and SDA(Distributed) on
Mushrooms Datasets.

Total Training Set Size

Algorithm 200 400 600 800 1000 1200 1400 1600 1800 2000

Distributed Algorithm (number o f machines, m = 4)

MP2SDA 0.935±0.001 0.947±0.016 0.980±0.000 0.981±0.002 0.987±0.006 0.997±0.004 0.999±0.003 0.996±0.004 0.999±0.000 0.999±0.001

MPSDA 0.933±0.005 0.939±0.005 0.957±0.009 0.966±0.003 0.971±0.010 0.977±0.006 0.988±0.007 0.987±0.004 0.987±0.002 0.989±0.002

SDA (Distributed) 0.823±0.000 0.833±0.000 0.840±0.000 0.900±0.000 0.943±0.000 0.963±0.000 0.965±0.000 0.970±0.000 0.975±0.000 0.963±0.000

Centralized Algorithm

SDA (Centralized) 0.823±0.000 0.833±0.000 0.935±0.000 0.990±0.000 0.975±0.000 0.968±0.000 0.968±0.000 0.958±0.000 0.950±0.000 0.950±0.000

Ye-LDA 0.932±0.024 0.949±0.017 0.947±0.020 0.954±0.016 0.954±0.018 0.948±0.020 0.951±0.015 0.945±0.020 0.953±0.016 0.950±0.017

Linear SVM 0.984±0.010 0.998±0.002 0.998±0.002 0.999±0.001 0.999±0.001 0.999±0.001 0.999±0.001 0.999±0.001 0.999±0.0017 0.999±0.001

Kernel SVM 0.969±0.025 0.994±0.004 0.996±0.004 0.998±0.002 0.999±0.001 0.999±0.001 0.999±0.001 0.999±0.001 0.999±0.001 0.999±0.001

Random Forest 0.947±0.027 0.962±0.017 0.984±0.013 0.962±0.018 0.991±0.007 0.987±0.010 0.985±0.007 0.961±0.018 0.993±0.005 0.995±0.003

Decision Tree 0.981±0.016 0.994±0.006 0.998±0.002 0.997±0.003 0.997±0.003 0.999±0.001 0.998±0.002 0.999±0.001 0.998±0.002 0.999±0.001

Table 3.3: Accuracy Comparison among MP2SDA, SDA(Centralized) and SDA(Distributed) on
Splice Datasets.

Total Training Set Size

Algorithm 200 400 600 800 1000 1200 1400 1600 1800 2000

Distributed Algorithm (number o f machines, m = 4)

MP2SDA 0.827±0.004 0.855±0.002 0.877±0.003 0.876±0.003 0.880±0.003 0.890±0.001 0.887±0.003 0.881±0.002 0.885±0.002 0.880±0.003

MPSDA 0.817±0.001 0.839±0.003 0.857±0.006 0.861±0.007 0.865±0.010 0.876±0.006 0.879±0.004 0.878±0.009 0.880±0.005 0.879±0.005

SDA (Distributed) 0.808±0.000 0.830±0.000 0.865±0.000 0.855±0.000 0.860±0.000 0.880±0.000 0.878±0.000 0.883±0.000 0.885±0.000 0.885±0.000

Centralized Algorithm

SDA (Centralized) 0.845±0.000 0.870±0.000 0.875±0.000 0.873±0.000 0.873±0.000 0.878±0.000 0.868±0.000 0.868±0.000 0.870±0.000 0.873±0.000

Ye-LDA 0.781±0.020 0.802±0.016 0.817±0.020 0.832±0.016 0.829±0.019 0.827±0.018 0.827±0.019 0.824±0.018 0.836±0.018 0.837±0.019

Linear SVM 0.745±0.030 0.803±0.015 0.819±0.016 0.837±0.018 0.835±0.017 0.838±0.017 0.838±0.019 0.829±0.016 0.845±0.020 0.849±0.020

Kernel SVM 0.809±0.009 0.832±0.016 0.844±0.025 0.865±0.054 0.867±0.028 0.864±0.042 0.868±0.051 0.866±0.063 0.876±0.031 0.88±0.044

Random Forest 0.882±0.034 0.869±0.029 0.934±0.013 0.874±0.033 0.953±0.012 0.939±0.011 0.947±0.012 0.87±0.029 0.961±0.009 0.946±0.014

Decision Tree 0.857±0.030 0.897±0.022 0.902±0.028 0.913±0.022 0.917±0.021 0.919±0.023 0.92±0.020 0.916±0.020 0.917±0.024 0.92±0.022
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Summary: In benchmark data experiments, we first compare the performance of MP2SDA with

distributed SDA and centralized SDA on real-world benchmark datasets. In most instances, MP2SDA

can compete with centralized SDA, even outperform centralized SDA on Mushrooms and Phishing

datasets. Like the results on synthetic datasets, MP2SDA overall outperforms distributed SDA on

three benchmark datasets. Then, we additionally compare MP2SDA with other centralized base-

line algorithms. The result shows that these well-tuned centralized baseline algorithms dominantly

outperform MP2SDA and distributed SDA. While in the distributed algorithm group, MP2SDA still

outperforms distributed SDA. The additional efficiency comparison among MP2SDA, MPSDA and

centralized SDA shows that MP2SDA is more efficient than MPSDA (also centralized SDA on each

machine) due to its fast convergence rate which is benefited by the parallel computing mechanism.
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Algorithm: β̂ ∗ Estimation on the jth Machine (Algorithm 4)
Data:
Σ̂ j — the local covariance matrix on the jth machine
Parameter:
η — step size
∆min — minimum allowed perturbation
tmax — maximum number of allowed updates
λ — regularization parameter
begin

/* On receiving the message from the previous machine */

RECEIVE (β̂ ∗, t)
/* Selecting the kth row of vector (Σ̂ jβ̂ ∗− (µ̂+− µ̂−)) with the maximal absolute value */

k← argmax
1≤k′≤p

∣∣∣(Σ̂ jβ̂ ∗− (µ̂+− µ̂−)
)

k′

∣∣∣
/* Updating each row of β̂ ∗ on the jth machine */

β ′← 〈0,0, . . . ,0〉T
/* initializing β with a p-dimensional 0 vector */

foreach 1≤ l ≤ p do
/* Note: Σ̂ j,k,l is the scaler on the kth row and the lth column of the matrix Σ̂ j */

gl ← sign(β̂ ∗l ) ·λ + sign(Σ̄ j,kβ̂ ∗− (µ̂+− µ̂−)) · Σ̂ j,k,l

/* Update each row of local β based on β̂ ∗ */

β ′l ← β̂ ∗l −η ·gl

end
t← t +1
/* Checking convergence conditions */

∆ =
∣∣∣β̂ ∗−β ′

∣∣∣
1

/* Update β̂ ∗ after calculating the ∆ */

β̂ ∗← β ′

if ∆≥ ∆max AND t ≤ tmax then
/* Not converged, continuing the algorithm */

Draw jnext ∈ {1 . . .m} uniformly at random;
SEND (β̂ ∗, t) to the jthnext machine;

else
/* Converged, sharing the estimates to all machines */

BROADCAST β̂ ∗ to All machines;
end

end
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CHAPTER 4: AGGREGATION-FREE COMMUNITY SENSING FOR

INTELLIGENT DISTRIBUTED ENVIRONMENT MONITORING

SYSTEMS

Spatial-temporal community sensing is an efficient paradigm that leverages the mobile sensors of

community members to monitor the spatial-temporal phenomena in the environment, such as air

pollution or temperature. According to [100], there are two major roles in community sensing – the

organizer and the participants – where the former is the individual or organization that creates the

sensing task, recruits participants and collects the sensor data, while the latter (i.e., participants)

involve in the sensing task and provide the sensing data. Frequently, the organizer pursues a high

(or even full) spatial-temporal coverage of the collected sensor data. However incentives (e.g.,

monetary rewards) and the threats to privacy (e.g., exposing real-time locations) are two major

concerns that may affect the willingness of the participants to join a community sensing task.

4.1 Motivations

In addition to the community sensing paradigm, a wide-spectrum of applications, ranging from

vehicle traffic monitoring [101–105] to air quality sensing [106] and urban noise monitoring [107],

have been proposed to efficiently monitor the environment of a large area through aggregating the

real-time sensor and location data from the participants. Such applications use spatial-temporal

coverage as the metric for overall task performance. Specifically, to characterize spatial-temporal

coverage, the target area is split into subareas and the sensing duration is divided into a sequence

of equal-length sensing cycles. In this way, the fraction of subareas covered by at least one sensor

reading in each cycle is used to measure the spatial-temporal coverage.
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For example, [108, 109] proposed to use the full spatial-temporal coverage as the criterion of the

participants selection for community sensing, while [104,110] studied the partial spatial-temporal

coverage as the objectives of the optimization for budget-constrained participant selection. With

the sensor data that partially covers the target area, [111–113] proposed compressive community

sensing, which is capable of recovering the missing sensor data of the uncovered subareas from

the data collected. Through the compressive community sensing, it is possible to accurately mon-

itor the target area with even lower spatial-temporal coverage, thus resulting in reduced incentive

consumption and fewer participants involved.

Though compressive community sensing can effectively reduce the required incentives and partic-

ipants, it still aggregates the real-time location and sensor data from each participant, so as to first

identify the covered subareas, fill with collected data, and then recover the missing data for the rest.

To protect the location privacy of participants, the same of group of researchers [114,115] proposed

to leverage the Differential Geo-Obfuscation to replace each participants’ real-time location with a

"mock" location while insuring the recovery accuracy. With the Differential Geo-Obfuscation, the

participants’ locations are expected to be well obfuscated; however, it is still possible to attack the

participant’s location when certain prior knowledge is leaked. Thus, in our research, to further pro-

tect the real-time location privacy, we propose a novel Aggregation-Free Compressive Community

Sensing framework, with following assumptions:

• Assumption I: the organizer is NOT allowed to collect the real-time location or the sensor

data from any participant;

• Assumption II: Each participant covers one or multiple subareas in each sensing cycles

with his/her mobility, while the location and sensor data is locally stored on his/her mobile

device without raw location/sensor data sharing.
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4.2 Preliminaries

In this section, we first briefly introduce the previous work on the compressive community sensing.

Then, we formulate the problem of our research.

4.2.1 Compressive Community Sensing

To derive the target full sensing matrix from partially collected sensing readings, the compres-

sive community sensing wang2015ccs,wang2016sparse is commonly considered to be an effective

approach, which consists of two parts: Aggregation and Inference.

4.2.1.1 Sensing Data Aggregation

Given the target region splitting into a set of subareas (denoted as S) and a set of m participants,

in order to obtain the full picture of the target region for each sensing cycle (e.g., the tth cycle),

the Compressive Community Sensing system first collects the sensing data from all participants.

Specifically, the subareas covered by the jth participant in the tth sensing cycle (t ∈ T ) is denoted as

St
j ⊂ S. Thus, the overall coverage in the sensing cycle t can be denoted as St = St

1∪St
2∪ ...∪St

m.

Due to the limited mobility of each participant and limited number of participants involved, the

overall coverage can usually include a subset of subareas, i.e., St ⊆ S. Given the collected sensing

data, the compressive community sensing system aggregates the data and assigns each covered

subarea an unique sensor data value. For example, if multiple sensor data values are collected (from

multiple participants) that covers the same subarea in a sensing cycle, the averaged value would

be used as the value of such subarea in the sensing cycle. In this way, each subarea s ∈ St has been

covered with one sensor data value, through data aggregation, and the compressive community

sensing system needs to infer the missing sensor data of the subareas in S\St to obtain the sensor
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Figure 4.1: Overall Framework of CSWA

data of the whole target area.

4.2.1.2 Missing Data Inference

Given the aggregated sensor data of the covered subareas (St), there exists a wide-range of in-

ferring techniques to infer the missing data of the uncovered subareas, such as expectation maxi-

mization [116] and singular spectrum analysis [117]. One of the powerful approach is the spatial-

temporal compressive sensing [118, 119]. The essential idea of this approach is based on the

nonnegative matrix factorization (NMF) [120, 121]. Given the aggregated sensor data of recent

sensing cycles (the number of recent sensing cycles used for NMF is denoted as w), this approach

first sorts the subareas using their indices from 1 . . . to |S|, then maps the data into a |S|×w matrix

denote as R, where the element Ra,t ( 1 ≤ a ≤ |S| and 1 ≤ t ≤ w) refers to the aggregated sensing

value of the ath subarea and tth sensing cycle (in the window). To recover the missing values in R,

this approach obtains two non-negative matrix factors P ∈R|S|×l and Q ∈Rl×w such that R≈ PQ,

through NMF, where l stands for the Size of Latent Space of NMF.

Typically, there are four key factors affecting the performance of the compressive community
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sensing: (1) The Number of Subareas that each participant covers in each sensing cycle; (2) The

Number of Participants (m) which, together with the number of subareas per participant, can deter-

mine the coverage of collected sensor data; (3) The Size of Windows (w) that refers to the number

of past sensing cycles used for matrix recovery (i.e., the width of the matrix for matrix comple-

tion); (4) The Size of Latent Space (l) that determines the rank of matrices for low-rank matrix

recovery/completion.

4.2.2 Problem Formulation

Given a set of participants, where each participant’s mobile device stores the raw sensor data

locally (without raw data sharing), our proposed work intends to recover the sensing data of the

target area while assuming that the organizer is not allowed to aggregate the sensor data from any

participants. Specifically, we make following assumptions:

• For all the sensing cycles in T and subareas in S, there exists an unknown spatial-temporal

sensor data matrix R∗ (R∗ ∈R|S|×T ), where each element R∗a′,t ′ (1≤ a′ ≤ |S| and 1≤ t ′ ≤ |T |)

refers to the real value of sensor data in the corresponding subarea a′ and sensing cycle t ′.

• In each sensing cycle (e.g., the tth cycle), each participant (e.g., the jth participant) covers a

subset of subareas (i.e., St
j ⊆ S) in the target area. Thus, all the collected sensor data from the

1st to the tth sensing cycle of the jth participant can be represented as a matrix R j ∈ R|S|×t ,

where each element refers to the value of the sensor data collected in the corresponding

subarea and cycle. Note that, to protect the location privacy, R j is not known by the organizer.

• We denote the value of the sensor data collected by the jth participant in sensing cycle

t at subarea a as R j
a,t . Each sensor datum obtained is assumed to be the true value with

(unknown) random noise, i.e., R j
a,t = R∗a,t +ε

j
a,t . For any two participants (i.e., the jth and kth
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participants), they might cover the same subarea (say, at
j ∩ St

k 6= /0 is possible), but are with

different sensor data value obtained, due to the noise.

Our problem is that, in each sensing cycle t, with R j (1≤ j≤N) locally stored on each participant’s

device, there needs to estimate R̂a,t to

minimize
|S|

∑
a=1

(R̂a,t−R∗a,t)
2 for 1≤ t ≤ T,

while ensuring that the organizer is prohibited to aggregate R j from any participant and the raw

sensor/location data sharing is not allowed between the participants.

4.3 CSWA: Aggregation-Free Spatial-Temporal Community Sensing

We propose a novel community sensing paradigm CSWA. Specifically, CSWA first establishes se-

cured peer-to-peer network connections between each pairs participants. Then, CSWA proposes

a decentralized non-negative matrix factorization algorithm based on Parallelized Stochastic Gra-

dient Descent framework. Through learning the low-rank structure via distributed optimization,

CSWA approximates the value of sensor data in each subarea (both covered and uncovered) for

each sensing cycle using the sensor data that are locally stored in each participant’s mobile device.

The characteristics of CSWA are as follows:

• We propose a novel community sensing framework CSWA, which is used to recover the

environmental information in subareas, without aggregating sensor and location data from

the community members who partially cover the target area. To the best of our knowledge,

this is the first work that studies the problem of aggregation-free community sensing, by

addressing the location privacy, distributed computing and optimization issues.
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• To enable community sensing without location/sensor data aggregation, CSWA proposes

a novel decentralized spatial-temporal compressive sensing framework that recovers the

spatial-temporal information via decentralized Non-negative Matrix Factorization (NMF).The

proposed solution operates on top of the parallelized stochastic gradient descent, which min-

imizes the loss function of NMF through secure Peer-to-Peer (P2P) message-passing over

community members. The algorithm analysis shows that the proposed solution can effi-

ciently approximates to the centralized NMF with the tolerable worst-case communication

complexity.

• We evaluate CSWA using two large real-world datasets (i.e., temperature and air pollution).

The experimental results demonstrate that CSWA tightly approximates to the state-of-the-art

algorithms based on the data aggregation with centralized computation, and it outperforms

the rest baselines with significant margin.

4.3.1 Framework Design

Before elaborating the proposed framework and algorithms, we make the following settings: (1) In

order to simulate a secure peer-to-peer network over the community members, we define a set of

participants, where these participants can receive or send messages (factor matrices) to each other

trustfully and randomly; (2) When passing the message between two participants, the receiver

can not send the updated matrix factors back to the sender, while the sender can easily recover

the receiver’s local sensing data by recalculating the return messages; (3) The organizer can only

receive or access the related message when the updates (message passing) are finished. In this way,

the private information such as real-time locations of the participants in each sensing cycle can be

protected from the organizer.

The overall framework of CSWA consists of the following three phases (as illustrated in Figure.1):
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4.3.1.1 Phase I: Secure P2P Network Establishment and Initialization

Prior to initializing the batch on the organizer, we first establish a secure peer-to-peer (P2P) net-

work among m participants, while all the collected sensor data on the jth participant are mapped to

a local data matrix R j. Then, as shown in Algorithm 1, CSWA randomly picks a set of participants

which is the batch (denoted as the set L with size N) from the secure network of m participants.

Next, given the target data matrix R ∈ R|S|×w, CSWA extracts the row and column number of R to

construct the initial matrix factors P̂ and Q̂ on the organizer. Specifically, P̂j is generated by a |S|× l

Gaussian Random Matrix on the jth participant. Similarly, Q̂ j is generated by a l×w Gaussian

Random Matrix on the same jth participant. To avoid the aforementioned message transferring

back between two participants, we initialize a counter i to record passing times (iterations) among

participants and set jp to mark the last participant’s index, where the (i, jp) will be transferred

along with the updated matrix factors so that the participant who receives the message can ran-

domly select the next one excluding participant jp. When the initialization ends, each participant

(I j) in the predefined set L (batch) will be assigned a pair of starting matrix factors P̂j and Q̂ j.

4.3.1.2 Phase II: Distributed Compressive Community Sensing via Parallelized Low-Rank

Approximation

Given the mapped local data matrix R j on jth participant, CSWA intends to approximate the opti-

mal estimation of matrix factors P̂j and Q̂ j via parallelized stochastic gradient descent on top of

non-negative matrix factorization algorithm. Specifically, the initialized (P̂j, Q̂ j,0,null) has been

allocated on the jth participant, where 0 refers to the fact that no update has been executed and

"null" refers to there is no previous participant (coming from the organizer) which has updated
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Algorithm: Initializing Batch and Matrix Factors (P̂, Q̂) on Organizer (Algorithm 1)
Data:
R|S|×w — the target data matrix
Parameter:
/* Subareas covered by per participant */

|S|— the maximum numbers of subareas
w — the size of windows
l — the size of latent space
begin

/* Predefine a set of participants */

Randomly Draw N Participants into Set L
/* L = {I1, I2, ..., IN} */

for each I j ∈ L do
/* Initialize matrix factors P,Q on I j */

P̂j← |S|× l Gaussian Random Matrix
Q̂ j← l×w Gaussian Random Matrix
/* Initialize the counter and the previous participant index */

SEND (P̂j, Q̂ j,0,null) to L;
end

end

the matrix factors (the index of previous participant is empty). Then the algorithm processes the

updating task on each participant from the predefined batch (L) in parallel.

Suppose two dense matrix factors are P ∈ R|S|×l and Q ∈ Rl×w, the target minimization loss func-

tion over m participants through parallelized stochastic gradient descent is as follow:

P̂, Q̂← argmin
P∈R|S|×l ,Q∈Rl×w

{
1
m

m

∑
j=1

Fj ◦ (R j−PQ)
2
F +λPP2

F +λQQ2
F

}
, (4.1)

where l is the size of latent space, "◦" means element-wise matrix multiplication, ·F is the Frobe-

nius norm, λP and λQ are regularization parameters. Particularly, parallelly starting on each par-

ticipant I j, Algorithm 2 first receives the input (P̂j, Q̂ j) from the last involved participant in the

secure network (or initialized from the organizer in the first run). Next it updates the (P̂j, Q̂ j) using

the mapped local data matrix R j with the missing-value filter matrix Fj, and randomly picks up the

next participant except the previous one ( jp) from the secure participants network and sends the
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updated (P̂j, Q̂ j) to this chosen participant. The matrix Fj is a matrix filling with 0 (missing) and 1

(collected) which can set the missing elements in matrix R j to zero by the element-wise multipli-

cation. We mainly use it to prevent the missing value in the local data matrix R j from affecting the

gradient updating in (P̂j, Q̂ j). In addition, we leverage the Truncate() function, where the negative

values in matrix factors (P̂j, Q̂ j) will be set to zero, then ensuring the non-negativeness of (P̂j, Q̂ j)

when finishing each update.

Algorithm: Parallelized Optimization on the jth Participant (Algorithm 2)
Data:
R j — the local data matrix on the jth participant
Fj — the filter matrix on the jth participant
Parameter:
i — the number iterations
jp, j — the index of previous and current participant
η — step size
∆min — the minimum allowed perturbation
tmax — the maximum number of allowed updates
λP,λQ — regularization parameter on P and Q matrices
begin

/* On receiving the message from the previous participant */

RECEIVE (P̂j, Q̂ j, t, jp)
/* Noting that “A◦B" means element-wise matrix multiplication */

gp← (Fj ◦ (R j− P̂jQ̂ j))Q̂T
j −λP · P̂j

gq← P̂T
j (Fj ◦ (R j− P̂jQ̂ j))−λQ · Q̂ j

P̂j← P̂j−η ·gp

Q̂ j← Q̂ j−η ·gq
/* Set the negative elements to zero */

P̂j, Q̂ j← Truncate(P̂j, Q̂ j)
i← i+1
/* Checking convergence conditions */

∆ = max
{
|gp|∞ ,

∣∣gq
∣∣
∞

}
if ∆≥ ∆max AND i≤ tmax then

/* Not converged, continuing the algorithm */

jnext ← Draw a random number from 1 to m except jp;
SEND (P̂j, Q̂ j, i, j) to the jthnext Participant;

else
/* Converged, find out the optimal estimates */

SEND (P̂j, Q̂ j) to the Organizer;
end

end
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Algorithm 2 keeps picking up the next participant for updating, until the times of updates i exceeds

the maximal number of updates, or the updating process converges (i.e., max
{∣∣gp

∣∣
∞
,
∣∣gq
∣∣
∞

}
≤

∆max). Similar procedures are starting on each participant I j and the related matrix factors keep

updating independently. Once the updating process completes on each participant, Algorithm 2

sends (P̂j, Q̂ j) where j = 1,2, ...,N to the organizer. When all the parallel processes are finished,

the organizer has received N pairs of the estimated (P̂, Q̂) for recovery of the target data matrix.

Algorithm: Mobile Sensing Recovery on the Organizer (Algorithm 3)
Data:
P̂j, Q̂ j — the received matrix factors from the batch
begin

/* Average all P̂j, Q̂ j on organizer */

P̄← 1
N ∑

N
j=1 P̂j

Q̄← 1
N ∑

N
j=1 Q̂ j

/* Recover the target overall data matrix */

R̂← P̄Q̄
end

4.3.1.3 Phase III: Spatial-Temporal Data Recovery

As we have introduced in the Preliminaries, the organizer can recover the target data matrix R̂

based on the optimal estimated matrix factors (P̂, Q̂).

Given the received matrix factors (P̂j, Q̂ j) which are from the batch, Algorithm 3 first separately

average the P̂ and Q̂ from j = 1 to N. Then, to recover the target data matrix, the algorithm

multiplies the averaged matrix factors (P̄, Q̄) and obtains the well-estimated target data matrix R̂.

4.3.1.4 Algorithm Analysis

In this section, we brief the analytical results of the proposed algorithms.
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Given the overall set of subareas (S), the size of the latent space (l), the size of the windows (w),

in each iteration, N participants in the system would send out messages, while each participant

sends a |S| × l matrix and a l×w matrix (i.e., P and Q matrices). In this way, the system-wide

communication complexity in the worst-case (after the completion of tmax iterations of message-

passing) should be O ((|S| · l + l ·w) · tmax ·N).

Suppose P∗ and Q∗ are the optimal solutions of the problem listed in Eq. 1, while P̄ and Q̄ (appeared

in Algorithm 3) are two approximation results obtained by our algorithm. According to [96], the

approximation error of ||P∗− P̄||F → 0 and ||Q∗− Q̄||F → 0, when tmax→+∞ and N is sufficiently

large. Note that with a larger N, the proposed algorithm can achieve a faster rate of convergence

of the approximation error with increasing tmax. For more theoretical analysis, please refer to [96].

4.3.2 Evaluation

In order to evaluate the CSWA algorithm, we use the Temperature (TEMP) and PM 2.5 air quality

(PM25) dataset, where the Experimental Setup section will cover all the settings and assumptions.

Based on the above dataset, we first introduce the baseline algorithms which are commonly used

in sensor data recovery. Specifically, the baseline algorithms adopt the matrix completion method

and leverage the centralized computing patterns to recover the target sensing data. Then, we

compare the performance of CSWA with baseline algorithms on two real-world datasets.

4.3.2.1 Experimental Setup

For TEMP [122] and PM25 [123] datasets, the sensing value of temperature (◦C)/PM2.5 (air qual-

ity index) are located on each participant’s mobile sensor in varying time slots (sensing cycle) and

at different subareas. In details, the TEMP dataset contains the temperature readings in 57 cells
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(Subareas) and each sensing cycle lasts for 30 minutes. The PM25 dataset includes the PM2.5 air

quality values on 36 stations (Subareas) with the same sensing cycle.

In order to simulate the settings of the centralized computing patterns, we aggregate the collected

sensing data from each participant. In details, we follow the aforementioned three phases to set

the appropriate value of four key factors: the Number of Participants (m), the Number of Subareas

that each participant covers in each sensing cycle, the Size of Windows (w) and the Size of Latent

Space (l). Note that each participant can sense the temperature/PM2.5 at a subset of subarea.

Specifically, we use the maximum number of subareas s (1≤ s≤ |S|) in the experiments, assuming

the participant can cover no more than s subareas. To simulate the scenario that each participant

can cover various number of subareas, the actual number of subareas covered by the participant

will follow the discrete uniform distribution U{1,s}.

4.3.2.2 Baseline Algorithms

In this section, we briefly introduce three baseline algorithms, where their advantages and draw-

backs are listed as compared to CSWA algorithm.

• Spatio-Temporal Compressive Sensing (STCS) – STCS [111,119] leverages the sparsity reg-

ularized matrix factorization to fill in the missing values in a certain matrix accounting for

spatial-temporal properties. Based on the low-rank nature of real-world data matrices, STCS

first exploits global and subarea structures in the data metrics. Then, it recovers the original

matrices through matrix factorization under spatial-temporal constraints. Indeed, STCS ad-

vances ideas from compressive sensing and provides a highly effective (high accuracy and

robustness) approach to solve the problem of missing data interpolation.

• Robust Principle Component Analysis (RPCA) and Truncated Singular Value Decompo-
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sition (TSVD) – RPCA [124] is derived from a widely used statistical procedure of principal

component analysis (PCA), where RPCA performs well on solving the problem of matrices

recovering. With respect to a mass of missing observations, RPCA aims to recover a low-

rank matrix through random sampling techniques [125]. TSVD [126] is also commonly used

to approximate a low-rank matrix. Different from the traditional singular value decomposi-

tion, TSVD sets all but the first k largest singular values equal to zero and use only the first

k columns of the corresponding unitary matrices. With the optimality property, this method

provides an efficient way to recover the target sensing matrix.

4.3.2.3 Experimental Results

In this section, we report the performance of CSWA and other three baselines on TEMP and PM25

datasets. Specifically, we use the Absolute Error, which is the averaged element-wise difference(
∑
|S|
a=1 ∑

|T |
t=1

∣∣R̂a,t−R∗a,t
∣∣/(|S| · |T |)) between the recovered matrix (R̂) and the original data matrix

(R∗), as the indicator of the performance.

TEMP Datasets. First, we present a comparison of algorithms with the settings of the maximum

number of subareas (covered by each participant) ranging from 1 to 5 in Fig. 4.2. Due to the overall

better performances of CSWA and STCS, we present the entire comparison in (a) and only compare

CSWA with STCS in other three settings (the same in Figures 4.3, 4.4 and 4.5 as well). Specifically,

in Fig. 4.2(a), 10 participants are involved. Then we vary the number of participants from 10 to 30

in the increment of 10 in Figs. 4.2(b), (c) and (d). We observe that the error is around 0.2 to 0.45

with varying maximum number of subareas from 1 to 5. It is noteworthy that CSWA can compete

to STCS under these settings.

Second, we also compare CSWA with baseline algorithms by varying the number of participants in

the secure P2P network. In Fig.3(a), the maximum number of subareas is 1. Then we increase it
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from 1 to 3 in the increment of 1 in Figs. 4.3(b), (c) and (d). In each comparison between CSWA

and STCS, the error decreases when the number of participants increases for both of these two

algorithms. This demonstrates that the larger group of participants can improve the performance

of the matrix recovery, where intuitively the participants can cover more subareas and sensing

cycles. Similar to the previous setting, CSWA can approximate the performance of STCS as well.
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Figure 4.2: Performance Comparison with Varying Maximum Number of Subareas (s) per Partici-
pant per Cycle on TEMP Datasets.

Further, we alter the values of two aforementioned key factors, such as Size of Windows and Size

of Latent Space, to observe the variation of the error. Fig. 4.4 shows that the error decreases when
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Figure 4.3: Performance Comparison with Varying Number of Participants (m) on TEMP Datasets.

the window size increases from 20 to 50. Note that for each size of latent space in Figs. 4.4(b),

(c) and (d), the decreasing trends of the error are almost the same and the performance of CSWA

still can compete with STCS. Fig. 4.5 exhibits that the error increases when the size of the latent

space increases from 2 to 10. Thus, for TEMP datasets, the small size of latent space can better

approximate the original data matrix when it is low-rank. Thus the performance of CSWA is still

competitive to STCS, as shown in Figs. 4.5(b), (c) and (d).

PM25 Datasets. We conduct experiments with similar settings as TEMP datasets. Since the per-
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Figure 4.4: Performance Comparison with Varying Size of Window (w) on TEMP Datasets.

formances of RPCA and TSVD are still not as good as the other two algorithms, we only present

the comparison between the proposed CSWA and STCS here. Specifically, in Table. 4.1, we list the

Absolute Error of these two algorithms with varying number of participants (m) and the window

size (w). When the number of participants increases, the error is decreasing intuitively. On the

contrary, the error increases with increased size of the window. However, CSWA performs compa-

rably to STCS, sometimes even better (e.g., for m = 20). In Table. 4.2, we show the performance

with varying size of latent space and the number of subareas covered by each participant. The re-
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Figure 4.5: Performance Comparison with Varying Size of Latent Space (l) on TEMP Datasets.

sults reveal that the number of subareas does not affect the error significantly, while with the larger

latent space the error is smaller with PM25 datasets. Under these two settings, the performance

of CSWA can still compete with STCS. Note that for each setting, we present the performance on

the varying factor while keeping the other factor at optimal value. Also it is worth noting that the

overall error is small on the average (10 with PM2.5 index ranging from 1 to 500) in both of CSWA

and STCS.

Summary: With two real-world datasets, we compared the proposed CSWA with the baseline
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Table 4.1: Performance Comparison (Absolute Error) with Varying Number of Participants (m)
and Size of Windows (w) on PM25 Datasets.

Number of Participants (m) Size of Windows (w)

10 20 30 20 30 40

CSWA 15.563 11.686 9.561 8.844 10.232 12.028
STCS 15.185 11.864 9.353 8.517 10.090 11.955

Table 4.2: Performance Comparison (Absolute Error) with Varying Size of Latent Space (l) and
Maximum Number of Subareas (s) on PM25 Datasets.

Size of Latent Space (l) Maximum Number of Subareas (s)

2 4 6 1 2 3

CSWA 11.777 9.561 8.945 8.166 8.945 8.844
STCS 11.518 9.353 8.719 8.220 8.719 8.516

algorithms STCS, RPCA and TSVD. For both of the datasets, CSWA significantly outperforms

RPCA and TSVD in most cases. Moreover, compared to the centralized algorithm STCS, CSWA

also presents its competitiveness, with a low approximation error (0.2◦ in city-wide temperature

and 10 units of PM2.5 index in urban air quality). Even in some settings, the CSWA has a lower

approximation error than STCS, which demonstrates the superiority of CSWA .
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CHAPTER 5: MISCELLANEOUS LEARNING ALGORITHMS IN

DISTRIBUTED AND INTELLIGENT SYSTEMS

Nowadays, statistical and machine learning algorithms are used more frequently and intensively to

solve problems in a wide range of applications, e.g., smart home, medical diagnosis, and environ-

ment analysis. These algorithms are often highly parameterized and their performances are sensi-

tive to hyper-parameter settings. For example, the well-known Multi-Layer Perceptron (MLP) [45]

suffers from a large variance of prediction accuracy with different hyper-parameter settings for the

same task, where the hyper-parameters include the number of layers, the number of neurons in

each layer, the type of the activation functions, the learning strategies, etc. All of these settings

should be well configured before a machine learning model is applied to a real application.

Hyper-parameter tuning is essential to achieve good predictive performance, while it quickly be-

comes expensive as the data size and/or search space grows. In the past decades, many hyper-

parameter tuning algorithms have been developed and analyzed. As the state-of-the-art, Model-

Based Optimization (MBO), also known as Bayesian optimization [127], solves the expensive

optimization problem by fitting a Gaussian process regression to approximate the predictive per-

formance in dependence of the hyper-parameters. The performance of MBO has been shown

in [128]. Normally, such tuning requires the dedicated machine learning model to be trained and

evaluated on centralized data to obtain a performance estimate.

Distributed embedded (as well as edge computing) systems are widely utilized to run various

machine learning algorithms due to their high flexibility (mobility), scalability, and low energy

consumption in real-world applications. For example, modern air quality monitoring systems con-

sist of multiple nodes located around the target area, in order to increase robustness and eliminate

possible bias. Each node can be regarded as an individual system. It has a sensor module used
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for monitoring the environment and collecting data, and a processing module, which is able to

load light-weighted machine learning tasks based on locally collected data, and supports efficient

training and fast inference. These distributed embedded systems are more powerful and intelligent

than traditional sensors that are only used for collecting data.

In such distributed settings, the original design of a centralized hyper-parameter tuning process is

no longer suitable and efficient. If data is transferred through low bandwidth connections, merging

all sub-data sets to one central node consumes a large amount of communication resources and

leads to large overheads, and, hence reduces the available time for tuning. In some scenarios, it

is impossible to collect and store the raw data due to privacy concerns or limited storage of the

central node. In addition, distributed nodes have overlapping sensing areas and the redundant data

(repeatedly uploaded) causes further burdens to the central node. Moreover, the execution time of

machine learning algorithms is usually sensitive to the hardware platforms. In an extensive study

of unsupervised methods, the impact of particular implementations, frameworks, programming

languages and libraries on the run-time performance has been shown in [129]. Particularly for

run-time considerations, it has been stated that caching behaviour determines the performance of

implemented algorithms even more than algorithmic differences [130]. For example, the run-time

of a random forest in [131] is optimized for different platforms using different settings due to the

different hardware designs, e.g., cache size. Therefore, if the objective of the tuning is to speed

up the algorithm, the optimal setting on the central node may not be optimal for the dedicated

distributed embedded systems due to different hardware architectures.

As an alternative to such global data integration, each node can conduct hyper-parameter tuning

independently based on its local data. However, for each node the storage and detecting area are

limited. Hence each node can only keep one part of the whole data set collected in this area. If each

node tunes the hyper-parameter independently using its local sub-data set, the performance of the

machine learning algorithm will vary due to the small size of the training data. The main challenge
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of the hyper-parameter tuning on a distributed embedded systems lies on how to utilize these

decentralized sub-data sets to generate a universal hyper-parameter setting, which can be applied

to all the nodes in this system. Towards this, two potential requirements for the new method are

raised, i.e., 1) increase the accuracy of prediction; and 2) improve the run-time efficiency.

5.1 Preliminaries

In this section, we first introduce several hyper-parameter tuning algorithms. Afterwards, the

Model-Parallelism and Federated Learning are discussed briefly, which motivate our work.

5.1.1 Hyper-parameter Tuning Algorithms

The most direct and easy to implement tuning algorithm is Grid Search [132] which discretizes

the hyper-parameter search space and exhaustively evaluates all possible combinations in a Carte-

sian grid to find the setting with the best performance. Another variation is Random Search [133],

which randomly samples hyper-parameter settings from the search space. The drawback of both

tuning methods is that they do not make use of information obtained from previous tries, which im-

plies a waste of computational resources. In contrast, Sequential Model-Based Optimization [127]

takes advantage of the previous search trajectory and has been proven to optimize hyper-parameters

more efficiently [134]. In the classical approach, Gaussian process regression, also called Kriging,

is used as its regression model [135]. For certain scenarios and hierarchical search spaces, tree-

based surrogates, such as the Tree-structured Parzen Estimator (TPE) [136] or random forests [137],

have been proved to be beneficial. In order to extend MBO with parallel evaluations, various tech-

niques have been developed [138–140]. They can propose and evaluate multiple points in each

iteration. To account for heterogeneous run-times of different proposals, asynchronous parallel
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strategies [141] as well as scheduling methods [142] have been developed.

5.1.2 Model-Parallelism and Federated Learning

Due to the increasing demands of distributed data collection, storage, and processing as well as the

privacy-preserved concerns in many applications, federated learning [143, 144] has become one

of the popular computing paradigms, where a machine learning model is trained across multiple

decentralized edge devices or servers with their local data. In most federated computing platforms,

“no raw data sharing” is an important requirement, where a machine learning algorithm should

be trained using all data stored in all the distributed machines (i.e., nodes), but without any cross-

machine raw data sharing. Specifically, the aforementioned hyper-parameter tuning algorithms

(e.g. MBO) can be accelerated by federated learning and typically be divided into two types:

Data-Parallelism [145] and Model-Parallelism [11] methods. On each embedded system (node),

the Data-Parallelism algorithm first trains the model by using the local data. Afterwards, a global

model is obtained via model-averaging [146]. The aggregated model is considered as the trained

model based on the overall data (from multiple nodes). Due to the construction of Data-Parallelism,

parallel computing method can be easily applied. The Model-Parallelism requires multiple nodes

to learn a shared prediction model collaboratively. Such an algorithm has to commonly update

parameters synchronously or asynchronously across all nodes, which causes additional overheads.

In many applications, parameters updating can be a tough nut.

Both aforementioned approaches keep all the training data local on corresponding nodes. Com-

pared with the Data-Parallelism (as the chosen baseline algorithm MBO-S), the Model-Parallelism

(which MODES adopts) usually can achieve better performance, as it globally optimizes the per-

formance of the model [11]. However, as far as we know, no previous studies have been carried

out with respect to Model-Parallelism in connection with MBO on embedded systems. Addition-
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ally, since hyper-parameters are optimized in parallel based on local data for each node, Model-

Parallelism-based methods appear to be more efficient, compared to the traditional (centralized)

MBO.

5.2 MODES: Model-based Optimization on Distributed Embedded Systems

We propose MODES, a Model Based Optimization method to tune hyper-parameters for machine

learning algorithms on Distributed Embedded Systems locally and efficiently. Each node is treated

as a small black box. It trains an individual model based on its local data. The whole distributed

embedded system is considered as a big black box, and the goal is to optimize the performance

of this black box, with respect to the accuracy of prediction and/or run-time efficiency. The novel

features are as follows:

• We design a framework MODES to apply MBO on resource-constrained distributed em-

bedded systems, which not only speeds up the tuning process to obtain the optimal hyper-

parameters efficiently, but also improves the generalization ability of the obtained hyper-

parameter setting. The proposed MODES tremendously mitigates the data communication

cost by only transferring hyper parameter settings and performance values, i.e., accuracy of

classifications.

• In order to meet different requirements, we further categorize MODES into two optimiza-

tion modes: (1) the Black-box mode (MODES-B) recognizes the whole ensemble as a single

black box and optimizes the hyper-parameters of each individual model jointly by consider-

ing the weights for different nodes and (2) the Individual mode (MODES-I) recognizes all

models as clones of the same black box which allows it to efficiently parallelize the opti-

mization in a distributed setting.
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• We conduct extensive evaluations to compare our proposed two modes of MODES with two

baselines, i.e., applying MBO for tuning hyper-parameter setting on each single node using

its local data independently (MBO-S), and tuning based on centralized data (MBO-C). The

results show that: 1) MODES-B has slightly worse performance than MBO-C but without

raw data aggregation, and outperforms MBO-S in most of cases. 2) MODES-I highly im-

proves the run-time efficiency, where the improvement depends upon the number of nodes in

the distributed system, at a cost of slightly performance degradation comparing with MBO-S

in some cases. The implementation of MODES and corresponding experiments are released

in [147].

5.3 Model Based Optimization

Model-Based Optimization (MBO) solves the optimization problem:

x∗ = argmax
x∈X

f (x)

for a given function f (x) : X → R with X ⊂ Rp. We assume that the true expensive black box

function can be approximated through a surrogate. This surrogate is a regression method that

is comparably inexpensive to be evaluated. For MBO, typically a Gaussian process regression

is chosen. To start the optimization, an initial design D of k points, laid out in a Latin hyper-

cube design, is evaluated on the expensive function and yields the outcomes y. In the following,

the sequential model-based optimization iteratively repeats the following steps until a predefined

budget is exhausted:

1. A Gaussian process is fitted to all past evaluations, serving as a surrogate to estimate f

globally.
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2. An acquisition function is optimized to determine the most promising point x̂:

x̂ = argmax
x∈X

acq(x).

3. y = f (x̂) is evaluated, x̂ and y are added to D and y.

The acquisition function has to balance exploration (evaluate points where the surrogates predic-

tion is uncertain) and exploitation (evaluate points that are predicted to be optimal by the surro-

gate). The final optimal result x̂∗ is the input that leads to the maximal observed objective value,

e.g., prediction accuracy.

In the original formulation, MBO only proposes a single point in each iteration. It is necessary

to obtain multiple proposals in each iteration in order to make use of parallel computing infras-

tructures. Snoek et. al. [135] proposed the qCB as a computational simple acquisition function for

multiple proposals:

qCB(x,λ j) = µ̂(x)+λ j ŝ(x) with λ j ∼ Exp(λ ), (5.1)

with µ̂(x) as the mean prediction and ŝ(x) as the uncertainty prediction of the surrogate for point

x. To obtain n proposals we first sample n values of λ j from an exponential distribution with

an expected value of λ , yielding n different acquisition functions qCB(x,λ j). Functions with a

low value of λ j will result in optima close to points where the surrogate predicts an optimum

(exploitation). A high λ j leads to optima in areas where the surrogate is uncertain (exploration).

Because each acquisition function is comparably cheap to evaluate, we can obtain each optimum

by an exhaustive iterative random search. Each optimum x̂ j is the hyper-parameter configuration

that will be evaluated on node j. The combination of exploitative and exploratory configuration

proposals leads to an effective optimization of the given black box. The parallelized Bayesian

Optimization in [140] outperforms the state-of-the-art CMA-ES on most of the test functions.

95



In this work, single proposal MBO is applied for MODES-B while parallelization through multiple

proposals using the qCB criterion is applied for MODES-I.

5.4 Distributed Model-Based Optimization

In this section, the model of the distributed embedded system is introduced at first. Afterwards,

two categories of proposed MODES with different structures are explained in detail. MODES-

B is developed in order to improve the overall accuracy of prediction by considered the whole

distributed system as a black box. Meanwhile, the difference among nodes and corresponding

local sub-data set has been taken into consideration. Nevertheless, MODES-I tries to improve the

run-time efficiency by evaluating multiple hyper-parameter settings in different nodes at the same

time, with the assumption that the difference among nodes is negligible.

5.4.1 System Model

In a distributed embedded system, also denoted as a cluster, several embedded systems cooperate

towards a common objective. In this work, we assume a homogeneous cluster1, in which all the

nodes have identical characteristics. For this cluster, we assume:

• It consists of n nodes, denoted as ES1, ES2, ES3 . . . ESn. Each node is one embedded system.

• Each node has limited storage and can only store a certain amount of data.

• Data collected by different nodes are (at least partially) different and can be treated as sub-

sets of a completed data set.

1The proposed method can also be applied on heterogeneous clusters, with the effort to synchronize the execution of
different nodes, e.g., assign the heavy workloads to nodes with more resources and better computational performance,
which is out of the scope in this work.
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• Connections among nodes are of low bandwidth and only the tiny data can be transferred,

i.e., hyper-parameter settings and performance results (accuracy of classifications).

In our setting, a master-slave model is applied on all the available nodes. Although all nodes run

a dedicated machine learning algorithm, only one node runs the MBO algorithm. The node where

the MBO is deployed, is called master, which runs MBO and the dedicated machine learning

algorithm at the edge at the same time. The remaining nodes, called slaves, only run the dedicated

machine learning algorithm. Due to our setting of limited computational power of embedded

systems, only light-weighted machine learning algorithms are applied, which results in a relatively

small search space for hyper-parameters. Hence, the optimization workload of MBO does not

affect the execution of other applications running on the master node. In addition, the number of

hyper-parameters of the machine learning algorithm is denoted by p.

5.4.2 Black-box Mode MODES-B

In MODES-B, the whole distributed system is treated as a single black box. The hyper-parameter

setting of each individual node is optimized jointly in order to improve the performance as a way of

ensemble learning. The whole system only generates one prediction at a time. Such a method can

be utilized in a wide range of applications, e.g., air quality prediction in one area utilizing all the

embedded sensors in that area [17], and object recognition by using images taken from different

angles [148].

The structure of MODES-B is shown in Figure 5.1, and the corresponding workflow is presented in

Algorithm . MBO runs initial setup at first to construct the surrogate denoted as S . At the begin-

ning of each iteration, MBO only generates one set of hyper-parameters with the highest expected

improvement with respect to the current surrogate, which consists of (n× p+ n) parameters, i.e,
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Figure 5.1: MODES-B: The distributed embedded system is treated as a single black box

x ∈ Rn×p+n. In each setting, first p parameters represent the hyper-parameters for the first node,

second p parameters represent the hyper-parameters for the second node and so on. Moreover, n

weights indicating the importance of each node and its local data are represented through x as well.

The dedicated machine learning model ML is trained on each node by using the given hyper-

parameter setting and the local sub-data set. Each node generates one local performance result

(accuracy of classification) of the trained machine learning model by using an evaluation test set

that is shared across all nodes. The final result y is averaged according to the weights of results

from all the nodes, i.e., y = ∑
n
i=1 wi× yi, where yi is the local performance result of node i, and

∑
n
i=1 wi = 1. Afterwards, the final result is utilized to update the surrogate of MBO. The process is

repeated until the maximum number of iterations is reached or the time budget is exhausted.

In this mode, the number of dimensions of the search space is n× p+ n. Therefore, the large

number of nodes (n) in the dedicated cluster and/or the large number of hyper-parameters (p) of the

dedicated machine learning model can result in a search space with a large number of dimensions.

The computation power that MBO needs to update the surrogate and to propose new setting(s) is
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Algorithm: Workflow of MODES-B
Input: number of nodes n, dedicated machine learning model ML, number of hyper parameters

p, time budget T , and maximum tuning iterations Itr;
1: output (O)ptimal hyper-parameter setting: HP-B;
2: Initialize: MBO surrogate S , iteration i← 0, time t← 0;
3: while i ≤ Itr and t ≤ T
4: x←MBO (S ,n, p);
5: for i from 1 to n
6: yi = ML(x(i),ESi,datai)
7: y← ∑

n
i=1 wi× yi;

8: Update surrogate according to (x, y);
9: i ++;

10: Accumulate consumed time t;
11: MBO generates the optimized HP-B according to current surrogate;
12: return ()HP-B;

proportional to the size of search space. However, due to the limited computational capability,

embedded systems may not be able to find the optimal hyper-parameter setting from such a huge

search space within a certain time budget.

Against this limitation, we enforce all the nodes to share the same setting of hyper-parameters

but different weights, i.e., ∀i, j ≤ n, i 6= j : xi = x j and ∃i, j ≤ n, i 6= j : wi 6= w j. As a result, the

search space is significantly reduced to (p+n) dimensions. In each MBO iteration, all the nodes

receive the same set of hyper-parameters, and train the dedicated machine learning model using

their local data sets independently. Afterwards, the shared evaluation test set is utilized to evaluate

the performance of these trained machine learning models on different nodes, and the weighted

mean is returned to the master node, which is used to update MBO surrogate. In the end, one set

of optimized hyper-parameters along with the weights of nodes are obtained.

Please note, the proposed MODES-B with different hyper-parameters for each node, i.e., ∃i, j ≤

n, i 6= j : xi 6= x j, can also be applied on powerful distributed systems. However, that is out of the

scope in this work.
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Figure 5.2: MODES-I: Each embedded system acts as an individual black box.

Algorithm: Workflow of MODES-I
Input: number of nodes n, dedicated machine learning model ML, number of hyper parameters

p, time budget T , and maximum tuning iterations Itr;
1: output (O)ptimal hyper-parameter setting: HP-I;
2: Initialize: MBO surrogate S , iteration i← 0, time t← 0;
3: while i ≤ Itr and t ≤ T
4: {x1, x2, . . . , xn }←MBO (S ,n, p);
5: for j from 1 to n
6: y j ←ML({x j, ES j, data j});
7: Update surrogate according to {(x1, y1), . . . , (xn, yn) };
8: i← i + n;
9: Accumulate consumed time t;

10: MBO generates the optimized HP-I according to current surrogate;
11: return ()HP-I;

5.4.3 Individual Mode MODES-I

In MODES-I, each node is treated as an instance of the same black box. The whole cluster acts

like a multi-processor system and each node is a single processor. This enables us to apply MBO

in a parallelized manner. In this scenario, the performance of multiple proposed hyper-parameter

settings can be evaluated at the same time, i.e., each node trains a dedicated machine learning

model using one set of the proposed hyper-parameter settings.
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The structure of MODES-I is shown in Figure 5.2, the workflow is presented in Algorithm . In

each iteration, MBO proposes n different hyper-parameter settings based on the knowledge ob-

tained from the current surrogate, using the qCB criterion as explained in Section 5.3. Each node

uses one hyper-parameter setting to independently train the dedicated machine learning model us-

ing their local data. Afterwards, these trained models are evaluated by using an identical evaluation

test set, which is shared among different nodes. The individual performance measures, i.e., the ac-

curacy of classification, are sent back to the master node. In our setting, synchronized updating

of surrogate is applied, where the MBO updates the surrogate, once all nodes finished their eval-

uation. Therefore, the execution time of each iteration equals to the longest execution time of all

these nodes. The iterations are repeated until the time budget is exhausted or the maximum number

of iterations is reached. The optimization result is one hyper-parameters setting that can be utilized

for all the nodes. The whole system can generate the prediction by a simple average with equal

weights from different nodes. Alternatively, a single node can do the prediction itself with a lack

of robustness.

MODES-I significantly improves the run-time efficiency of the hyper-parameter tuning process,

by fully utilizing the computational power of all the nodes inside the distributed system, i.e., it

evaluates n proposed settings in parallel by considering all the information from the local data in

different nodes. Although the performance of the tuned hyper-parameters may not be improved

significantly, due to the fact that different data in different nodes creates noisy results, it is still

practical in running time sensitive applications on distributed embedded systems. For example,

real-time traffic flow prediction needs real-time responses from the embedded systems (e.g., mobile

devices), which makes the tuning speed more important than the accuracy improvement. Another

representative example is application for human activity recognition on mobile devices, i.e., mobile

phone or smart watch, which needs fast response (recognition time) according to the sensor’s signal

and the computation power is restricted.
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5.4.4 Comparison between MODES-B and MODES-I

The aforementioned MODES-B and MODES-I focus on different requirements with different as-

sumptions. MODES-B tries to improve the performance of the whole system by considering the

difference among different nodes. While MODES-I tries to improve the run-time efficiency of the

tuning process by assuming the nodes and its local sub-data sets are with high similarity.

In MODES-B, the whole distributed embedded system is treated as an ensemble. Each hyper-

parameter setting involves not only the hyper-parameter for the dedicated machine learning model,

but also the weights for different model. In each iteration of optimization process, only one single

proposal is trained and evaluated in the entire system. In the end, the obtained optimized hyper-

parameter setting is applied for the whole ensemble, and only one classification result is generated

by the system. Theoretically, since the tuned weights represent the importance of different nodes

and corresponding sub-data sets, MODES-B can outperform other hyper-parameter tuning algo-

rithms if sub-data sets held by different nodes are imbalanced or some sub-data sets have great

noise. Well tuned weights can eliminate these drawbacks of the original system.

In MODES-I, multiple nodes in a distributed embedded system are treated as multiple clones of

a single node. In addition, the local sub-data sets are considered as subsets of a consistent data

set. This treatment relies on an assumption that the optimal hyper-parameters of the dedicated

machine learning model for different nodes are with high similarity. Therefore, multiple proposals

are trained and evaluated on all the available nodes at the same time, in order to accelerate the

optimization of the corresponding surrogate. Ideally, the tuning process can be sped up by n times,

where n is the number of nodes in the dedicated distributed embedded system. However, when

there are many nodes, the resulting surrogate may not be able to generate a sufficient number of

valuable proposals for evaluating the machine learning algorithms in parallel in the next iteration.

That is, some of the proposed hyper-parameter settings to be evaluated have to be generated ran-
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domly without any contributions to the corresponding surrogate. Moreover, since each node can

make the prediction independently, MODES-I is more scalable, compared to MODES-B. Hence,

node(s) can be easily added or removed without affecting the functionality of the distributed sys-

tem.

5.5 Evaluation

To validate the performance of MODES, we consider a distributed embedded system with four

ODROID-N2 boards [149]. Each of them integrates a quad-core ARM Cortex-A73 CPU, a dual-

core Cortex-A53 CPU with a Mali-G52 GPU, and 32GB storage. The ODROID-N2’s DDR4 RAM

is running at 1320Mhz with 1.2 Volt low power consumption. One of these boards serves as the

master which runs the mlrMBO [150], which is an R implementation of MBO. All four boards,

including the master, act as slave nodes which run the machine learning algorithms for a specific

task. These nodes are connected with each other, which makes the data transmission possible. For

distributed systems with more nodes, we present emulation results for 16 nodes in Section 5.6.

Due to the limited computation power of the constructed distributed embedded system, we adopt

5 popular real-world data sets with reasonable size, i.e., at most 60,000 instances, to evaluate the

proposed MODES framework:

1. The MNIST [151] data set: it contains 60,000 handwritten digits (from 0 to 9) images

with 28× 28 grey-scale resolution. The MNIST data set is widely used for evaluating the

performance of machine learning algorithms. Here, we fit our learning task as an image

classification problem on the MNIST data set.

2. The Fashion-MNIST [152] data set: it consists of Zalando’s article images, where the statis-

tics are exactly the same as the original MNIST data set, i.e., with the same number of
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instances, the same image size, and the same distribution of different classes. The Fashion-

MNIST is more representative for modern computer vision tasks. It usually serves as a

replacement for the original MNIST data set when benchmarking machine learning algo-

rithms, since the original MNIST classification task is easy (e.g., MLP can easily achieve

the accuracy of 95%) and overused in the machine learning domain.

3. The Gas Sensor Array Drift [153] data set, denoted as Gas-drift data set: unlike vision-

based data sets (e.g., MNIST-like image data sets), the Gas-drift data set is measured from

16 chemical sensors exposed to 5 distinct pure gaseous substances at different concentration

levels. The resulting data set contains 13,910 instances, each instance contains 129 attributes

(dimensions), and the whole data set is divided into 5 unbalanced classes. To scale the value

of features from different ranges, we normalized the data to the range of [−1,1].

4. The Covertype [154] data set: it is a non-vision data set as well, coming from the US Forest

Service inventory information. This data set is originally used to predict forest cover type

from cartographic variables, and it is sensitive for the model settings (parameter tuning) of

some popular machine learning algorithms (e.g., MLP, SVM and Random Forest). The orig-

inal data set contains 581,012 instances and 7 classes. However, the number of instances for

different classes are extremely unbalanced, i.e., 100 times difference. Hence, we downsized

the data set according to the size of the smallest class, i.e., each class now contains 2,747

instances, and in total 19,229 instances.

5. The HAR [155] data set: it consists of 10,299 instances, which are built from the recordings

of 30 subjects performing activities of daily living while carrying a waist-mounted smart-

phone with embedded inertial sensors. Therefore, the HAR data set naturally fits the dis-

tributed embedded systems scenario and it satisfies the assumptions of MODES well. As a

sensing data set, six human activities are included, i.e., walking, climbing the stairs, walking

down the stairs, sitting, standing, and laying.
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Based on the selected data sets and the computational power of the platform, two machine learning

algorithms that represent the state-of-the-art are selected as the optimization objects: 1) Multi-

Layer Perceptron (MLP) [45] and 2) Random Forest (RF) [156]. The performance of these two

benchmark machine learning algorithms have been well-reported on the aforementioned detests,

where they can be used as the references for the performance of our MODES. Moreover, the

performances of MLP and RF are both sensitive to the hyper-parameters, which makes MBO

tuning necessary. Please note that we do not execute multiple algorithms on one node at the same

time although multiprocessors are available, since it may introduce memory lack, cache miss, and

execution interference.

5.5.1 Experimental Setup

The detailed configurations and settings of machine learning algorithms and further operations of

data sets are introduced as follows:

5.5.1.1 Hyper-parameter Settings

To efficiently evaluate the performance of fine-tuned machine learning algorithms, for the most

accuracy-sensitive hyper-parameters among all adjustable hyper-parameters in MLP and Random

Forest, we select values based on experience.

For MLP, 5 hyper-parameters are tuned, i.e., the number of layers ∈ [1, 15], units per layer ∈

[10, 150] in steps of 10, activation∈ {identity, logistic, tanh, relu}, L2 penalty∈{10−5, 10−4, 10−3

, 10−2}, and initial learning rate for Adam ∈ {10−4, 10−3, 10−2, 10−1}.

For Random Forest, 7 hyper-parameters are tuned, i.e., number of trees ∈ [5, 150] in steps of 5,

maximal number of features to consider at every split ∈ {auto, sqrt, log2}, maximal number of
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levels in trees ∈ [2,40] and None represents auto mode, minimal number of samples required to

split a node ∈ [2,20] in steps of 2, minimal number of samples required at leaf node ∈ [1,20],

function to measure the quality of a split ∈ {gini, entropy}, and whether bootstrap samples are

used when building trees ∈ {True, False}.

5.5.1.2 Pre-processing of Data Sets

Firstly, each data set is randomly split into a test set and a training set with a ratio of 1:5. After-

wards, the test set is equally divided into an evaluation test set and an unseen final test set. The

evaluation test set is only used for hyper-parameter tuning, i.e., verify the performance of proposed

hyper-parameter setting and the result is used to update the MBO surrogate. The unseen final test

set is used to evaluate the final performance of hyper-parameters optimized by different methods

and their data storage situations accordingly. Finally, in order to simulate the situation of data

storage on real distributed embedded systems, four sub-data sets are generated from the overall

training set by applying the following strategies:

• Uniform Split (D1): Equally divide the training set into four parts.

• Duplicated Split (D2): Each of the four training sets from D1 is extended with 30% data

randomly selected from the remaining three parts. Therefore, each sub-data set has overlap-

ping data with the other sub-data sets.

• Unbalanced Split (D3): Divide the training set unequally with shares of 20%,20%,30%,

and 30%.

Therefore, together with the original complete training set, we have four different training set

settings, which mimic possible patterns of distributed data storage.
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5.5.2 Selection of Baselines

In order to compare the performance of our proposed methods, two baselines, i.e., MBO-C and

MBO-S are evaluated. MBO-S optimizes the setting of hyper-parameters for each node individ-

ually using its local data, so that each node obtains its own local optimal hyper-parameters. In

MBO-C, the optimal setting of hyper-parameters is tuned by MBO for the original complete train-

ing data set. Note that MBO-C here only shows the performance of centralized hyper-parameter

tuning, where the result can be regarded as the reference for other distributed tuning methods.

To be fair, each MBO tuning procedure has the same budget of maximal 100 iterations and 12

hours run-time. For MODES-I, only 25 iterations and 3 hours run-time are assigned, since it can

evaluate four different hyper-parameter settings at the same time in each iteration, and in total

100 proposals are evaluated in the end. Afterwards, the optimized hyper-parameters are applied to

train the dedicated machine learning algorithms. The training data sets are the same as those used

during hyper-parameter tuning. At last, the identical testing data is adopted which is unseen for all

methods.

5.5.3 Experimental Results

We evaluated all combinations with respect to the different data sets, machine learning algorithms,

and data split methods. The results are shown in Tables 5.1, 5.2, 5.3, 5.4, and 5.5. We report the

accuracy of the classification results for two machine learning algorithms separately for the dif-

ferent data sets. Since MLP and RF are modularized and standardized, the randomness from the

algorithm itself in training can be ignored. This implies that even a tiny accuracy improvement is

only incurred by a better hyper-parameter setting. Due to the space limitations, only the average re-

sults of MODES-I and MBO-S are shown in Tables, i.e., simple average accuracy of classifications
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Table 5.1: The accuracy of two machine learning algorithms using different hyper-parameter tun-
ing methods on MNIST data set.

Algo. Data MODES-B MODES-I MBO-S MBO-C

MLP
D1 0.9562 0.9510 0.9530

0.9712D2 0.9588 0.9600 0.9582
D3 0.9573 0.9500 0.9534

RF
D1 0.9382 0.9362 0.9380

0.9574D2 0.9436 0.9423 0.9420
D3 0.9399 0.9380 0.9362

Table 5.2: The accuracy of two machine learning algorithms using different hyper-parameter tun-
ing methods on Fashion-MNIST data set.

Algo. Data MODES-B MODES-I MBO-S MBO-C

MLP
D1 0.8610 0.8584 0.8601

0.8882D2 0.8645 0.8660 0.8657
D3 0.8614 0.8578 0.8601

RF
D1 0.8590 0.8601 0.8598

0.8792D2 0.8650 0.8637 0.8639
D3 0.8623 0.8601 0.8601

for 4 nodes. To clearly show the comparisons, we use bold text for accuracy values to represent

superiority when comparing MODES-B with MBO-S, and use gray background color to represent

better performance obtained from MODES-I or MBO-S. Please note, MBO-C always outperforms

the other methods, since the complete training data set is utilized for both hyper-parameter tun-

ing and machine learning algorithm training. The results of MBO-C only show the upper bounds

of the machine learning algorithms on the dedicated data sets, but is not comparable with other

distributed-based methods.

The results on the MNIST data set are shown in Table 5.1. The proposed MODES-B outperforms

MBO-S in all three data sets for both machine learning algorithms. Meanwhile, MODES-I is

comparable with MBO-S with respect to accuracy, i.e., MODES-I outperforms MBO-S in 3 settings
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Table 5.3: The accuracy of two machine learning algorithms using different hyper-parameter tun-
ing methods on Gas-drift data set.

Algo. Data MODES-B MODES-I MBO-S MBO-C

MLP
D1 0.9887 0.9875 0.9873

0.9942D2 0.9634 0.9897 0.9904
D3 0.9898 0.9862 0.9769

RF
D1 0.9860 0.9825 0.9861

0.9921D2 0.9851 0.9857 0.9864
D3 0.9860 0.9837 0.9827

Table 5.4: The accuracy of two machine learning algorithms using different hyper-parameter tun-
ing methods on Covertype data set.

Algo. Data MODES-B MODES-I MBO-S MBO-C

MLP
D1 0.5521 0.5454 0.5842

0.7978D2 0.6782 0.7011 0.7082
D3 0.7017 0.6605 0.7094

RF
D1 0.8581 0.8562 0.8561

0.9869D2 0.8683 0.8684 0.8686
D3 0.8581 0.8540 0.8563

and performs slightly worse in the other 3 settings (< 0.35%), but it is much faster in hyper-

parameter tuning, i.e., on average 2.7 times for both MLP and RF.

Table 5.2 shows the results for the Fashion-MNIST data set. The MODES-B outperforms the

MBO-S in most of the cases for both machine learning algorithms. The MODES-I is comparable

with MBO-S in all the cases with respect to the accuracy, i.e., the difference is less than 0.23%, but

much faster in hyper-parameter tuning, i.e., on average 3.7 times for MLP and 2.7 times for RF.

Table 5.3 demonstrates the results of the Gas-drift data set. This data set is too easy to be predicted,

since the accuracy is higher than 98% in most of the cases. This makes the efforts of MODES

insignificant.
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Table 5.5: The accuracy of two machine learning algorithms using different hyper-parameter tun-
ing methods on HAR data set.

Algo. Data MODES-B MODES-I MBO-S MBO-C

MLP
D1 0.8190 0.8428 0.8500

0.8700D2 0.9168 0.8895 0.8898
D3 0.8207 0.8600 0.8365

RF
D1 0.8413 0.8503 0.8585

0.8880D2 0.8788 0.8750 0.8787
D3 0.8520 0.8395 0.8463

The results of the Covertype data set are shown in Table 5.4. The performance of RF is much

better than that of MLP. This means that RF should be applied to handle the Covertype data set.

Using RF, MODES-B outperforms MBO-S in most of the cases, i.e., in 2/3 of the cases. Although

MODES-I is slightly worse than MBO-S in 2/3 of the cases, it is 2.2 times faster in hyper-parameter

tuning for both MLP and RF.

As demonstrated in Table 5.5, MODES also shows great competitiveness compared to the MBO-C

and MBO-S on the HAR data set. Since the HAR data set has fewer dimensions than MNIST

(562:784), considering the much smaller sample size (1:6), HAR is more difficult to predict

and learn by MLP and RF algorithms. In this case, MODES-B suffers from a performance de-

crease [157] especially in D1 and D3 training set settings, where the honorable weight tuning in

MODES-B is trivial since the size of data on each node is considerably small. It explains why the

results of MODES-B for MLP on D1 and D3 and RF on D1 are slightly worse than with MBO-

S. However, on D2 MODES-B outperforms MBO-S for both MLP and RF, which indicates that

MODES-B is in a good stand when data is sufficient (D2 is supplemented by more data). Besides,

MODES-I shows its stability. It is still comparable with MBO-S (< 0.73%). Moreover, MODES-I

is on average 3.1 times faster than MBO-S in hyper-parameter tuning for both MLP and RF.
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5.5.4 Statistical Analysis

Since MBO itself has randomized decisions (including the selection of the initialized points and the

proposals based on the surrogates), it is necessary to analyze the variance to verify the correctness

of our evaluation results. However, due to the limited computation power of the real distributed

embedded system, the experiments are extremely time consuming. Depending on the size of dif-

ferent data sets, one set of experiments, i.e., each table, takes 80 to 245 CPU hours. Reporting

statistic analysis on all of them would require a lot of tests.

To demonstrate that MBO can be applied for those data sets with good statistical stability, we

consider the most unstable experiment, namely, Covertype data set.2 We tested only RF with MBO-

C on Covertype data set for 50 times. The repeated experiments took 35 hours on our evaluation

platform. The result shows that the variance is less than 0.13%. As a result, the evaluation in our

work is considered stable and reproducible.

5.5.5 Discussion

For the applicability, the results in Table 5.1, 5.2, 5.3, 5.4, and 5.5 show that MODES-B outper-

forms MBO-S in most of the evaluated cases. Although MODES-I shows less competitiveness in

classification accuracy, it significantly improves the run-time efficiency, which is even much more

important than accuracy in some real world timing-sensitive applications, e.g., autonomous driving

systems [159]. In addition, MODES-B can handle the situations much better than MBO-S if the

data size is unbalances in different nodes, i.e., D3 in our evaluations. MODES-B for MLP outper-

forms MBO-S when D3 is applied in 3 over 4 cases (The case for Covertype data set in Table 5.4 is

not considered here, since MLP is not the best suitable algorithm for Covertype data set compared

2The Covertype data set is unstable, reported in [158].
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to RF). MODES-B for RF outperforms MBO-S in all the five cases when D3 is applied.

In summary, for a great variety of data sets and/or applications without data aggregation, the

method MODES, with two different modes, outperforms the traditional approach MBO-S in terms

of either accuracy (MODES-B) or run-time efficiency (MODES-I) without much accuracy degra-

dation.

5.6 Scalability

In order to investigate the scalability of the MODES, an emulation platform is established by using

a cache-coherent SMP, consisting of two 64-bit Intel Xeon Processor E5-2650Lv4, with 35 MB

cache and 64 GB main memory. There are 28 physical cores in total, and each core is considered

as a virtual node.

The size of data sets in Section 5.5 is too small as the data has to be distributed to a large number

of nodes. To demonstrate the scalability of the MODES, we evaluated data sets chosen from the

following two data sets on 16 nodes:

1. The Infinite-MNIST [160] is also known as MNIST8M data set: it produces an infinite

supply of digit images derived from the well-known MNIST data set using pseudo-random

deformations and translations.

2. The SVHN [161]: a real-world image data set for developing machine learning and object

recognition algorithms. It can be seen as similar in favor of MNIST, but incorporates an

order of magnitude more labeled data (over 600,000 digit images) and comes from a signifi-

cantly harder, unsolved, real world problem (recognizing digits and numbers in natural scene

images). SVHN is obtained from house numbers in Google Street View images, where each

112



Table 5.6: The accuracy of two machine learning algorithms using different hyper-parameter tun-
ing methods on Infinite MNIST data set.

Algo. Data
MODES-B MODES-I

MBO-S MBO-C
original scaled-np scaled-n scaled-4

MLP
D1 0.9676 0.9658 0.9634 0.9619 0.9662

0.9966D2 0.9683 0.9723 0.9695 0.9673 0.9710
D3 0.9604 0.9623 0.9598 0.9615 0.9637

RF
D1 0.9396 0.9407 0.9393 0.9390 0.9378

0.9832D2 0.9444 0.9468 0.9404 0.9440 0.9450
D3 0.9458 0.9377 0.9369 0.9369 0.9371

image is 32-by-32 digit ranging from 0 to 9.

To eliminate the influence from the size of sub-data set in each node, following the size of MNIST

data set used in Section 5.5 (i.e., 60,000 training samples for 4 nodes), we enlarge the size of

data set linearly. That is, only 240,000 training samples in total for both data sets were chosen

individually in our experiments. Meanwhile, similar sub-data sets generation strategies are applied:

(1) equally divided the training set into 16 parts, denoted as D1; (2) each sub-data set from D1 is

extended with 5,000 samples randomly selected from the remaining samples, denoted as D2; (3)

divide the training samples unequally, i.e., 8 sets with 5% share and 8 sets with 7.5% share, denoted

as D3.

For MODES-B, two stop conditions are considered: (a) original and (b) scaled-np. In the original

mode, the tuning procedure has the same budget with aforementioned experiments, i.e., maximal

100 iterations and 12 hours run-time. In the scaled-np mode, the budget is scaled according to

the number of hyper-parameters. Although only 5 hyper-parameters for the MLP model have to

be tuned for MBO-S and MBO-C, since each node also has one weight parameter to be tuned, we

need to tune 21 hyper-parameters for MODES-B when deploying MLP on 16 nodes. Therefore,

the tuning procedure budget is 420 iterations or 50.4 hours run-time accordingly (4.2 times of
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Table 5.7: The accuracy of two machine learning algorithms using different hyper-parameter tun-
ing methods on SVHN data set.

Algo. Data
MODES-B MODES-I

MBO-S MBO-C
original scaled-np scaled-n scaled-4

MLP
D1 0.7285 0.7351 0.7295 0.7308 0.7429

0.8626D2 0.7551 0.7579 0.7544 0.7567 0.7621
D3 0.7227 0.7398 0.7329 0.7309 0.7420

RF
D1 0.6435 0.6433 0.6375 0.6398 0.6370

0.755D2 0.6556 0.6580 0.6559 0.6552 0.6554
D3 0.6454 0.6451 0.6313 0.6371 0.6357

the original budget). For RF, 3.3 times of the original budget is set. The stop condition (b) is

added, since the dimension of search space for hyper-parameter optimizing becomes larger when

the number of nodes increases. Therefore, more tuning iterations and time budget are needed to

achieve an optimal solution.

The parallelism of optimizing a surrogate model has its bottleneck, as described earlier. Even when

the number of nodes is increased, the surrogate may not be able to be used to generate a sufficient

number of valuable hyper-parameter settings to be evaluated in the next iteration. This results in a

situation that some of the generated hyper-parameter settings for the next iteration can be useless.

Therefore, more iterations and time are expected. To evaluate this situation, two stop conditions

for MODES-I are designed: (a) scaled-n and (b) scaled-4. In the scaled-n mode, the budget of

tuning procedure is scaled according to the number of nodes, i.e., 1
n of the original budget, that is,

7 iterations and 1 hour for 16 nodes. In the scaled-4 mode, the budget is 25 iterations or 3 hours,

which is the same as the experiments on 4 nodes in Section 5.5.

The results of the Infinite MNIST data set are shown in Table 5.6. MODES-B outperforms MBO-S

in most of the evaluated cases for both MLP and RF algorithms. MODES-I significantly improves

the run-time efficiency without much accuracy degradation. Table 5.7 shows the results of the
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SVHN data set. Both MLP and RF cannot make decent predictions in a distributed setting, i.e., the

accuracy of classification is less than 80% for all the evaluated cases. This is due to the architecture

limitation [162] of MLP and RF themselves on complicated digit image data set. Notice that when

MLP is applied, MBO-S outperforms both MODES-B and MODES-I in all the evaluated cases.

On the contrary, MODES-B and MODES-I outperform MBO-S in all the evaluated cases if RF is

applied.

Regarding to different stop conditions for both MODES-B and MODES-I, extension of the budget

for tuning cannot significantly improve the performance of the method. Sometimes, the over-fitting

due to more tuning iterations even worsen the accuracy of classifications. We applied two different

test sets, one evaluation test set is only used for hyper-parameter tuning, and another unseen final

test set is used for final performance evaluation. If the hyper-parameters of a machine learning

model are over tuned for the first evaluation test set, it may have bad performance when a new test

set is applied, due to the weak generalization of the trained model.

For the scalability, MODES can still work well when the number of nodes increases, with the

dedicated machine learning algorithm and the addressable data set, i.e., the evaluation in Table 5.6.

In Table 5.7, MODES for MLP does not work at all, only because that the SVHN data set is over

complicated for both MLP and RF. Hence, both MLP and RF show poor prediction results. Even

so, we still observe that MODES has relative better performance than MBO-S with RF which

demonstrates the superiority of MODES.
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CHAPTER 6: CONCLUSION AND FUTURE DIRECTION

We summary the contribution of the proposed statistical and stochastic learning algorithm in three

aspects. Firstly, we study and formulate the problem of statistical learning on the top of multi-

party parallel computing platform, while assuming the raw data distributed on machines (parties)

are not sharable and accelerating the training procedure through parallel computing. To the best of

our knowledge, this is the first study on sparse discriminant analysis, by addressing 1) multi-party

computing platform without sharing raw data, 2) model-centric1 learning with a shared loss func-

tion, and 3) distributed optimization issues with parallel computing. Note that Multi-Party parallel

computing systems [163] usually leverage the secured communication and computation to keep

the local data, on each party, private, while our work assumes the local raw data and basic statis-

tics (on each machine) are not accessible by others. Thus we do not make the further assumption

on cryptography issue. Secondly, to achieve the above goals, we design the stochastic algorithm

which leverages the direct estimation of learning model to derive a distributed loss function of

specific statistical learning, parameterizes the distributed loss function with local/global estimates

through bootstrapping, and approximates a global estimation of key learning vector by optimizing

the “distributed bootstrapping loss function” and further improving the estimation through parallel

computing. Finally, we demonstrate the performance gain of our improved learning algorithms on

both pseudo-random simulation and real-world applications. The real-world applications ranges

from intelligent medical systems to distributed environment monitoring systems.

Although we has begun to address the challenges of applying statistical and stochastic learning

algorithm in distributed intelligent systems discussed in this dissertation, there are a number of

critical open directions in distributed/federated learning that are yet to be explored. We briefly list

1Transfer from traditional data-centric paradigm to model centric paradigm.
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some open problems below.

• Extreme communication schemes: It remains to be seen how much communication is nec-

essary in distributed learning. For example, can we gain a deeper theoretical and empirical

understanding of one-shot/few-shot communication schemes in massive and statistically het-

erogeneous networks?

• Novel models of asynchrony: Two communication schemes most commonly studied in dis-

tributed optimization are bulk synchronous and asynchronous approaches. However, in dis-

tributed networks, each device is often undedicated to the task at hand and most devices are

not active on any given iteration. Can we devise device-centric communication models be-

yond synchronous and asynchronous training, where each device can decide when to interact

with the server (rather than being dedicated to the workload)?

• Heterogeneity diagnostics: Recent works have aimed to quantify statistical heterogeneity

through various metrics, though these metrics must be calculated during training. This mo-

tivates the following questions: Are there simple diagnostics that can be used to quantify

systems and statistical heterogeneity before training? Can these diagnostics be exploited to

further improve the convergence of federated optimization methods?

• Productionizing distributed learning: There are a number of practical concerns that arise

when running federated learning in production. For example, how can we handle issues such

as concept drift (when the underlying data-generation model changes over time); diurnal

variations (when the devices exhibit different behavior at different times of the day or week);

and cold start problems (when new devices enter the network)?

These challenging problems (and more) will require collaborative efforts from a wide range of

research communities.
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