1,063 research outputs found

    A Spatial Informance Design Method to Elicit Early Interface Prototypes for Augmented Reality

    Get PDF
    Designing for augmented reality (AR) applications is difficult and expensive. A rapid system for the early design process of spatial interfaces is required. Previous research has used video for mobile AR design, but this is not extensible to head-mounted AR. AR is an emergent technology with no prior design precedent, requiring designers to allow free speculation or risk the pitfalls of ‘path dependence’. In this paper, a participatory elicitation method we call ‘spatial informance design’ is presented. We found combining ‘informance design’, ‘Wizard of Oz’, improvisation, and ‘paper prototyping’, to be a fast and lightweight solution for ideation of rich designs for spatial interfaces. A study using our method with 11 participants, produced similar and wildly different interface configurations and interactions for an augmented reality email application. Based on our findings we propose design implications and an evaluation of our method using spatial informance for the design of head-mounted AR applications

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    Multi-touch interaction for interface prototyping

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 201

    Proceedings of the 3rd IUI Workshop on Interacting with Smart Objects

    Get PDF
    These are the Proceedings of the 3rd IUI Workshop on Interacting with Smart Objects. Objects that we use in our everyday life are expanding their restricted interaction capabilities and provide functionalities that go far beyond their original functionality. They feature computing capabilities and are thus able to capture information, process and store it and interact with their environments, turning them into smart objects

    An innovative search interface for gesture dictionary

    Get PDF
    We live in a multicultural world. We need to learn how to communicate with each other, sometimes even without words, using only gestures. To help people better communicate in the multicultural epoch, the German company Fragenstellerin developed the gesture dictionary application on an iOS platform. To cover the bigger population of users, I designed an innovative search interface for gesture dictionary on an Android platform. I applied user-centered design method to the very popular modern industrial task of moving applications from one platform to another. I analyzed the user interface of the iOS Gestunary solution, collected user’s reflections, researched similar products, and gesture coding schemes. I performed three development and testing iterations, including co-design, User-based tests, and SUS tests. I also conducted gesture illustration research, which showed a clear preference towards color photos over drawings and other illustration options. My additional study demonstrated that it is feasible to implement automatic gesture recognition for the Gestunary application. As the main result, I developed an innovative search interface for the Gestunary application on the Android platform

    SketchWizard: Wizard of Oz Prototyping of Pen-based User Interfaces

    Get PDF
    SketchWizard allows designers to create Wizard of Oz prototypes of pen-based user interfaces in the early stages of design. In the past, designers have been inhibited from participating in the design of pen-based interfaces because of the inadequacy of paper prototypes and the difficulty of developing functional prototypes. In SketchWizard, designers and end users share a drawing canvas between two computers, allowing the designer to simulate the behavior of recognition or other technologies. Special editing features are provided to help designers respond quickly to end-user input. This paper describes the SketchWizard system and presents two evaluations of our approach. The first is an early feasibility study in which Wizard of Oz was used to prototype a pen-based user interface. The second is a laboratory study in which designers used SketchWizard to simulate existing pen-based interfaces. Both showed that end users gave valuable feedback in spite of delays between end-user actions and wizard updates

    An aesthetics of touch: investigating the language of design relating to form

    Get PDF
    How well can designers communicate qualities of touch? This paper presents evidence that they have some capability to do so, much of which appears to have been learned, but at present make limited use of such language. Interviews with graduate designer-makers suggest that they are aware of and value the importance of touch and materiality in their work, but lack a vocabulary to fully relate to their detailed explanations of other aspects such as their intent or selection of materials. We believe that more attention should be paid to the verbal dialogue that happens in the design process, particularly as other researchers show that even making-based learning also has a strong verbal element to it. However, verbal language alone does not appear to be adequate for a comprehensive language of touch. Graduate designers-makers’ descriptive practices combined non-verbal manipulation within verbal accounts. We thus argue that haptic vocabularies do not simply describe material qualities, but rather are situated competences that physically demonstrate the presence of haptic qualities. Such competencies are more important than groups of verbal vocabularies in isolation. Design support for developing and extending haptic competences must take this wide range of considerations into account to comprehensively improve designers’ capabilities

    Interactions in Virtual Worlds:Proceedings Twente Workshop on Language Technology 15

    Get PDF

    A Mixed Reality Approach to 3D Interactive Prototyping for Participatory Design of Ambient Intelligence

    Get PDF
    Ambient Intelligence (AmI in short) is a multi-disciplinary approach aimed at enriching physical environments with a network of distributed devices in order to support humans in achieving their everyday goals. However, in current research and development, AmI is still largely considered within the engineering domain bearing undeveloped relationship with architecture. The fact that architecture design substantially aims to address the requirements of supporting people in carrying out their everyday life activities, tasks and practices with spatial strategies. These are common to the AmI’s objectives and purposes, and we aim at considering the possibilities or even necessities of investigating the potential design approach accessible to an architectural context. For end users, AmI is a new type of service. Designing and evaluating the AmI experience before resources are spent on designing the processes and technology needed to eventually run the service can save large amounts of time and money. Therefore, it is essential to create an environment in which designers can involve real people in trying out the service design proposals as early as possible in the design process. Existing cases related to stakeholder engaged design of AmI have primarily focused on engineering implementation and generally only present final outcome to stakeholders for user evaluation. Researchers have been able to build AmI prototypes for design communication. However, most of these prototypes are typically built without the involvement of stakeholders and architects in their conceptual design stage. Using concepts solely designed by engineers may not be user centric and even contain safety risks. The key research question of this thesis is: “How can Ambient Intelligence be designed through a participatory process that involves stakeholders and prospective users?" The thesis consists of the following five components: 1) Identification of a novel participatory design process for modelling AmI scenarios; 2) Identification of the requirements to support prototyping of AmI design, resulting in a conceptual framework that both "lowers the floor" (i.e. making it easier for designers to build the AmI prototypes) and "raises the ceiling" (i.e. increasing the ability of stakeholders and end users to participate in the design process deeply); i 3) Prototyping an experimental Mixed Reality Modelling (MRM in short) platform to facilitate the participatory design of AmI that supports the requirements, design process, and scenarios prototyping; 4) Case study of applying MRM platform to participatory design of a Smart Laser Cutting Workshop(LCW in short) which used to evaluate the proposed MRM based AmI design approach. The result of the research shows that the MRM based participatory design approach is able to support the design of AmI effectively
    corecore