2,005 research outputs found

    Self-concatenated coding and multi-functional MIMO aided H.264 video telephony

    No full text
    Abstract— Robust video transmission using iteratively detected Self-Concatenated Coding (SCC), multi-dimensional Sphere Packing (SP) modulation and Layered Steered Space-Time Coding (LSSTC) is proposed for H.264 coded video transmission over correlated Rayleigh fading channels. The self-concatenated convolutional coding (SECCC) scheme is composed of a Recursive Systematic Convolutional (RSC) code and an interleaver, which is used to randomise the extrinsic information exchanged between the self-concatenated constituent RSC codes. Additionally, a puncturer is employed for improving the achievable bandwidth efficiency. The convergence behaviour of the MIMO transceiver advocated is investigated with the aid of Extrinsic Information Transfer (EXIT) charts. The proposed system exhibits an Eb /N0 gain of about 9 dB at the PSNR degradation point of 1 dB in comparison to the identical-rate benchmarker scheme

    Iterative H.264 Source and Channel Decoding Using Sphere Packing Modulation Aided Layered Steered Space-Time Codes

    No full text
    The conventional two-stage turbo-detection schemes generally suffer from a Bit Error Rate (BER) floor. In this paper we circumvent this deficiency by proposing a three-stage turbo detected Sphere Packing (SP) modulation aided Layered Steered Space-Time Coding (LSSTC) scheme for H.264 coded video transmission over correlated Rayleigh fading channels. The soft-bit assisted H.264 coded bit-stream is protected using low-complexity short-block codes (SBCs), combined with a rate-1 recursive inner precoder is employed as an intermediate code which has an infinite impulse response and hence beneficially spreads the extrinsic information across the constituent decoders. This allows us to avoid having a BER floor. Additionally, the convergence behaviour of this serially concatenated scheme is investigated with the aid of Extrinsic Information Transfer (EXIT) Charts. The proposed system exhibits an Eb/N0 gain of about 12 dB in comparison to the benchmark scheme carrying out iterative source-channel decoding as well as Layered Steered Space-Time Coding (LSSTC) aided Sphere Packing (SP)demodulation, but dispensing with the optimised SBCs

    Inter-layer turbo coded unequal error protection for multi-layer video transmission

    No full text
    In layered video streaming, the enhancement layers (ELs) must be discarded by the video decoder, when the base layer (BL) is corrupted or lost due to channel impairments. This implies that the transmit power assigned to the ELs is wasted, when the BL is corrupted. To combat this effect, in this treatise we investigate the inter-layer turbo (IL-turbo) code, where the systematic bits of the BL are implanted into the systematic bits of the ELs at the transmitter. At the receiver, when the BL cannot be successfully decoded, the information of the ELs may be utilized by the IL-turbo decoder for the sake of assisting in decoding the BL. Moreover, for providing further insights into the IL technique the benefits of the IL-turbo scheme are analyzed using extrinsic information transfer (EXIT) charts in the scenario of unequal error protection (UEP) coded layered video transmission. Finally, our data partitioning based experiments show that the proposed scheme outperforms the traditional turbo code based UEP scheme by about an Eb/N0 of 1.1 dB at a peak signal-to-noise ratio (PSNR) of 36 dB or 3 dB of PSNR at an Eb/N0 of -5.5 dB at the cost of a complexity increase of 13%

    Orthogonal Multiple Access with Correlated Sources: Feasible Region and Pragmatic Schemes

    Full text link
    In this paper, we consider orthogonal multiple access coding schemes, where correlated sources are encoded in a distributed fashion and transmitted, through additive white Gaussian noise (AWGN) channels, to an access point (AP). At the AP, component decoders, associated with the source encoders, iteratively exchange soft information by taking into account the source correlation. The first goal of this paper is to investigate the ultimate achievable performance limits in terms of a multi-dimensional feasible region in the space of channel parameters, deriving insights on the impact of the number of sources. The second goal is the design of pragmatic schemes, where the sources use "off-the-shelf" channel codes. In order to analyze the performance of given coding schemes, we propose an extrinsic information transfer (EXIT)-based approach, which allows to determine the corresponding multi-dimensional feasible regions. On the basis of the proposed analytical framework, the performance of pragmatic coded schemes, based on serially concatenated convolutional codes (SCCCs), is discussed

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    EXIT charts for system design and analysis

    No full text
    Near-capacity performance may be achieved with the aid of iterative decoding, where extrinsic soft information is exchanged between the constituent decoders in order to improve the attainable system performance. Extrinsic information Transfer (EXIT) charts constitute a powerful semi-analytical tool used for analysing and designing iteratively decoded systems. In this tutorial, we commence by providing a rudimentary overview of the iterative decoding principle and the concept of soft information exchange. We then elaborate on the concept of EXIT charts using three iteratively decoded prototype systems as design examples. We conclude by illustrating further applications of EXIT charts, including near-capacity designs, the concept of irregular codes and the design of modulation schemes

    Irregular Variable Length Coding

    Get PDF
    In this thesis, we introduce Irregular Variable Length Coding (IrVLC) and investigate its applications, characteristics and performance in the context of digital multimedia broadcast telecommunications. During IrVLC encoding, the multimedia signal is represented using a sequence of concatenated binary codewords. These are selected from a codebook, comprising a number of codewords, which, in turn, comprise various numbers of bits. However, during IrVLC encoding, the multimedia signal is decomposed into particular fractions, each of which is represented using a different codebook. This is in contrast to regular Variable Length Coding (VLC), in which the entire multimedia signal is encoded using the same codebook. The application of IrVLCs to joint source and channel coding is investigated in the context of a video transmission scheme. Our novel video codec represents the video signal using tessellations of Variable-Dimension Vector Quantisation (VDVQ) tiles. These are selected from a codebook, comprising a number of tiles having various dimensions. The selected tessellation of VDVQ tiles is signalled using a corresponding sequence of concatenated codewords from a Variable Length Error Correction (VLEC) codebook. This VLEC codebook represents a specific joint source and channel coding case of VLCs, which facilitates both compression and error correction. However, during video encoding, only particular combinations of the VDVQ tiles will perfectly tessellate, owing to their various dimensions. As a result, only particular sub-sets of the VDVQ codebook and, hence, of the VLEC codebook may be employed to convey particular fractions of the video signal. Therefore, our novel video codec can be said to employ IrVLCs. The employment of IrVLCs to facilitate Unequal Error Protection (UEP) is also demonstrated. This may be applied when various fractions of the source signal have different error sensitivities, as is typical in audio, speech, image and video signals, for example. Here, different VLEC codebooks having appropriately selected error correction capabilities may be employed to encode the particular fractions of the source signal. This approach may be expected to yield a higher reconstruction quality than equal protection in cases where the various fractions of the source signal have different error sensitivities. Finally, this thesis investigates the application of IrVLCs to near-capacity operation using EXtrinsic Information Transfer (EXIT) chart analysis. Here, a number of component VLEC codebooks having different inverted EXIT functions are employed to encode particular fractions of the source symbol frame. We show that the composite inverted IrVLC EXIT function may be obtained as a weighted average of the inverted component VLC EXIT functions. Additionally, EXIT chart matching is employed to shape the inverted IrVLC EXIT function to match the EXIT function of a serially concatenated inner channel code, creating a narrow but still open EXIT chart tunnel. In this way, iterative decoding convergence to an infinitesimally low probability of error is facilitated at near-capacity channel SNRs

    Self-concatenated coding for wireless communication systems

    No full text
    In this thesis, we have explored self-concatenated coding schemes that are designed for transmission over Additive White Gaussian Noise (AWGN) and uncorrelated Rayleigh fading channels. We designed both the symbol-based Self-ConcatenatedCodes considered using Trellis Coded Modulation (SECTCM) and bit-based Self- Concatenated Convolutional Codes (SECCC) using a Recursive Systematic Convolutional (RSC) encoder as constituent codes, respectively. The design of these codes was carried out with the aid of Extrinsic Information Transfer (EXIT) charts. The EXIT chart based design has been found an efficient tool in finding the decoding convergence threshold of the constituent codes. Additionally, in order to recover the information loss imposed by employing binary rather than non-binary schemes, a soft decision demapper was introduced in order to exchange extrinsic information withthe SECCC decoder. To analyse this information exchange 3D-EXIT chart analysis was invoked for visualizing the extrinsic information exchange between the proposed Iteratively Decoding aided SECCC and soft-decision demapper (SECCC-ID). Some of the proposed SECTCM, SECCC and SECCC-ID schemes perform within about 1 dB from the AWGN and Rayleigh fading channels’ capacity. A union bound analysis of SECCC codes was carried out to find the corresponding Bit Error Ratio (BER) floors. The union bound of SECCCs was derived for communications over both AWGN and uncorrelated Rayleigh fading channels, based on a novel interleaver concept.Application of SECCCs in both UltraWideBand (UWB) and state-of-the-art video-telephone schemes demonstrated its practical benefits.In order to further exploit the benefits of the low complexity design offered by SECCCs we explored their application in a distributed coding scheme designed for cooperative communications, where iterative detection is employed by exchanging extrinsic information between the decoders of SECCC and RSC at the destination. In the first transmission period of cooperation, the relay receives the potentially erroneous data and attempts to recover the information. The recovered information is then re-encoded at the relay using an RSC encoder. In the second transmission period this information is then retransmitted to the destination. The resultant symbols transmitted from the source and relay nodes can be viewed as the coded symbols of a three-component parallel-concatenated encoder. At the destination a Distributed Binary Self-Concatenated Coding scheme using Iterative Decoding (DSECCC-ID) was employed, where the two decoders (SECCC and RSC) exchange their extrinsic information. It was shown that the DSECCC-ID is a low-complexity scheme, yet capable of approaching the Discrete-input Continuous-output Memoryless Channels’s (DCMC) capacity.Finally, we considered coding schemes designed for two nodes communicating with each other with the aid of a relay node, where the relay receives information from the two nodes in the first transmission period. At the relay node we combine a powerful Superposition Coding (SPC) scheme with SECCC. It is assumed that decoding errors may be encountered at the relay node. The relay node then broadcasts this information in the second transmission period after re-encoding it, again, using a SECCC encoder. At the destination, the amalgamated block of Successive Interference Cancellation (SIC) scheme combined with SECCC then detects and decodes the signal either with or without the aid of a priori information. Our simulation results demonstrate that the proposed scheme is capable of reliably operating at a low BER for transmission over both AWGN and uncorrelated Rayleigh fading channels. We compare the proposed scheme’s performance to a direct transmission link between the two sources having the same throughput

    Iterative source and channel decoding relying on correlation modelling for wireless video transmission

    No full text
    Since joint source-channel decoding (JSCD) is capable of exploiting the residual redundancy in the source signals for improving the attainable error resilience, it has attracted substantial attention. Motivated by the principle of exploiting the source redundancy at the receiver, in this treatise we study the application of iterative source channel decoding (ISCD) aided video communications, where the video signal is modelled by a first-order Markov process. Firstly, we derive reduced-complexity formulas for the first-order Markov modelling (FOMM) aided source decoding. Then we propose a bit-based iterative horizontal vertical scanline model (IHVSM) aided source decoding algorithm, where a horizontal and a vertical source decoder are employed for exchanging their extrinsic information using the iterative decoding philosophy. The iterative IHVSM aided decoder is then employed in a forward error correction (FEC) encoded uncompressed video transmission scenario, where the IHVSM and the FEC decoder exchange softbit-information for performing turbo-like ISCD for the sake of improving the reconstructed video quality. Finally, we benchmark the attainable system performance against a near-lossless H.264/AVC video communication system and the existing FOMM based softbit source decoding scheme, where The financial support of the RC-UK under the auspices of the India-UK Advanced Technology Centre (IU-ATC) and that of the EU under the CONCERTO project as well as that of the European Research Council’s Advanced Fellow Grant is gratefully acknowledged. The softbit decoding is performed by a one-dimensional Markov model aided decoder. Our simulation results show that Eb=N0 improvements in excess of 2.8 dB are attainable by the proposed technique in uncompressed video applications
    • 

    corecore