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a b s t r a c t 

The non-stationary nature of electroencephalography (EEG) signals makes an EEG-based brain-computer 

interface (BCI) a dynamic system, thus improving its performance is a challenging task. In addition, it is 

well-known that due to non-stationarity based covariate shifts, the input data distributions of EEG-based 

BCI systems change during inter- and intra-session transitions, which poses great difficulty for develop- 

ments of online adaptive data-driven systems. Ensemble learning approaches have been used previously 

to tackle this challenge. However, passive scheme based implementation leads to poor efficiency while in- 

creasing high computational cost. This paper presents a novel integration of covariate shift estimation and 

unsupervised adaptive ensemble learning (CSE-UAEL) to tackle non-stationarity in motor-imagery (MI) re- 

lated EEG classification. The proposed method first employs an exponentially weighted moving average 

model to detect the covariate shifts in the common spatial pattern features extracted from MI related 

brain responses. Then, a classifier ensemble was created and updated over time to account for changes 

in streaming input data distribution wherein new classifiers are added to the ensemble in accordance 

with estimated shifts. Furthermore, using two publicly available BCI-related EEG datasets, the proposed 

method was extensively compared with the state-of-the-art single-classifier based passive scheme, single- 

classifier based active scheme and ensemble based passive schemes. The experimental results show that 

the proposed active scheme based ensemble learning algorithm significantly enhances the BCI perfor- 

mance in MI classifications. 

© 2019 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Streaming data analytics has increasingly become the bedrock 

in many domains, such as bio-medical sciences, healthcare, and fi- 

nancial services. However, the majority of streaming data systems 

assume that the distributions of streaming data do not change 

over time. In reality, the streaming data obtained from real-world 

systems often possess non-stationary characteristics [1] . Such sys- 

tems are often characterized by continuous evolving natures and 

thus, their behaviours often shift over time due to thermal drifts, 

aging effects, or other non-stationary environmental factors etc. 

These characteristics can adversely affect environmental, natural, 

artificial and industrial processes [2] . Hence, adaptive learning in 

a non-stationary environment (NSE), wherein the input data dis- 

tribution shifts over time, is a challenging task. Developing ma- 

chine learning models that can be optimized for non-stationary 

environments is in high demand. Currently machine learning 

https://doi.org/10.1016/j.neucom.2018.04.087 
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methods for non-stationary systems are majorly categorized into 

passive and active approaches [2] . In the passive approach to non- 

stationary learning (NSL), it is assumed that the input distribu- 

tion should be continuously shifting over time [2,3] . Thus, passive 

scheme based methods adapt to new data distributions continu- 

ously for each new incoming observation or a new batch of ob- 

servations from the streaming data. In contrast, an active scheme 

based NSL method uses a shift detection test to detect the pres- 

ence of shifts in the streaming data, and an adaptive action is 

initiated based upon the time of detected shift [4] . There exits a 

range of literature on transfer learning and domain adaptation the- 

ory, which aims to adapt to NSEs by transferring knowledge be- 

tween training and test domains. In this case, one can match the 

features distribution of training and testing by the density ratio 

estimation approaches such as kernel mean matching [5] , 

Kullback–Leibler importance estimation procedure, and least- 

squares importance fitting [6] . In addition to density ratio esti- 

mation methods, several methods, such as domain adaption with 

conditional transferable components, try to minimize the domain 

shift by finding invariant representation across training and target 

domains [7] . In fact, to favorably transfer knowledge between do- 

mains, one needs to estimate the primary causal mechanism of the 

data generating process. These methods have, however, a limited 

applicability in real world problems, where the data in test domain 

are generated while operating in real-time. 

A typical brain-computer-interface (BCI) system aims to provide 

an alternative means of communication or rehabilitation for the 

physically challenged population so as to allow them to express 

their wills without muscle exertion [8] . An electroencephalography 

(EEG)-based BCI is such a non-stationary system [9] and quasi- 

stationary segment in EEG signals have duration of nearly 0.25 s 

[10] . The non-stationarities of the EEG signals may be caused by 

various events, such as changes in the user attention levels, elec- 

trode placements, or user fatigues [11–13] . In other words, the ba- 

sic cause of the non-stationarity in EEG signals is not only as- 

sociated with the influences of the external stimuli to the brain 

mechanisms, but the switching of the cognitive task related inher- 

ent metastable states of neural assemblies also contributes towards 

it [14] . These non-stationarities cause notable variations or shifts 

in the EEG signals both during trial-to-trial, and session-to-session 

transfers [13,15–17] . As a result, these variations often appear as 

covariate shifts (CSs) wherein the input data distributions differ 

significantly between training and testing phases while the con- 

ditional distribution remains the same [6,18–21] . 

Non-invasive EEG-based BCI systems acquire neural signals at 

scalp level to be analysed for evaluating activity-specific features 

of EEG signals e.g. voluntary imagery/execution tasks, and finally 

the output signals are relayed to different control devices [8] . The 

EEG signals are acquired through a multichannel EEG amplifier, 

and a pre-processing step is performed to remove noise and en- 

hance the signal-to-noise ratio. Then the discriminable features are 

extracted from the artefact-cleaned signals using feature extrac- 

tion techniques, such as spatial filtering (e.g., common spatial pat- 

tern (CSP)) [22] . Such a system operates typically in two phases, 

namely the training phase and the testing phase [23] . However, 

due to the non-stationary nature of the brain response character- 

istics, it is difficult to accurately classify the EEG patterns in motor 

imagery (MI) related BCI systems using traditional inductive algo- 

rithms [23,24] . For EEG-based BCI systems that operate online un- 

der real-time non-stationary/changing environments, it is required 

to consider the input features that are invariant to dataset shifts, or 

the learning approaches that can track the changes repeating over 

time, and the learning function can be adapted in a timely fashion. 

However, the traditional BCI systems are built upon passive ap- 

proach to NSL for EEG signals. In passive schemes, both single and 

ensemble classifiers have been developed to improve the MI clas- 

sification performance. In contrast, an active scheme based NSL in 

BCI systems provide a new option by estimating CSs in the stream- 

ing EEG features, in which an adaptive action can be initiated once 

the CS is confirmed. Our previous studies have demonstrated that 

the active approach to single-trial EEG classification outperformed 

existing passive approaches based BCI system [11,24–28] . 

The aim of this paper is to extend our previous work and 

present a novel active scheme based unsupervised adaptive en- 

semble learning algorithm to adapt to CSs under non-stationary 

environments in EEG-based BCI systems. Different from the exist- 

ing passive scheme based methods, the proposed algorithm is an 

active ensemble learning approach under non-stationary environ- 

ments wherein a CS estimation test is used to detect at which 

point an updated classifier needs to be added to the ensemble dur- 

ing the evaluation phase. The transductive learning is implemented 

to enrich the training dataset during the evaluation phase using 

a probabilistic weighted K nearest neighbour (PW K NN) method. 

Thus, a new classifier is added to the ensemble only when it 

is necessary, i.e. once the data from a novel distribution has to 

be processed. Specifically, we considered an exponential weighted 

moving average (EWMA) based algorithm for the estimation of 

CSs in non-stationary conditions [19] . To assess the performance 

of the proposed algorithm, this study extensively compared the 

proposed method with various existing passive ensemble learning 

algorithms: Bagging, Boosting, and Random Subspace; and an ac- 

tive ensemble learning via linear discriminant analysis (LDA)-score 

based probabilistic classification. A series of experimental evalua- 

tions have been performed on two publicly available MI related 

EEG datasets. 

The contributions of the paper are summarized as follows: 

• An active adaptive ensemble learning algorithm is proposed 

wherein new classifiers are added online to the ensemble based 

on covariate shift estimation. 

• The adaptation is performed in unsupervised mode using trans- 

duction via PW K NN classification. 

• The proposed system is applied to motor imagery based BCI to 

better characterise the non-stationary changes that occur across 

and within different sessions. 

The remainder of this paper proceeds as follows: Section II 

presents background information for CS, NSL methods in BCI 

and ensemble learning methods. Section III details the proposed 

methodology for estimating the CSs and related adaptive ensemble 

algorithm. Section IV describes the proposed MI related BCI sys- 

tem, and gives a description of the datasets and the signal pro- 

cessing pipeline. Next, Section V presents the performance analy- 

sis. Finally, the results are discussed in Section VI and Section VII 

summarises the findings of this study. 

2. Background 

2.1. Covariate shift in EEG signals 

In a typical BCI system, CS is a case where the input distri- 

bution of the data shifts i.e. ( P train ( x ) � = P test ( x )), whereas the con- 

ditional probability remains the same i.e. (P train (y | x ) = P test (y | x ) , 
while transitioning from the training to testing stage. Fig. 1 illus- 

trates the CS presence in EEG data of the subject A 07 in dataset-2A 

(the description of the dataset is present in section IV). The blue 

solid ellipse shows the training distribution P train ( x ) and blue solid 

line presents the classification hyperplane for training dataset. 

Similarly, the red dashed ellipse shows the test distribution P test ( x ) 

and the red dash line presents the classification hyperplane for the 

test dataset. Fig. 1 (a) and (b) provide the CSP features for ( μ) band 

[8 − 12] Hz and beta ( β) band [14 − 30] Hz, respectively. 
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Fig. 1. Covariate shift (CS) between the training ( Tr ) and test ( Ts ) distributions of subject A 07 in dataset-2A. ( a ) illustrates the CS in the mu ( μ) band and ( b ) shows the CS 

in the beta ( β) band. 

2.2. Non-stationary learning in EEG-based BCI 

The low classification accuracy of the existing BCI systems 

has been one of the main concerns in their rather low uptake 

among people with a severe physical disability [29] . To enhance 

the performance of MI related BCI systems, various signal process- 

ing methods have been proposed to extract effective f eatures in 

the temporal and spatial domains that can characterise the non- 

stationarity in EEG signals. For example, in the temporal domain, 

band-power and band-pass based filtering methods are commonly 

used [15] , whereas in the spatial domain, common averaging, cur- 

rent source density [30] , and CSP-based features have been exam- 

ined for the detection of MI related responses [22,31] . 

Machine learning researchers have made effort s to devise adap- 

tive BCI systems by incorporating NSL mechanisms into adaptation 

to improve the performances. Vidaurre et al. [25] have developed 

a classifier using an adaptive estimation of information matrix. 

Shenoy et al. [24] have provided quantified systematic evidence of 

statistical differences in data recorded during multiple sessions and 

various adaptive schemes were evaluated to enhance the BCI per- 

formance. A CS minimization method was proposed for the non- 

stationary adaptation to reduce feature set overlap and unbalance 

for different classes in the feature set domain [26] . More interest- 

ingly, Li et al.(2010) has proposed an unsupervised CS adaptation 

based on a density ratio estimation technique [11] . There exists a 

limitation that the density ratio based adaptation method requires 

all the testing unlabeled data before starting the testing phase to 

estimate the importance for the non-stationarity adaptation. This 

makes the approach impractical in real-time BCI applications such 

as communication or rehabilitation [32] . To tackle these challenges, 

ensemble machine learning has emerged for NSL, where a set of 

classifiers is coupled to provide an overall decision. The general- 

ization of an ensemble is much better than that of a single classi- 

fier [33] , which has strong theoretical support due to the follow- 

ing reasons. First, in case where the training data does not provide 

adequate information for selecting a single optimal learner, com- 

bining classifiers in the ensemble may be a better choice. Second, 

the search method of best hypothesis in the source domain of a 

single classifier may be sub-optimal. An ensemble may compen- 

sate for such sub-optimal search process by building multiple clas- 

sifiers. Third, searching true target function in the hypothesis space 

may not result in single optimal function, ensembles provide more 

acceptable approximations. In the EEG-based BCI systems, ensem- 

ble learning methods have been evaluated to improve the classifi- 

cation performance (e.g. bagging, boosting, and random subspace 

[34] ). Impressively, a dynamically weighted ensemble classification 

(DWEC) method has been proposed to handle the issue of non- 

stationarity adaptation [27] . The DWEC method partitions the EEG 

data using clustering analysis and subsequently train multiple clas- 

sifiers using the partitioned datasets. The final decision of the en- 

semble is then obtained by appropriately weighting the classifica- 

tion decisions of the individual classifiers. In a recent study, the 

ensemble of common spatial pattern patches has shown a poten- 

tial for improving online MI related BCI system performance [35] . 

The above-mentioned methods were all based on the passive 

scheme to NSL for EEG signals. Moreover, both single classifier 

and classifier ensemble based approaches were developed using 

the passive mechanism to improve the MI detection performance. 

However, in passive scheme based ensemble learning, devising the 

right number of required classifiers to achieve an optimal perfor- 

mance and reducing the computational cost for adding a classifier 

in the ensemble during the evaluation phase are still major open 

challenges. Our previous study [13,28] demonstrated that the ac- 

tive scheme based learning BCI system has the potential of improv- 

ing its performance. We have shown that a single active inductive 

classifier in single-trial EEG classification outperformed the exist- 

ing passive scheme, although the developed system was only ap- 

plicable for the rehabilitative BCI systems. 

2.3. Ensemble learning methods in BCI systems 

This study compare the proposed method with five state-of- 

the-art ensemble learning methods, namely Bagging, AdaBoost, To- 

talBoost, RUSboost, and Random Subspace. These ensemble learn- 

ing methods are briefly described thereafter. 

2.3.1. Bagging 

Bagging is an ensemble machine learning meta-algorithm that 

involves the process of Bootstrap Aggregation [36] . This algorithm 

is a special case of the model averaging technique wherein each 
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of the sampled datasets is used to create a different model in the 

ensemble and the output generated from each model is then com- 

bined by averaging (in the case of regression) or voting (in the 

case of classification) to create a single output. Nevertheless, bag- 

ging has the disadvantage of being ineffective in dealing with un- 

stable nonlinear models (i.e. when a small change in the training 

set can cause a significant change in the model). Ensemble classi- 

fication with Bagging algorithm has been applied to a P300-based 

BCI, and demonstrated some improvement in performance of the 

ensemble classifier with overlapped partitioning that requires less 

training data than with naive partitioning [37] . 

2.3.2. AdaBoost 

Boosting is a widely used approach to ensemble learning. It 

aims to create an accurate predictive model by combining various 

moderately weak classifiers. In the family of boosting methods, a 

powerful ensemble algorithm is Adaptive Boosting (i.e. AdaBoost) 

[38] . It explicitly alters the distribution of training data and feeds 

to each classifier independently. Initially, the weights for the train- 

ing samples are uniformly distributed across the training dataset. 

However, during the boosting procedure, the weights correspond- 

ing to the contributions of each classifier are updated in relation 

to the performance of each individual classifier on the partitioned 

training dataset. Recently, the boosting method has been employed 

for enhancement of MI related classification of EEG in a BCI system 

[39] . It used a two-stage procedure: (i) training of weak classifiers 

using a deep belief network (DBN) and (ii) utilizing AdaBoost al- 

gorithm for combining several trained classifiers to form one pow- 

erful classifier. During the process of constructing DBN structure, 

many RBMs (Restrict Boltzmann Machine) are combined to create 

the ensemble. It can be less prone to the over-fitting that most 

learning algorithms suffer from [40] . An improvement of 4% in 

classification accuracy was achieved for certain cases by using the 

DBN based AdaBoost method. Nevertheless, AdaBoost has several 

shortcomings, such as its sensitivity to noisy data and outliers. 

2.3.3. TotalBoost 

TotalBoost generates ensemble with innumerable learners hav- 

ing weighting factor that are orders of magnitude smaller than 

those of other learners [41] . It manages the members of the en- 

semble by removing the least important member and then reshuf- 

fle the ensemble reordering from largest to smallest. In particular, 

the number of learners is self-adjusted. 

2.3.4. RUSBoost 

RUSBoost is a boosting algorithm based on the AdaBoost.M2 al- 

gorithm [42] . This method combines random under-sampling (RUS) 

and boosting for improving classification performance. It is one 

of the most popular and effective techniques for learning non- 

stationary data. Recently, its application to automatic sleep staging 

from EEG signals using wavelet transform and spectral features has 

been proposed wherein the RUSBoost method has outperformed 

bagging and other boosting methods [43] . However, bagging and 

boosting methods both have the disadvantage of being sensitive to 

noisy data and non-stationary environments. 

2.3.5. Random Subspace Method 

The Random Subspace Method (RSM) is an ensemble machine 

learning technique that involves the modification of training data 

in the feature space [40,44] . RSM is beneficial for data with many 

redundant features wherein better classifiers can be obtained in 

random subspaces than in the original feature space. Recently, RSM 

method has been used in real-time epileptic seizure detection from 

EEG signals [44] , where the feature space has been divided into 

random subspaces and the results of different classifiers are com- 

bined by majority voting to find the final output. However, RSM 

has a drawback as the features selection does not guarantee that 

the selected features have the necessary discriminant information. 

In this way, poor classifiers are obtained that may deteriorate the 

performance of ensemble learning. 

The above-mentioned ensemble methods for the EEG classifi- 

cation somehow manage non-stationarity in EEG signals, but they 

are suitable only for passive scheme based settings wherein the 

ensemble has to be updated continuously over time. 

3. The proposed methodology 

3.1. Problem formulation 

Given a set of training samples X T rain = { x train 
i 

, y train 
i 

} , where 

i ∈ { 1 , ..., n } is the number of training samples, x train 
i 

∈ R 

D ( D de- 

notes the input dimensionality) is a set of training input features 

drawn from a probability distribution with density P train ( x ), and 

y train 
i 

∈ { C 1 , C 2 } is a set of training labels, where y i = C 1 , if x i be- 

longs to class ω 1 , and y i = C 2 , if x i belongs to class ω 2 . We as- 

sumed that the input training data distribution remains station- 

ary during the training phase. In addition to the labeled train- 

ing samples, let’s assume unlabeled test input observations X Test = 

{ x test 
i 

} , where i ∈ { 1 , . . . , m } is the number of testing observations, 

x test 
i 

∈ R 

D is a set of test input features, drawn independently from 

a probability distribution with density P test ( x ). Note that we con- 

sider the CS presence in the data and thus, the input distribu- 

tions may be different during the training and testing phases (i.e. 

P train ( x ) � = P test ( x )). 

3.2. Covariate shift estimation 

The CS estimation (CSE) is an unsupervised method for identi- 

fying non-stationary changes in the unlabeled testing data ( X 

Test ) 

during the evaluation phase [13] . The pseudo code is presented in 

Algorithm 1 . The parameters for the CSE are predetermined dur- 

ing the training phase. The CSE algorithm works in two stages. 

The first stage is a retrospective stage wherein an ( EWMA ) model 

is used for the identification of the non-stationarity changes in 

the streaming data. The EWMA is a type of infinite impulse re- 

sponse filter that applies weighting factors which decrease expo- 

nentially. The weight of each older observation decreases exponen- 

tially, however, never reaching zero values. The weighting factor 

is one of the strengths of the EWMA model. The EWMA control 

chart overtakes other control charts because it pools together the 

present and the past data in such a way that even small shifts 

in the time-series can be identified more easily and quickly. Fur- 

thermore, the incoming observations are continuously examined to 

provide 1-step-ahead predictions and consequently, 1-step-ahead 

prediction errors are generated. Next, if the estimated error fell 

outside the control limits ( L ), the point is assessed to be a CS point. 

The EWMA model presented in Eq. (1) , is used to provide a 1-step- 

ahead prediction for each input feature vector of the EEG signals. 

z (i ) = λx (i ) + (1 − λ) z (i −1) (1) 

where λ is a smoothing constant to be selected based on minimiz- 

ing 1-step-ahead-prediction error on the training dataset ( X 

Train ). 

The selection of the value of λ is a key issue in the CSE procedure. 

Specifically for the auto-correlated time series data, it was sug- 

gested to select a value of λ that minimized the sum of the squares 

of the 1-step ahead prediction (1-SAP) errors [45] . However, we in- 

corporated data-driven approach and thus, the optimum value of λ
was obtained by testing different values of λ in the range of [01] 

with a step of 0.01 on the training dataset. The second stage was 

a validation stage wherein the CS warning issued at first stage was 

further validated. A multivariate two-sample Hotelling’s T-Square 



158 H. Raza, D. Rathee and S.-M. Zhou et al. / Neurocomputing 343 (2019) 154–166 

Algorithm 1 Covariate Shift Estimation (CSE) [13] . 

Input : X 

T rain , X 

Test 

Output : p − v alue 
Set the following parameters on training dataset: 

1: Set the following parameters on training dataset :- z 0 : 
arithmetic mean of training input, λ: smoothing con- 
stant, σer r 2 

0 
: s tandard deviation of the 1-step-ahead- 

predicted error using unlabeled training data, and P W : 
transformation matrix from principal component analy- 
sis (PCA). For more details (see ~[13]) 
Start testing phase : 

2: for i = 1 to m in X 

Test do 

3: x (i ) = P W × x (i ) # Get the 1 st component 
4: z (i ) = λ.x (i ) + (1 − λ) .z (i −1) # Compute the z-statistics 
5: err (i ) = x (i ) + z (i −1) # Compute 1-SAP error 
6: ̂ σer r 2 

(i ) 
= ϑ.err (i ) + (1 − ϑ) . ̂  σer r 2 

(i −1) 
# Compute 

smoothed variance 
7: UCL (i ) = z (i −1) + L. 

√ ̂ σer r 2 
(i −1) 

8: LCL (i ) = z (i −1) − L. 
√ ̂ σer r 2 

(i −1) 

9: if LCL (i ) ≤ x (i ) ≤ UCL (i ) then 

10: no shift 
11: else 

12: Issue CS warning and go to stage-II (i.e. CSV) 
13: Stage-II: execute Hotelling T-squared test on the 

current feature vector and average feature vector of 
X 

T rain to get p-value 
14: end if 
15: end for 
16: return p-value 

statistical hypothesis test was used to compare two distinct sam- 

ples of equal number of observations generated before at the CS 

warning time point. If the test rejected the null hypothesis, the ex- 

istence of CS was confirmed via this stage, otherwise, it was con- 

sidered as a false alarm [16] . 

3.3. CSE-based unsupervised adaptive ensemble learning (CSE-UAEL) 

The CSE-UAEL algorithm combined the aforementioned CSE 

procedure and an unsupervised adaptation method using a com- 

bination of transductive-inductive approach. The pseudo code of 

CSE-UAEL is described in the Algorithm 2 . The core idea of the 

proposed algorithm is to adapt to the non-stationary changes by 

using both the information from the training dataset and the new 

knowledge obtained in unsupervised mode from the testing phase. 

The transductive method is used to add new knowledge in the 

existing training dataset ( X 

Train ) during the testing phase, wherein 

a probabilistic weighted K nearest neighbour (PW K NN) method (i.e. 

instance based learning) [46] is implemented and the ensemble of 

inductive classifiers ( E ) is used for predicting the BCI outputs. Each 

time a CS is identified using the CSE procedure ( Algorithm 2 , step 

8), a new classifier is added to the ensemble based on the updated 

training dataset ( Algorithm 2 , step 22). The training dataset is up- 

dated at step 20 ( Algorithm 2 ) without considering the actual la- 

bels of the testing data and to adapt to the evolution of CS over 

time in the feature set of the testing phase. The output from the 

PW K NN method (i.e. CR at step 13) is used to determine whether 

a trial and its corresponding estimated label can be added to the 

training dataset and subsequently, the learning model is updated. 

If the CR is greater than the previously estimated threshold � (cf. 

4.3) then only the features of the current trial and estimated label 

Algorithm 2 CSE-UAEL. 

Input : X 

T rain = 

{
x train 

i 
, y train 

i 

}
, where i ∈ 

{
1 , . . . , n 

}
: X 

Test = 

{
x test 

i 

}
where i ∈ 

{
1 , . . . , m 

}
Output : Y Test and MeanSquareError 

TRAINING: 
1: E ← ∅ 

2: f 1 ← T rain (X 

T rain ) 
3: E ← E ∪ f 1 

TEST: 
4: Start evaluation using testing dataset X 

Test 

5: Set i, k = 1 , where k is the cardinality of ensemble E
6: ˆ y k 

i 
= E(x i ) 

7: for i = 2 to m do 

8: if ( CSE(X 

Test 
i 

) < 0 . 05 ) # See Algorithm 1 then 

9: k = k + 1 

10: X 

New ← ∅ 

11: X 

Temp = 

{(
x test 

v 

)}
v =1: i 

12: for j = 1 to i do 

13: [ CR ] ← PW KNN( X 

Temp 

j 
, X 

T rain , K, κ) # See Algo- 

rithm 3 

14: if ( CR > �) then 

15: Add X 

Temp 

j 
and Predicted label to X 

New 

16: else 

17: Reject trial X 

Temp 

j 

18: end if 
19: end for 
20: X 

T rain = (X 

T rain ∪ X 

New ) 
21: f k ← T rain (X 

T rain ) 
22: E ← E ∪ f k 
23: end if 
24: ˆ y k 

i 
= E(x i ) 

25: ˆ y test 
i 

= 

∑ end 
k =1 ˆ y k 

i 

26: end for 
27: return Y Test 

are added to the X 

New at step 15 and the end of the for loop the 

new classifier is trained on the updated X 

Train (step 21). This pro- 

cedure is repeated at each identified CS point and trials are added 

to the initial training dataset along with addition of a new and 

updated classifier to the current ensemble at step 22. Transduc- 

tive learning via PW K NN combines induction and deduction in a 

single step and is related to the field of semi-supervised learning 

(SSL), which used both labeled and unlabeled data during learn- 

ing process [47,48] . Thus, by eliminating the need to construct a 

global model, transductive method offerd viable solution to achieve 

a higher accuracy. However, in order to make use of unlabeled 

data, it is necessary to assume some structure to its underlying 

distribution. Additionally, it is essential that the SSL approach must 

satisfy at least one of the following assumptions such as smooth- 

ness, cluster, or manifold assumption [49] . The proposed algorithm 

makes use of the smoothness assumption (i.e. the points which are 

close to each other are more likely to share the same label) to im- 

plement the PW K NN algorithm. The pseudo code of the PW K NN 

algorithm is given in Algorithm 3 . 

Probabilistic weighted K Nearest Neighbor. A K -nearest-neighbors 

( K NN) (i.e. a transductive learning method) based non-parametric 

method is used to assess current test observations. The K NN algo- 

rithm belonged to a family of instance-based learning methods. In 

this case, a small sphere centered at the point x is used, where the 

data density P ( x ) should be estimated. The radius of the sphere is 
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Algorithm 3 PWKNN. 

Input : x p , X 

T rain , K, κ
Output : CR 

1: Select K-nearest neighbour from X 

T rain into X 

q = 

{
x z , y z 

}
, 

where z ∈ 

{
1 , . . . , K 

}
2: CR ω (1) 

:: P (ω (1) | x p ) = 

∑ K 
j=1 κ(x p ,x j ) ∗(y j == ω (1) ) ∑ K 

j=1 κ(i ) 
# κ was a func- 

tion, see Eq. 6. 
3: CR ω (2) 

:: P (ω (2) | x p ) = 1 − CR ω (2) 

4: return CR = max (CR ω (1) 
, CR ω (2) 

) 

allowed to grow until it contained K data points and the estimate 

of the density is given by: 

P (x ) = 

K 

N 

′ · V 

(2) 

where the value of V is set to equal to the volume of the sphere, 

and N 

′ is the total number of data points. The parameter K gov- 

erned the degree of smoothing. The technique of K NN density es- 

timation can be extended to the classification task in which the 

K NN density estimation is obtained for each class and the Bayes’ 

theorem is used to perform a classification task. Now, assuming 

that a dataset comprised of N 

′ 
ω i 

points in the class ω i within the 

set of classes ω, where i ∈ {1, 2}, so that N 

′ = 

∑ 

i N 

′ 
ω i 

. To classify a 

new point x , a sphere centered on x containing precisely K points is 

used irrespective of their classes. Now suppose this sphere has the 

volume V and contains K ω i from class ω i . Then, an estimate of the 

density associated with each class or likelihood can be obtained by 

P (x | ω i ) = 

K ω i 

N 

′ 
ω i 

· V 

(3) 

Similarly, the unconditional density is given by P (x ) = K/ (N 

′ ·
V ) , whereas the class prior probability is given by 

P (ω i ) = 

N 

′ 
ω i 

N 

′ (4) 

Now, using the Bayes’ theorem, we can obtain the posterior prob- 

ability of the class membership by using following equation: 

P (ω i | x ) = 

P (x | ω i ) P (ω i ) 

P (x ) 
= 

K ω i 

K 

(5) 

To minimize the probability of misclassification, one needed to as- 

sign the test point x to the class ω i with the largest posterior prob- 

ability, i.e. corresponding to the largest value of K ω i /K. Thus, to 

classify a new point, one needed to identify the K -nearest points 

from the training dataset and then assign the new point to the 

set having the largest number of representatives. This posterior 

probability is known as the Bayesian belief or confidence ratio 

( CR ). However, the overall estimate obtained by the K NN method 

may not be satisfactory, because the resulting density is not a true 

probability density since its integral over all the samples space di- 

verges [50] . Another drawback is that it considers only the K points 

to build the density and thus, all neighbors have equal weights. An 

extension to the above K NN method is to assign a weight to each 

sample that depends on its distance to x . Thus, a radial basis func- 

tion (RBF) kernel ( κ) can be used to obtain the weights, which as- 

signs higher weights to the nearest points than furthest points (see 

Eq. (6) ). 

κ(x p , x q ) = exp 

(
− (|| x p − x q || ) 2 

2 σ 2 

)
(6) 

where (|| x p − x q || ) 2 is the squared Euclidean distance from the 

data point x p to the data point x q and σ is a free parameter. For 

binary detection, the confidence ratio of CR ω i of the class ω i , for a 

data point x p , is defined by 

CR ω 1 = 

∑ K 
q =1 κ(x p , x q ) · (y q == ω 1 ) ∑ K 

q =1 κ(x p , x q ) 
(7) 

CR ω 2 = 1 − CR ω 1 (8) 

where 1 ≤ q ≤ k , corresponds to the q th th nearest neighbor of x p . 

The outputs of PW K NN include the overall confidence of the deci- 

sion given by 

CR = max (CR ω 1 , CR ω 2 ) (9) 

and the output class ̂ y is equals to 1 if x p is assigned to ω 1 other- 

wise equals to 0. 

3.4. Complexity analysis 

The core idea behind the proposed technique is to take ad- 

vantage of an active scheme based NSL for initiating unsupervised 

adaptation by adding new classifiers to the ensemble each time a 

CS is identified. The choice of the classifier to be used may de- 

pend on its complexity. By considering m labeled examples and n 

examples to test, the PW K NN method requires a linear time (i.e. 

O(nmD ) ) to predict the labels during testing phase as it belongs 

to the family of an instance based learning, whereas in other ap- 

proaches such as LDA, a quadratic time is required to predict the 

score (i.e. O( mD 

2 ) ) for training the classifier, if ( m > D ), where D 

is the dimensionality [51] . For the test, LDA requires a linear time 

(i.e. O(nD ) ). Therefore, depending on the number of trials to test 

after training, PW K NN is less computationally expensive than LDA 

if n < mD/ (m − 1) . 

4. Application to motor-imagery related BCI system 

4.1. MI related EEG datasets 

To assess the performance of the proposed CSE-UAEL algorithm, 

a series of experimental evaluations are performed on the follow- 

ing publicly available MI related EEG datasets. 

4.1.1. BCI competition IV dataset-2A 

The BCI Competition-IV dataset-2A [52] comprising of EEG sig- 

nals was acquired from nine healthy participants, namely [ A 01 −
A 09] . The data were recorded during two sessions on separate days 

for each subject using a cue-based paradigm. Each data acquisi- 

tion session consisted of 6 runs where each run comprised of 48 

trials (12 trials for each class). Thus, the complete study involved 

576 trials from both sessions of the dataset. The total trial length 

is 7.5 s with variable inter-trial durations. The data were acquired 

from 25 channels (22 EEG channels along with three monopolar 

EOG channels) with a sampling frequency of 250 Hz and bandpass 

filtered between 0.5 Hz to 100 Hz (notch filter at 50 Hz). Reference 

and ground were placed at the left and right mastoid, respectively. 

Among the 22 EEG channels, 10 channels, responsible for capturing 

most of the MI related activations, were selected for this study (i.e. 

channels: C 3, FC 3, CP 3, C 5, C 1, C 4, FC 4, CP 4, C 2, and C 6). The dataset 

consisted of four different MI tasks: left hand (class 1), right hand 

(class 2), both feet (class 3), and tongue (class 4). Only the classes 

corresponding to the left hand and right hand were considered in 

the present study. The MI data from the session-I was used for 

training phase and the MI data from the session-II was used for 

evaluation phase. 
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Fig. 2. Block diagram of the signal processing and machine learning pipeline implemented in the study. The system consists of two phases. During the training phase, the 

features were extracted in the temporal and spatial domains from the raw EEG signals, followed by the estimation of covariate shift parameter (i.e. λ and L, smoothing 

constant and control limit multiplier, respectively) and a classifier is trained on the labeled examples (i.e. X Train ). In the evaluation phase, a similar signal processing method 

is applied initially and CSP features were monitored by the CSE and adaptation block. In the CSA block, the CSE procedure identifies the CSs and initiates adaptation by 

adding the k th classifier f k to the ensemble E , where k counts the number of identified CSs during the evaluation phase. Finally, the k classifier outputs from E are combined 

to predict the class label. 

4.1.2. BCI competition IV dataset-2B 

BCI competition 2008-Graz dataset 2B [52] comprising of EEG 

data of nine subjects, namely [ B 01 − B 09] was acquired over three 

channels (i.e. C 3, Cz , and C 4) with a sampling frequency of 250 Hz. 

EEG signals were recorded in monopolar montage with the left 

mastoid serving as reference and the right mastoid as ground. For 

each subject, data corresponding to five sessions was collected, 

with the trial length of 8 s. The MI data using the 3 channels from 

session- I, II , and III were used to train the classifiers and the data 

from sessions IV and V were merged and used for evaluation phase. 

4.2. Signal processing and feature extraction 

Fig. 2 depicted the complete signal processing pipeline pro- 

posed in this study for CS estimation and adaptation of MI related 

EEG patterns. The following steps were executed for task detec- 

tion: raw EEG signal acquisition, signal processing (i.e. temporal fil- 

tering), feature extraction (i.e. spatial filtering), estimation of CSs, 

adaptation of the ensemble, and finally classification. 

Temporal filtering. In the signal processing and feature extraction 

stage, a set of band-pass filters was used to decompose the EEG 

signals into different frequency bands (FBs) by employing an 8 th 

order, zero-phase forward and reverse band-pass Butterworth fil- 

ter. A combination total of 10 band-pass filters (i.e. filter bank) 

with overlapping bandwidths, including [8 − 12] , [10 − 14] , [12 −
−16] , [14 − 18] , [16 − 20] , [18 − 22] , [20 − 24] , [22 − 26] , [24 −
28] , and [26 − 30] Hz was used to process the data. 

Spatial filtering. In MI-related BCI systems, both physical and 

imaginary movements performed by subjects cause a growth of 

bounded neural rhythmic activity known as event related synchro- 

nization/desynchronization (ERD/ERS). Spatial filtering was per- 

formed using CSP algorithm to maximize the divergence of band- 

pass filtered signals under one class and minimize the divergence 

for the other class. The CSP algorithm has been widely imple- 

mented for estimation of spatial patterns related to ERD/ERS [27] . 

In summary, the spatially filtered signal Z of a single trial EEG is 

given as 

Z = W E ′ (10) 

where E ′ is an C × T matrix representing the raw EEG of single 

trial, C is number of EEG channels and T is the number of samples 

for trial. In eq. (11), W is a projection matrix, where rows of W 

were spatial filters and columns of W 

−1 were the common spatial 

patterns. The spatial filtered signal Z given in the above equations 

maximizes the differences in the variance of the two classes of EEG 

measurements. Next to CSP filtering, the discriminating features 

were extracted using a moving window of 3 s starting from the 

cue onsets so as to continue our further analysis on the MI-related 

features only. However, the variances of only a small number h of 

the spatial filtered signal were generally used as features for classi- 

fication.The first h and last h rows of Z i.e. Z p , p ∈ { 1 , . . . , 2 h } from 

the feature vector X p given as input to the classifier (i.e. extreme 

left and right components of the CSP filter). Finally, the obtained 

features from all FBs were merged to create the set of input fea- 

tures for the classification. 

X p = log 

(
v ar(Z p ) ∑ 2 h 
i =1 v ar(Z p ) 

)
(11) 

4.3. Feature selection and parameter selection 

The existing training dataset was further partitioned into 70% 

for training data subsets and 30% for validation data subsets, where 

validation samples were used to estimate the parameters of the 

proposed method. In order to estimate the CSs with the obtained 

multivariate inputs features, the PCA was used to reduce the di- 

mensionality of the feature set [53] . PCA provided fewer compo- 

nents, containing most of the variability in the data. Next, the CSE 

method was applied to the PCA output features for identifying CS 

points at the first stage of the CSE procedure. A moving window 

of 3 s of CSP features after the cue onset in the current trial was 

extracted to use as a first sample and a window of averaged CSP 

features from training data was used as the second sample in the 

multivariate two-sample Hotelling’s T-Square statistical hypothesis 

test. In the CSE-UAEL algorithm, the subject specific parameters 

such as K and T were selected on validation dataset using grid 

search method to maximize the accuracy. 
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4.4. Evaluation of performance 

The performances of CSE-UAEL algorithm with both single and 

ensemble of classifiers were evaluated with the passive and ac- 

tive schemes to NSL in unsupervised adaptation scheme. With sin- 

gle classifier and ensemble based methods, both active and pas- 

sive schemes were employed with the unsupervised adaptation. In 

the passive scheme, adaptation was performed after every 10 trials, 

whereas in the active scheme, the adaptation was achieved after 

each CS confirmation. In both passive and active schemes, unsu- 

pervised adaptation was performed using three possible combina- 

tions of classifiers. First, combination-1 (C-1) used PW K NN method 

in both stages i.e., for enriching the training dataset and classi- 

fication during testing phase. Second, combination-2 (C-2) used 

inductive LDA classifier for the BCI output, where the posterior 

probability of two classes obtained using LDA was used to deter- 

mine if the trial needed to be added to enrich the training data 

at each CSs identification in active scheme. In C-2, the ensemble 

of LDA classifiers gave the combined decision using weighted ma- 

jority voting scheme. Finally, combination-3 (C-3) used transduc- 

tive method, where the CR of two classes against the T , obtained 

using PW K NN method, was used to determine if the trial needed 

to be added to enrich the training dataset and the ensemble of 

LDA classifiers gave the combined decision using weighted major- 

ity voting scheme. Thus, C-3 was a combination of transductive- 

inductive learning. Likewise, ensemble method was implemented 

for both the passive and active schemes, where the ensemble was 

updated with a new classifier after every 10 trials (in case of pas- 

sive scheme) or at the instances of identifying CS (in case of active 

scheme). The parameter estimation remained same for all the com- 

binations. Moreover, the results obtained by the proposed method 

for the dataset-2A was compared with the state-of-the-art meth- 

ods for non-stationary adaptation in EEG such as common spatial 

pattern (CSP) [22] , common spatial spectral pattern (CSSP) [54] , fil- 

ter bank CSP (FBCSP) [55] , optimal spatio-spectral filter network 

with FBCSP (OSSFN-FBCSP) [56] , and recurrent quantum neural 

network (RQNN) [57] . 

The performance analysis was based on classification accuracies 

(in %) for binary classification tasks (i.e. Left vs Right Hand MI). 

Moreover, for the CSE, the number of classifiers added to the en- 

semble for each subject at stage-I and stage-II has been measured 

along with the values of λ. A two-sided Wilcoxon signed rank test 

was used to assess the statistical significance of the improvement 

at a confidence level of 0.05 in all the pairwise comparisons. The 

system was implemented in MATLAB V8.1 (The Mathworks, Natick, 

MA) and tested on an Intel Core i 7 − 4790 with 16 GB of memory. 

5. Experimental results 

5.1. CSE evaluation on datasets-2A and -2B 

To evaluate the efficiency of the CSE procedure, a sequence of 

exploratory assessments was conducted on dataset-2A and −2B. 

Table 1 provides the estimated values of λ and the correspond- 

ing number of CSs identified for both datasets during stage-I (i.e. 

CSW) and stage-II (i.e. CSV). The values of λ were obtained by min- 

imizing the sum of squares of 1-SAP errors. Moreover, Fig. 3 shows 

the performance of CSE at different values of λ, where the average 

CSs identified for all the nine subjects are presented for dataset- 

2A. The average number of identified CSs is 5.2, where the aver- 

age of selected λ values is 0.60. In dataset-2A, the maximum and 

minimum number of identified CSs are obtained with subject A 02 

(i.e. 15), and subject A 09 (i.e. 6), respectively. After the validation 

procedure at stage-II (i.e., CSV stage), the number of CSW for sub- 

ject A 02 decreased from 15 to 8, and for subject A 09, the amount 

was reduced from 6 to 4. On an average 10.77 CSW were received, 

Table 1 

Results for CSE procedure in dataset-2A AND dataset-2B on BCI- 

competition-IV. 

CSE for 2A CSE for 2B 

Subject λ CSW CSV Subject λ CSW CSV 

A01 0.50 12 6 B01 0.28 14 10 

A02 0.55 15 8 B02 0.17 18 13 

A03 0.60 7 6 B03 0.60 19 12 

A04 0.61 10 3 B04 0.20 11 6 

A05 0.72 13 8 B05 0.10 12 8 

A06 0.54 12 6 B06 0.33 22 12 

A07 0.57 11 4 B07 0.30 17 11 

A08 0.50 11 5 B08 0.21 27 14 

A09 0.70 6 4 B09 0.45 18 7 

Mean 0.58 10.77 5.55 Mean 0.29 17.55 10.33 

Fig. 3. The plot showed the effect of lambda ( λ) on the performance of CSE at 

CSV stage. The average CSs identified for all the nine subjects were presented for 

dataset-2A. 

which were further reduced to an average of 5.55 at the CSV stage. 

For dataset-2B, with the combined trials from session IV and V for 

the evaluation phase, the maximum number of CSs were identified 

for subject B 08 (i.e. 27) and minimum for subject B 04 (i.e. 11). Af- 

ter the validation procedure at stage-II, the identified CSs for sub- 

ject B 08 were decreased from 27 to 14, and for subject B 04, from 

11 to 6. The average identified CSs (across all subjects) at stage-II 

for dataset-2A and −2B, have been reduced from 10.77 to 5.55 and 

17.55 to 10.33, respectively as compared to stage-I. On an average 

17.55 CSW were received, which were further reduced to an aver- 

age of 10.33 at the CSV stage. It can be seen that the CSV proce- 

dure at stage-II assisted to significantly reduce the number of false 

CSs based on the information provided by CSW at the stage-I. In 

this way, the attempt of initiating adaptation by adding classifiers 

to the ensemble became worthless without implementing stage-II. 

Nevertheless, for each dataset, the number of CSV at stage-II de- 

noted the number of classifiers added to the ensemble from the 

beginning to the end of the evaluation phase. 

5.2. Classification based evaluation on dataset-2A and -2B 

As mentioned in section 4.B, FBCSP based features were used 

for various binary classifications to evaluate the performances of 
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Table 2 

Classification accuracy in (%) for dataset-2A in both passive and ac- 

tive schemes. C-1: a combination of PW K NN-PW K NN classifiers; C-2: 

a combination of inductive-inductive classifiers (i.e. LDA-LDA); and 

C-3: a combination of inductive-transductive classifiers (i.e. PW K NN- 

LDA). 

Subjects Single classifier 

Passive scheme Active scheme 

C-1 C-2 C-3 C-1 C-2 C-3 

A01 58.33 87.50 90.28 58.33 91.67 88.89 

A02 54.17 58.33 64.58 54.17 63.19 63.89 

A03 54.17 95.83 94.44 54.17 91.67 95.14 

A04 51.39 67.36 69.44 51.39 69.44 69.44 

A05 66.67 69.44 71.53 65.28 70.14 74.31 

A06 47.22 65.28 66.67 49.31 68.06 65.97 

A07 53.47 77.08 72.92 53.47 72.92 72.92 

A08 45.83 86.81 91.67 45.83 91.67 92.36 

A09 43.06 88.89 88.19 41.67 88.89 88.19 

Mean 52.70 77.39 78.86 52.62 78.63 79.01 

Std 7.10 12.93 12.01 6.86 12.01 12.09 

Table 3 

Classification accuracy in (%) for dataset-2B in both passive and ac- 

tive schemes. C-1: a combination of PWKNN-PWKNN classifiers; C-2: 

a combination of inductive-inductive classifiers (i.e. LDA-LDA); and 

C-3: a combination of inductive-transductive classifiers (i.e. PW K NN- 

LDA). 

Subjects Single classifier 

Passive scheme Active scheme 

C-1 C-2 C-3 C-1 C-2 C-3 

B01 50.31 70.31 74.06 51.25 66.56 75.63 

B02 51.35 50.31 50.31 52.81 51.15 51.15 

B03 48.13 46.88 51.88 48.13 50.31 51.88 

B04 50.00 90.00 92.50 49.06 89.06 92.50 

B05 54.38 80.31 78.13 55.94 74.38 72.50 

B06 50.63 67.50 78.13 50.94 68.75 78.75 

B07 55.63 68.75 68.13 54.06 70.63 68.75 

B08 53.75 59.69 73.75 53.75 62.50 73.75 

B09 51.88 66.88 71.25 51.88 69.06 71.56 

Mean 51.78 66.74 70.90 51.98 66.93 70.72 

Std 2.39 13.49 13.15 2.47 11.79 12.84 

all the competing methods and the proposed combinations. The 

first analysis involved implementation of a single classifier at the 

evaluation stage. For dataset-2A, the classification accuracies (%) 

for C-1 (i.e. PW K NN-PW K NN), C-2 (i.e. LDA-LDA), and C-3 (i.e. 

PW K NN-LDA) were presented in Table 2 for both passive and ac- 

tive schemes. Similarly, for the dataset-2B, classification accura- 

cies (%) were provided for this analysis in Table 3 . In single clas- 

sifier based method, combination-3 (i.e. combination of PW K NN- 

LDA) provided higher average binary classification accuracies for 

both the datasets i.e 2A (cf. Table 2 ) and 2B (cf. Table 3 ) and for 

both passive and active schemes. In contrast, combination-1 (i.e. 

PW K NN-PW K NN) provided lowest average binary classification ac- 

curacies in all cases. The results clearly showed better performance 

of PW K NN-LDA combination for both datasets and schemes. 

Furthermore, the second analysis involved the proposed method 

(i.e. CSE-UAEL) using ensemble of classifiers at the evaluation 

stage. The results were obtained using the CSE-UAEL algorithm in 

both passive and active schemes against other baseline methods 

(i.e. Bagging, AdaBoost, TotalBoost, RUSBoost, and RSM) are pre- 

sented in Table 5 for dataset-2A and Table 6 for dataset-2B. 

The average binary classification accuracies (i.e. mean ± SD ) 

provided by unsupervised adaptation methods for dataset- 

2A (cf. Table 4 ) are: Bagging (BAG: 73.46 ± 14.42), AdaBoost 

(AB:71.53 ± 11.76), TotalBoost (TB:75.15 ± 13.44), RUSBoost 

(RUSB:75.08 ± 13.67), and RSM (71.68 ± 16.53). For the same 

dataset, the average binary classification accuracies (i.e. mean ± SD ) 

provided by CSE-UAEL in passive scheme are: C-1:52.60 ± 6.86, 

C-2:79.09 ± 12.83, and C-3:80.86 ± 11.44 and CSE-UAEL in ac- 

tive scheme were : C-1:52.31 ± 7.32, C-2:77.78 ± 12.87, and C- 

3:81.48 ± 11.33. The performances of the C-3 (i.e. LDA + PW K NN) 

were better than the existing ensemble methods and other 

classifier combinations for both passive and active schemes. 

The average binary classification accuracies (i.e. mean ± SD ) 

provided by unsupervised adaptation methods for dataset- 

2B (cf. Table 5 ) were: Bagging (BAG: 60.43 ± 8.66), AdaBoost 

(AB:60.42 ± 8.22), TotalBoost (TB:62.08 ± 10.21), RUSBoost 

(RUSB:60.75 ± 13.21), and RSM (51.26 ± 1.42). For the same 

dataset, the average binary classification accuracies (i.e. mean ± SD ) 

provided by CSE-UAEL in passive scheme were: C-1:51.78 ± 2.39, 

C-2:66.22 ± 12.68, and C-3:74.26 ± 13.57 and CSE-UAEL in ac- 

tive scheme were : C-1:51.98 ± 2.47, C-2:66.76 ± 12.11, and C- 

3:74.65 ± 13.36. Similar to dataset-2A, the performances of the 

C-3 (i.e. LDA + PW K NN) were better than the existing ensemble 

methods and other classifier combinations for both passive and 

active schemes. 

Table 6 and 7 presented the p -values obtained from the sta- 

tistical comparison of the CSE-UAEL in active scheme with other 

single-classifier and ensemble of classifiers based methods for 

dataset-2A and 2 B , respectively. The performance of the proposed 

method (i.e. CSE-UAEL in C-3) was found significantly better than 

Bagging, AdaBoost, TotalBoost, RUSboost and RSM. The proposed 

method was also found significantly better than single classifier 

based setting for both passive and active schemes. In dataset-2A, 

Table 4 

Classification accuracy in (%) for dataset-2A. C-1: a combination of PWKNN-PWKNN classifiers; C-2: a combina- 

tion of inductive-inductive classifiers (i.e. LDA-LDA); and C-3:performance a combination of inductive-transductive 

classifiers (i.e. PW K NN-LDA). 

Subjects Baseline methods Proposed methods (CSE-UAEL) 

Passive scheme Active scheme 

BAG AB TB RUSB RSM C-1 C-2 C-3 C-1 C-2 C-3 

A01 86.81 71.53 81.94 84.72 84.72 58.33 88.89 91.67 58.33 87.50 91.67 

A02 47.92 50.69 50.69 52.08 59.03 54.17 59.03 63.89 54.17 60.42 63.89 

A03 90.97 71.53 90.28 90.28 90.97 54.17 96.53 94.44 54.17 95.83 94.44 

A04 66.67 65.28 68.06 67.36 67.36 51.39 68.06 70.80 51.39 66.67 72.22 

A05 65.97 70.83 70.83 65.97 54.86 65.28 73.61 77.78 65.97 72.22 77.08 

A06 63.89 63.19 63.19 64.58 4 4.4 4 49.31 66.67 73.61 45.83 64.58 75.69 

A07 74.31 75.00 74.31 72.92 70.83 53.47 80.56 72.92 53.47 74.31 73.61 

A08 72.92 90.97 88.19 90.28 85.42 45.83 89.58 93.75 45.83 88.89 94.44 

A09 91.67 84.72 88.89 87.50 87.50 41.67 88.89 88.89 41.67 89.58 90.28 

Mean 73.46 71.53 75.15 75.08 71.68 52.62 79.09 80.86 52.31 77.78 81.48 

Std 14.42 11.76 13.44 13.67 16.53 6.86 12.83 11.44 7.32 12.87 11.33 
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Table 5 

Classification accuracy in (%) for dataset-2B. C-1: a combination of PWKNN-PWKNN classifiers; C-2: a combina- 

tion of inductive-inductive classifiers (i.e. LDA-LDA); and C-3: a combination of inductive-transductive classifiers 

(i.e. PW K NN-LDA). 

Subjects Baseline methods Proposed methods (CSE-UAEL) 

Passive scheme Active scheme 

BAG AB TB RUSB RSM C-1 C-2 C-3 C-1 C-2 C-3 

B01 69.69 67.50 66.25 53.13 51.56 50.31 65.31 77.81 51.25 64.69 78.13 

B02 52.60 52.50 55.00 50.83 49.79 51.35 50.31 54.27 52.81 51.15 54.69 

B03 50.63 50.00 51.56 50.00 50.00 48.13 47.50 52.50 48.13 49.38 53.13 

B04 76.25 74.38 81.56 87.81 52.19 50.00 89.69 94.38 49.06 90.63 94.38 

B05 67.50 68.75 72.81 71.56 53.13 54.38 73.44 85.63 55.94 71.56 85.31 

B06 56.88 56.56 59.69 71.56 51.88 50.63 69.38 80.00 50.94 68.75 80.31 

B07 58.13 54.38 50.00 53.75 50.00 55.63 70.00 71.56 54.06 70.94 72.81 

B08 56.88 58.75 59.06 50.94 53.13 53.75 60.00 77.81 53.75 64.69 78.75 

B09 55.31 60.94 62.81 57.19 49.69 51.88 70.31 74.38 51.88 69.06 74.38 

Mean 60.43 60.42 62.08 60.75 51.26 51.78 66.22 74.26 51.98 66.76 74.65 

Std 8.66 8.22 10.21 13.21 1.42 2.39 12.68 13.57 2.47 12.11 13.36 

Table 6 

Comparison of CSE-UAEL Algorithm using p -values on dataset-2A. The p -value denotes the Wilcoxon signed-rank test: ∗p < 0.01, 	 p < 0.05. 

Single classifier Ensemble 

Passive Active Baseline methods CSE-UAEL (Passive) 

C-3 C-3 BAG AB TB RUSB RSM C1 C2 C3 

CSE-UAEL C-1 0.0039 ∗ 0.0039 ∗ 0.0156 	 0.0078 ∗ 0.0078 ∗ 0.0156 	 0.0273 	 1 0.0039 ∗ 0.0039 ∗

(Active) C-2 0.1016 0.1484 0.0781 0.0447 	 0.0447 	 0.0469 	 0.0078 ∗ 0.0039 ∗ 0.0781 0.0408 	 

C-3 0.0234 	 0.0234 	 0.0195 	 0.0078 ∗ 0.0078 ∗ 0.0039 ∗ 0.0039 ∗ 0.0039 ∗ 0.1562 0.1562 

Table 7 

Comparison of CSE-UAEL Algorithm using p-values on dataset-2B. The p -value denotes the Wilcoxon signed-rank test: ∗p < 0.01, 	 p < 0.05. 

Single classifier Ensemble 

Passive Active Baseline methods CSE-UAEL (Passive) 

C-3 C-3 BAG AB TB RUSB RSM C1 C2 C3 

CSE-UAEL C-1 0.0078 ∗ 0.0078 ∗ 0.0078 ∗ 0.0078 ∗ 0.0195 	 0.1641 0.4961 0.75 0.0195 	 0.0039 ∗

(Active) C-2 0.0447 	 0.0391 	 0.0742 0.0486 	 0.1641 0.0781 0.0078 ∗ 0.0078 ∗ 0.5234 0.0039 ∗

C-3 0.0039 ∗ 0.0039 ∗ 0.0039 ∗ 0.0039 ∗ 0.0078 ∗ 0.0039 ∗ 0.0039 ∗ 0.0039 ∗ 0.0039 ∗ 0.0425 	 

Table 8 

Classification accuracy in (%) Comparison with the state-of-the-art method in dataset-2A. 

CSP [22] CCSP [54] FBCSP [55] OSSFN-FBCSP [56] RQNN [57] CSE-UAEL (Active) (C-3) 

73.46 79.78 76.31 76.31 66.59 81.48 

CSE-UAEL algorithm in active mode for C-3 was not statistically 

significant against CSE-UAEL algorithm in passive scheme with 

combination C-2 and C-3. However, the same method on dataset- 

2B showed significantly better result ( p < 0.05). Such analysis pro- 

vided strong evidence that both CSE-UAEL algorithm with combi- 

nation of inductive-transductive classifiers (i.e. PW K NN-LDA) per- 

formed better than the other passive and active scheme. Fur- 

thermore, the performance of the proposed method was com- 

pared with other previously published state-of-the-art-methods for 

dataset-2A. Table 8 presents the average classification accuracies 

(%) for CSP, CCSP, FBCSP, OSSSFN-FBCSP, RQNN, and CSE-UAEL (in 

active scheme). Evidently, CSE-UAEL outperformed all these pre- 

viously proposed methods with the highest average classification 

accuracy of 81.48. 

6. Discussions 

The development of efficient machine learning methods for 

non-stationarity of streaming data has been considered as a chal- 

lenging task. To improve the performance of MI-based BCI systems, 

the majority of the exiting studies have focused on techniques that 

extract features invariant to changes of the data without the use 

of time specific discriminant features. Moreover, the existing non- 

stationarity based machine learning methods incorporated passive 

schemes based on the assumption of continuous existence of non- 

stationarity in the streaming data. 

In this study, we have shown how an active scheme based en- 

semble learning can be employed to address non-stationarities of 

EEG signals, wherein the data distributions shift between training 

and evaluation phases. The main idea behind the proposed system 

was to take advantage of an active scheme based NSL for initiating 

adaptation by adding new classifiers to the ensemble each time a 

CS was identified instead of assuming the need to update the sys- 

tem at regular intervals. The CSE based active scheme assists to 

optimize and add new classifiers to the ensemble adaptively based 

upon the identified changes in the input data distribution, it does 

not require a trial-and-error or grid search method to select a suit- 

able number of classifiers for obtaining an enhanced classification 

accuracy. More importantly, the unsupervised adaption via trans- 

duction (i.e. adaption without knowing the true labels) enables 

this system applicable to long sessions typically considered in the 
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practical applications of BCIs used for both communication and re- 

habilitation problems. 

Indeed, the transductive learning step during the evaluation 

phase involved the addition of the predicted labels to the exist- 

ing training dataset. This approach ensures a continuous enrich- 

ment of the existing training dataset, which can be highly crucial 

to a learning algorithm suffering from a high variance. The issue 

of a high variance was commonly found in the EEG features of 

poor BCI users [31,58] . To manage the high variability issue, adding 

predicted labels with high confidence may improve the prediction 

performance as demonstrated in the study. 

The proposed algorithm has been extensively compared with 

different passive scheme based ensemble learning methods: Bag- 

ging, AdaBoost, TotalBoost, RUSBoost, and RSM. The CSE-UAEL al- 

gorithm with transductive method was used to improve classifi- 

cation performance against single-classifier based passive and ac- 

tive schemes and ensemble based passive scheme. We have shown 

that the CSE-UAEL algorithm provided an improvement of approx- 

imately 6 − 10% in classification accuracies compared to other en- 

semble based methods for dataset-2A. And the performance im- 

provements were statistically significant in 18 out of 20 pair-wise 

comparisons for the CSE-AUEL algorithm in C-3 setting. It was 

worth noting that the proposed methodology was not limited to 

BCI applications as the active scheme based ensemble learning can 

be applied to a wide range of dynamic learning systems where the 

input signals evolve over time, for example, neuro-rehabilitation 

and communication systems. A key challenge remains the defini- 

tion of a reliable function that can determine a shift detection, and 

classifiers that can reliably classify the training data. 

Although the proposed method outperforms other passive 

schemes, there are limitations to be considered. First, the CSE pro- 

cedure has been applied to the combined CSP features of multi- 

ple frequency bands, which creates a high dimensional input vec- 

tor and may affect the robustness of the CSE process. This con- 

founding factor can be handled either by using dimensionality re- 

duction methods or by employing multiple CSE procedures at each 

frequency feature vector. Second, the performance of the proposed 

system may be adversely affected if applied to data obtained from 

a large number of sessions or days of recording. In this case, a re- 

current concept handling method could help to dynamically man- 

age the number of classifiers, e.g., by replacing the old classifiers 

with the updated classifier in the ensemble. 

7. Conclusion 

A new active scheme based non-stationarity adaptation algo- 

rithm has been proposed to effectively account for the covariate 

shifts influence in an EEG-based BCI system. A synergistic scheme 

was defined to integrate the CS estimation procedure and ensem- 

ble learning approach with transduction to determine when new 

classifiers should be added to the classifier ensemble. The per- 

formance of the proposed algorithm has been extensively eval- 

uated through comparisons with state-of-the-art ensemble learn- 

ing methods in both passive and active settings. The performance 

analysis on two BCI competition datasets has shown that the pro- 

posed method outperforms other passive methods in addressing 

non-stationarities of EEG signals. 
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Appendix A. Symbols and notations 

Table A1 

Symbols and notations. 

Symbols and 

notations 

Description 

x Input vector 

y Output label 

X Train Training dataset including input data x and output 

label y 

X Test Test dataset including input data x and output label y 

X Temp Temporary variable to store data in testing phase 

n Number of training samples in training data 

m Number of training samples in testing data 

D Input dimensionality 

P train ( x ) Probability distribution of input x 

P train ( y | x ) Probability of y given x in training data 

μ Mu frequency band [8–12] Hz 

β Beta frequency band [14–30] Hz 

C 1 , C 2 Set of labels for Class 1 and Class 2 

ω 1 and ω 2 Class 1 and Class 2 

R Real number 

λ lambda was a smoothing constant in covariate shift 

estimation 

z EWMA statistics 

E Ensemble of classifiers 

f Classifier 

K K for K nearest neighbour 

k Counter for the number of classifier in ensemble 

κ A radial basis function (RBF) kernel 

p p -value 

v Number of samples from starting of the testing phase 

to the current sample 

� Threshold 

∪ Union operation 

Np Total number of points 

V Volume 

E ′ EEG signal 

C Number of channels in EEG dataset 

T Number of samples per trial in EEG dataset 

W CSP projection matrix 

Z spatially filtered signal 

O Big-O notation 
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