9,663 research outputs found

    Exercise Training and Functional Connectivity Changes in Mild Cognitive Empairment and Healthy Elders

    Get PDF
    Background: Effective interventions are needed to improve brain function in mild cognitive impairment (MCI), an early stage of Alzheimer’s disease (AD). The posterior cingulate cortex (PCC)/precuneus is a hub of the default mode network (DMN) and is preferentially vulnerable to disruption of functional connectivity in MCI and AD. Objective: We investigated whether 12 weeks of aerobic exercise could enhance functional connectivity of the PCC/precuneus in MCI and healthy elders. Methods: Sixteen MCI and 16 healthy elders (age range = 60–88) engaged in a supervised 12-week walking exercise intervention. Functional MRI was acquired at rest; the PCC/precuneus was used as a seed for correlated brain activity maps. Results: A linear mixed effects model revealed a significant interaction in the right parietal lobe: the MCI group showed increased connectivity while the healthy elders showed decreased connectivity. In addition, both groups showed increased connectivity with the left postcentral gyrus. Comparing pre to post intervention changes within each group, the MCI group showed increased connectivity in 10 regions spanning frontal, parietal, temporal and insular lobes, and the cerebellum. Healthy elders did not demonstrate any significant connectivity changes. Conclusion: The observed results show increased functional connectivity of the PCC/precuneus in individuals with MCI after 12 weeks of moderate intensity walking exercise training. The protective effects of exercise training on cognition may be realized through the enhancement of neural recruitment mechanisms, which may possibly increase cognitive reserve. Whether these effects of exercise training may delay further cognitive decline in patients diagnosed with MCI remains to be demonstrated

    Optical coherence tomography in Alzheimer's disease. A meta-analysis

    Get PDF
    BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder, which is likely to start as mild cognitive impairment (MCI) several years before the its full-blown clinical manifestation. Optical coherence tomography (OCT) has been used to detect a loss in peripapillary retina nerve fiber layer (RNFL) and a reduction in macular thickness and volume of people affected by MCI or AD. Here, we performed an aggregate meta-analysis combining results from different studies. METHODS AND FINDINGS: Data sources were case-control studies published between January 2001 and August 2014 (identified through PubMed and Google Scholar databases) that examined the RNFL thickness by means of OCT in AD and MCI patients compared with cognitively healthy controls. RESULTS: 11 studies were identified, including 380 patients with AD, 68 with MCI and 293 healthy controls (HC). The studies suggest that the mean RNFL thickness is reduced in MCI (weighted mean differences in μm, WMD = -13.39, 95% CI: -17.34 to -9.45, p = 0.031) and, even more so, in AD (WMD = -15.95, 95% CI: -21.65 to -10.21, p<0.0001) patients compared to HC. RNFL in the 4 quadrants were all significantly thinner in AD superior (superior WMD = -24.0, 95% CI: -34.9 to -13.1, p<0.0001; inferior WMD = -20.8, 95% CI: -32.0 to -9.7, p<0.0001; nasal WMD = -14.7, 95% CI: -23.9 to -5.5, p<0.0001; and temporal WMD = -10.7, 95% CI: -19.9 to -1.4, p<0.0001); the same significant reduction in quadrant RNFL was observed in MCI patients compared with HC (Inferior WMD = -20.22, 95% CI: -30.41 to -10.03, p = 0.0001; nasal WMD = -7.4, 95% CI: -10.08 to -4.7, p = 0.0000; and temporal WMD = -6.88, 95% CI: -12.62 to -1.13, p = 0.01), with the exception of superior quadrant (WMD = -19.45, 95% CI: -40.23 to 1.32, p = 0.06). CONCLUSION: Results from the meta-analysis support the important role of OCT for RNFL analysis in monitoring the progression of AD and in assessing the effectiveness of purported AD treatments

    Nanodiamonds-induced effects on neuronal firing of mouse hippocampal microcircuits

    Get PDF
    Fluorescent nanodiamonds (FND) are carbon-based nanomaterials that can efficiently incorporate optically active photoluminescent centers such as the nitrogen-vacancy complex, thus making them promising candidates as optical biolabels and drug-delivery agents. FNDs exhibit bright fluorescence without photobleaching combined with high uptake rate and low cytotoxicity. Focusing on FNDs interference with neuronal function, here we examined their effect on cultured hippocampal neurons, monitoring the whole network development as well as the electrophysiological properties of single neurons. We observed that FNDs drastically decreased the frequency of inhibitory (from 1.81 Hz to 0.86 Hz) and excitatory (from 1.61 Hz to 0.68 Hz) miniature postsynaptic currents, and consistently reduced action potential (AP) firing frequency (by 36%), as measured by microelectrode arrays. On the contrary, bursts synchronization was preserved, as well as the amplitude of spontaneous inhibitory and excitatory events. Current-clamp recordings revealed that the ratio of neurons responding with AP trains of high-frequency (fast-spiking) versus neurons responding with trains of low-frequency (slow-spiking) was unaltered, suggesting that FNDs exerted a comparable action on neuronal subpopulations. At the single cell level, rapid onset of the somatic AP ("kink") was drastically reduced in FND-treated neurons, suggesting a reduced contribution of axonal and dendritic components while preserving neuronal excitability.Comment: 34 pages, 9 figure

    Advanced imaging of tau pathology in Alzheimer Disease: New perspectives from super resolution microscopy and label-free nanoscopy.

    Get PDF
    Alzheimer's disease (AD) is the main cause of dementia in the elderly population. Over 30 million people worldwide are living with dementia and AD prevalence is projected to increase dramatically in the next two decades. In terms of neuropathology, AD is characterized by two major cerebral hallmarks: extracellular β-amyloid (Aβ) plaques and intracellular Tau inclusions, which start accumulating in the brain 15-20 years before the onset of symptoms. Within this context, the scientific community worldwide is undertaking a wide research effort to detect AD pathology at its earliest, before symptoms appear. Neuroimaging of Aβ by positron emission tomography (PET) is clinically available and is a promising modality for early detection of Aβ pathology and AD diagnosis. Substantive efforts are ongoing to develop advanced imaging techniques for early detection of Tau pathology. Here, we will briefly describe the key features of Tau pathology and its heterogeneity across various neurodegenerative diseases bearing cerebral Tau inclusions (i.e., tauopathies). We will outline the current status of research on Tau-specific PET tracers and their clinical development. Finally, we will discuss the potential application of novel super-resolution and label-free techniques for investigating Tau pathology at the experimental level and their potential application for AD diagnosis. Microsc. Res. Tech. 79:677-683, 2016. © 2016 Wiley Periodicals, Inc.LG acknowledges funding from the European Community's Seventh Framework Program (FP7/2012-2015) under grant agreement n°280804. GSSK acknowledges funding from the U.K. Medical Research Council (MR/K015850/1 and MR/K02292X/1), Alzheimer's Research UK (ARUK-EG2012A-1), U.K. Engineering and Physical Sciences Research Council (EPSRC) (EP/H018301/1) and the Wellcome Trust (089703/Z/09/Z).This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/jemt.2269

    Increased cortical curvature reflects white matter atrophy in individual patients with early multiple sclerosis

    Get PDF
    AbstractObjectiveWhite matter atrophy occurs independently of lesions in multiple sclerosis. In contrast to lesion detection, the quantitative assessment of white matter atrophy in individual patients has been regarded as a major challenge. We therefore tested the hypothesis that white matter atrophy (WMA) is present at the very beginning of multiple sclerosis (MS) and in virtually each individual patient. To find a new sensitive and robust marker for WMA we investigated the relationship between cortical surface area, white matter volume (WMV), and whole-brain-surface-averaged rectified cortical extrinsic curvature. Based on geometrical considerations we hypothesized that cortical curvature increases if WMV decreases and the cortical surface area remains constant.MethodsIn total, 95 participants were enrolled: 30 patients with early and advanced relapsing–remitting MS; 30 age-matched control subjects; 30 patients with Alzheimer's disease (AD) and 5 patients with clinically isolated syndrome (CIS).Results29/30 MS and 5/5 CIS patients showed lower WMV than expected from their intracranial volume (average reduction 13.0%, P<10−10), while the cortical surface area showed no significant differences compared with controls. The estimated WMV reductions were correlated with an increase in cortical curvature (R=0.62, P=0.000001). Discriminant analysis revealed that the curvature increase was highly specific for the MS and CIS groups (96.7% correct assignments between MS and control groups) and was significantly correlated with reduction of white matter fractional anisotropy, as determined by diffusion tensor imaging and the Expanded Disability Status Scale. As expected by the predominant gray and WM degeneration in AD, no systematic curvature increase was observed in AD.ConclusionWhole-brain-averaged cortical extrinsic curvature appears to be a specific and quantitative marker for a WMV–cortex disproportionality and allows us to assess “pure” WMA without being confounded by intracranial volume. WMA seems to be a characteristic symptom in early MS and can already occur in patients with CIS and should thus be considered in future MS research and clinical studies

    Systems modeling of white matter microstructural abnormalities in Alzheimer's disease

    Get PDF
    INTRODUCTION: Microstructural abnormalities in white matter (WM) are often reported in Alzheimer's disease (AD). However, it is unclear which brain regions have the strongest WM changes in presymptomatic AD and what biological processes underlie WM abnormality during disease progression. METHODS: We developed a systems biology framework to integrate matched diffusion tensor imaging (DTI), genetic and transcriptomic data to investigate regional vulnerability to AD and identify genetic risk factors and gene subnetworks underlying WM abnormality in AD. RESULTS: We quantified regional WM abnormality and identified most vulnerable brain regions. A SNP rs2203712 in CELF1 was most significantly associated with several DTI-derived features in the hippocampus, the top ranked brain region. An immune response gene subnetwork in the blood was most correlated with DTI features across all the brain regions. DISCUSSION: Incorporation of image analysis with gene network analysis enhances our understanding of disease progression and facilitates identification of novel therapeutic strategies for AD

    THE EFFECT OF POSTTRANSLATIONAL MODIFICATIONS ON PROTEIN AGGREGATION, MORPHOLOGY, AND TOXICITY

    Get PDF
    Proteins are one of the most versatile macromolecules in the biological system. The function or activity of a protein highly depends on its 3D native structure. However, under stress, they are at risk of misfolding/aggregation, leading to formation of structures that can indicate loss of function or gain of toxicity. In severe cases, protein aggregation can result in many diseases, including neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis. Due to the heterogeneous nature of cellular environment and protein molecules, mechanism of in vivo folding and related toxicity still remains elusive. To have a better understanding of the cellular protein aggregations process and subsequent toxicity, we have performed aggregation studies of proteins with different types of posttranslational modifications, which is critical to protein’s functional diversity. In this dissertation, two common types of covalent modification of proteins, i.e. disulfide reduction and acetylation, were selected. In aggregation studies of two globular proteins, hen egg white lysozyme and bovine serum albumin (BSA), formation of amorphous aggregates were observed as a consequence of disulfide bond scrambling. The structural properties of the observed aggregates were distinct and depended on disulfide reduction level. In study of amyloid β (Aβ) peptide, the major pathological protein in Alzheimer’s disease, effect of acetylation of the two lysine (K) positions, K16 and K28, on protein aggregation were investigated. We observed that acetylation on K16 can significantly increase hydrophobicity of Aβ and disrupt amyloid fibril formation. Interestingly, the heterogeneous mixtures of wild type and acetylated peptides displayed increased cytotoxicity compared to the homogeneous samples. To further understand the toxicity of protein aggregates, we then compared the cytotoxicity of eleven different aggregates from lysozyme and BSA, varying in morphology, size, flexibility, and hydrophobicity. The results suggest that the protein conformational changes in the early stage of aggregation process are essential for a gain in toxicity. Thy observed toxic species are structurally flexible, however, no clear correlation was found between cytotoxicity and hydrophobicity. Considering all the toxicity results of Aβ peptide, lysozyme, and BSA, we noticed that mixtures of native and modified proteins or aggregates are usually highly toxic. Therefore, the observed cytotoxicity of different structures may result from the heterogeneity of samples that are flexible rather than any defined structure. Further analysis of the toxic conformation would require high resolution structure determination of different aggregated protein species

    Evaluation of Cerebral Lateral Ventricular Enlargement Derived from Magnetic Resonance Imaging: A Candidate Biomarker of Alzheimer Disease Progression in Vivo

    Get PDF
    Alzheimer disease (AD) is the most common form of dementia and has grievous mortality rates. Measuring brain volumes from structural magnetic resonance images (MRI) may be useful for illuminating disease progression. The goal of this thesis was to (1) help refine a novel technique used to segment the lateral cerebral ventricles from MRI, (2) validate this tool, and determine group-wise differences between normal elderly controls (NEC) and subjects with mild cognitive impairment (MCI) and AD and (3) determine the number of subjects necessary to detect a 20 percent change from the natural history of ventricular enlargement with respect to genotype. Three dimensional Ti-weighted MRI and cognitive measures were acquired from 504 subjects (NEC n = 152, MCI n = 247 and AD n = 105) participating in the multi-centre Alzheimer\u27s Disease Neuroimaging Initiative. Cerebral ventricular volume was quantified at baseline and after six months. For secondary analyses, all groups were dichotomized for Apolipoprotein E genotype based on the presence of an e4 polymorphism. The AD group had greater ventricular enlargement compared to both subjects with MCI (P = 0.0004) and NEC (P \u3c 0.0001), and subjects with MCI had a greater rate of ventricular enlargement compared to NEC (P =0.0001). MCI subjects that progressed to clinical AD after six months had greater ventricular enlargement than stable MCI subjects (P = 0.0270). Ventricular enlargement was different between apolipoprotein E genotypes within the AD group (P = 0.010). The number of subjects required to demonstrate a 20% change in ventricular enlargement (AD: N=342, MCI: N=1180) was substantially lower than that required to demonstrate a 20% change in cognitive scores (MMSE) (AD: N=7056, MCI: N=7712). Therefore, ventricular enlargement represents a feasible short-term marker of disease progression in subjects with MCI and subjects with AD for multi-centre studie
    corecore