research

Iterative H.264 Source and Channel Decoding Using Sphere Packing Modulation Aided Layered Steered Space-Time Codes

Abstract

The conventional two-stage turbo-detection schemes generally suffer from a Bit Error Rate (BER) floor. In this paper we circumvent this deficiency by proposing a three-stage turbo detected Sphere Packing (SP) modulation aided Layered Steered Space-Time Coding (LSSTC) scheme for H.264 coded video transmission over correlated Rayleigh fading channels. The soft-bit assisted H.264 coded bit-stream is protected using low-complexity short-block codes (SBCs), combined with a rate-1 recursive inner precoder is employed as an intermediate code which has an infinite impulse response and hence beneficially spreads the extrinsic information across the constituent decoders. This allows us to avoid having a BER floor. Additionally, the convergence behaviour of this serially concatenated scheme is investigated with the aid of Extrinsic Information Transfer (EXIT) Charts. The proposed system exhibits an Eb/N0 gain of about 12 dB in comparison to the benchmark scheme carrying out iterative source-channel decoding as well as Layered Steered Space-Time Coding (LSSTC) aided Sphere Packing (SP)demodulation, but dispensing with the optimised SBCs

    Similar works

    Full text

    thumbnail-image

    Available Versions