218 research outputs found

    Covariate shift detection-based nonstationary adaptation in motor-imagery-based brain–computer interface

    Get PDF
    Nonstationary learning refers to the process that can learn patterns from data, adapt to shifts, and improve performance of the system with its experience while operating in the nonstationary environments (NSEs). Covariate shift (CS) presents a major challenge during data processing within NSEs wherein the input-data distribution shifts during transitioning from training to testing phase. CS is one of the fundamental issues in electroencephalogram (EEG)-based brain-computer interface (BCI) systems and can be often observed during multiple trials of EEG data recorded over different sessions. Thus, conventional learning algorithms struggle to accommodate these CSs in streaming EEG data resulting in low performance (in terms of classification accuracy) of motor imagery (MI)-related BCI systems. This chapter aims to introduce a novel framework for nonstationary adaptation in MI-related BCI system based on CS detection applied to the temporal and spatial filtered features extracted from raw EEG signals. The chapter collectively provides an efficient method for accounting nonstationarity in EEG data during learning in NSEs

    Online Covariate Shift Detection based Adaptive Brain-Computer Interface to Trigger Hand Exoskeleton Feedback for Neuro-Rehabilitation

    Get PDF
    A major issue in electroencephalogram (EEG) based brain-computer interfaces (BCIs) is the intrinsic non-stationarities in the brain waves, which may degrade the performance of the classifier, while transitioning from calibration to feedback generation phase. The non-stationary nature of the EEG data may cause its input probability distribution to vary over time, which often appear as a covariate shift. To adapt to the covariate shift, we had proposed an adaptive learning method in our previous work and tested it on offline standard datasets. This paper presents an online BCI system using previously developed covariate shift detection (CSD)-based adaptive classifier to discriminate between mental tasks and generate neurofeedback in the form of visual and exoskeleton motion. The CSD test helps prevent unnecessary retraining of the classifier. The feasibility of the developed online-BCI system was first tested on 10 healthy individuals, and then on 10 stroke patients having hand disability. A comparison of the proposed online CSD-based adaptive classifier with conventional non-adaptive classifier has shown a significantly (p<0.01) higher classification accuracy in both the cases of healthy and patient groups. The results demonstrate that the online CSD-based adaptive BCI system is superior to the non-adaptive BCI system and it is feasible to be used for actuating hand exoskeleton for the stroke-rehabilitation applications

    Adaptive learning with covariate shift-detection for motor imagery-based brain–computer interface

    Get PDF
    A common assumption in traditional supervised learning is the similar probability distribution of data between the training phase and the testing/operating phase. When transitioning from the training to testing phase, a shift in the probability distribution of input data is known as a covariate shift. Covariate shifts commonly arise in a wide range of real-world systems such as electroencephalogram-based brain–computer interfaces (BCIs). In such systems, there is a necessity for continuous monitoring of the process behavior, and tracking the state of the covariate shifts to decide about initiating adaptation in a timely manner. This paper presents a covariate shift-detection and -adaptation methodology, and its application to motor imagery-based BCIs. A covariate shift-detection test based on an exponential weighted moving average model is used to detect the covariate shift in the features extracted from motor imagery-based brain responses. Following the covariate shift-detection test, the methodology initiates an adaptation by updating the classifier during the testing/operating phase. The usefulness of the proposed method is evaluated using real-world BCI datasets (i.e. BCI competition IV dataset 2A and 2B). The results show a statistically significant improvement in the classification accuracy of the BCI system over traditional learning and semi-supervised learning methods

    Covariate shift estimation based adaptive ensemble learning for handling non-stationarity in motor imagery related EEG-based brain-computer interface

    Get PDF
    The non-stationary nature of electroencephalography (EEG) signals makes an EEG-based brain-computer interface (BCI) a dynamic system, thus improving its performance is a challenging task. In addition, it is well-known that due to non-stationarity based covariate shifts, the input data distributions of EEG-based BCI systems change during inter- and intra-session transitions, which poses great difficulty for developments of online adaptive data-driven systems. Ensemble learning approaches have been used previously to tackle this challenge. However, passive scheme based implementation leads to poor efficiency while increasing high computational cost. This paper presents a novel integration of covariate shift estimation and unsupervised adaptive ensemble learning (CSE-UAEL) to tackle non-stationarity in motor-imagery (MI) related EEG classification. The proposed method first employs an exponentially weighted moving average model to detect the covariate shifts in the common spatial pattern features extracted from MI related brain responses. Then, a classifier ensemble was created and updated over time to account for changes in streaming input data distribution wherein new classifiers are added to the ensemble in accordance with estimated shifts. Furthermore, using two publicly available BCI-related EEG datasets, the proposed method was extensively compared with the state-of-the-art single-classifier based passive scheme, single-classifier based active scheme and ensemble based passive schemes. The experimental results show that the proposed active scheme based ensemble learning algorithm significantly enhances the BCI performance in MI classifications

    R-CAD: Rare Cyber Alert Signature Relationship Extraction Through Temporal Based Learning

    Get PDF
    The large number of streaming intrusion alerts make it challenging for security analysts to quickly identify attack patterns. This is especially difficult since critical alerts often occur too rarely for traditional pattern mining algorithms to be effective. Recognizing the attack speed as an inherent indicator of differing cyber attacks, this work aggregates alerts into attack episodes that have distinct attack speeds, and finds attack actions regularly co-occurring within the same episode. This enables a novel use of the constrained SPADE temporal pattern mining algorithm to extract consistent co-occurrences of alert signatures that are indicative of attack actions that follow each other. The proposed Rare yet Co-occurring Attack action Discovery (R-CAD) system extracts not only the co-occurring patterns but also the temporal characteristics of the co-occurrences, giving the `strong rules\u27 indicative of critical and repeated attack behaviors. Through the use of a real-world dataset, we demonstrate that R-CAD helps reduce the overwhelming volume and variety of intrusion alerts to a manageable set of co-occurring strong rules. We show specific rules that reveal how critical attack actions follow one another and in what attack speed

    A survey on detecting healthcare concept drift in AI/ML models from a finance perspective

    Get PDF
    Data is incredibly significant in today's digital age because data represents facts and numbers from our regular life transactions. Data is no longer arriving in a static form; it is now arriving in a streaming fashion. Data streams are the arrival of limitless, continuous, and rapid data. The healthcare industry is a major generator of data streams. Processing data streams is extremely complex due to factors such as volume, pace, and variety. Data stream classification is difficult owing to idea drift. Concept drift occurs in supervised learning when the statistical properties of the target variable that the model predicts change unexpectedly. We focused on solving various forms of concept drift problems in healthcare data streams in this research, and we outlined the existing statistical and machine learning methodologies for dealing with concept drift. It also emphasizes the use of deep learning algorithms for concept drift detection and describes the various healthcare datasets utilized for concept drift detection in data stream categorization

    Deep Learning based Prediction of EEG Motor Imagery of Stroke Patients' for Neuro-Rehabilitation Application

    Get PDF
    Due to the non-stationary nature of electroencephalography (EEG) signals, a Brain-computer Interfacing (BCI) system requires frequent calibration. This leads to intersession inconsistency which is one of the main reason that impedes the widespread adoption of non-invasive BCI for realworld applications, especially in rehabilitation and medicine. Domain adaptation and deep learning-based techniques have gained relevance in designing calibration-free BCIs to solve this issue. EEGNet is one such deep net architecture that has been successful in performing inter-subject classification, albeit on data from healthy participants. This is the first paper, which tests the performance of EEGNet on data obtained from 10 hemiparetic stroke patients while performing left and right motor imagery tasks. Results obtained on implementing EEGNet have been promising and it has comparably good performance as from expensive feature engineering-based approaches for both withinsubject and cross-subject classification. The less dependency on feature engineering techniques and the ability to extract generalized features for inter-subject classification makes EEGNet a promising deep-learning architecture for developing practically feasible solutions for BCI based neuro-rehabilitation applications
    • …
    corecore