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Chapter 1

Covariate Shift Detection based Non-Stationary
Adaptation in Motor-Imagery based

Brain-Computer Interface
Haider Raza1 and
Dheeraj Rathee2

Non-stationary learning (NSL) refers to the process that can learn patterns from data,
adapt to shifts, and improve performance of the system with its experience while op-
erating in the non-stationary environments (NSEs). Covariate shift (CS) presents a
major challenge during data processing within NSEs wherein the input-data distri-
bution shifts during transitioning from training to testing phase. CS is one of the
fundamental issues in electroencephalogram (EEG) based brain-computer interface
(BCI) systems and can be often observed during multiple trials of EEG data recorded
over different sessions. Thus, conventional learning algorithms struggle to accom-
modate these CSs in streaming EEG data resulting in low performance (in terms
of classification accuracy) of motor imagery (MI)-related BCI systems. This chapter
aims to introduce a novel framework for non-stationary adaptation in MI-related BCI
system based on covariate shift detection (CSD) applied to the temporal and spatial
filtered features extracted from raw EEG signals. The chapter collectively provides
an efficient method for accounting non-stationarity in EEG data during learning in
NSEs.

1.1 Introduction

In EEG-based brain-computer interface (BCI) systems, the majority of the learning
algorithms assume, either implicitly, or explicitly that the EEG data have statisti-
cally stationary/fixed distributions over different sessions and/or runs of the record-
ing [1]. However, such an assumption is simply not true as the EEG data obtained
over different sessions and/or runs ave possess non-stationary characteristics [2, 3].
In real-world BCI applications, non-stationarity is a ubiquitous phenomenon, es-
pecially when the system interacts with the dynamic and evolving environments,
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e.g., driving robotic wheelchair or playing virtual games. Hence, developing ma-
chine learning models that are optimized for non-stationary environments (NSEs)
is of great need. Machine learning methods are generally categorized into unsu-
pervised, semi-supervised, and supervised learning methods, whereas adaption to
non-stationarity is a common practice to all these three categories. Furthermore, the
NSL methods are majorly grouped into passive and active approaches. In the passive
approach to NSL, it is assumed that the input distribution should be continuously
shifting over time. Thus, passive approach based NSL methods adapt to new data
distributions in continuous fashion i.e., the model is updated for every new input ob-
servation or new batch of input observations from the streaming data. In contrast, an
active approach based NSL method uses a shift detection test to detect the presence
of shifts in the streaming data, and correspondingly, based upon the time of detected
shift, an adaptive action is initiated.

A BCI system aims to provide an alternative means of communication or re-
habilitation for the physically challenged population so as to allow them to express
their intentions using brain signal modulations without explicit muscular exertion
[4]. Non-invasive EEG-based BCI systems acquire neural signals at scalp level,
analyse them to evaluate specific features of EEG activity that are related to volun-
tary imagery/execution tasks, and finally utilise the outcomes as control signals that
are further relayed to an output device [5]. Such a system operates typically in two
phases, namely the training phase and the evaluation (testing) phase [6]. The EEG
signals are acquired through a multichannel EEG amplifier, and a pre-processing
step is performed to reduce noise and enhances the signal-to-noise ratio. In the next
step, the discriminable features are extracted from the artefact-cleaned signals using
feature extraction techniques, such as spatial filtering (e.g., common spatial pattern
(CSP), laplacian filtering, current source density) [7, 8, 9]. Further, the optimal fea-
tures are employed for training the classifier model. With an EEG-based BCI system
that operates online in real-time non-stationary/changing environments, it is required
to consider the input features that are invariant to shifts of the data or the learning
approaches that can track the changes repeating over time. However, due to the non-
stationary nature of the brain response characteristics in the EEG signal, it may be
difficult to classify the EEG patterns reliably using a conventional classification algo-
rithms used in motor imagery (MI) related BCI systems [1, 6]. The non-stationarities
of the EEG signals may be caused by various reasons, such as changes in the user at-
tention level, fatigue, imagery preferences, and/or placement and aging of electrodes
[10, 2, ?]. These non-stationarities cause notable variations or shifts in the EEG sig-
nals both during trial-to-trial, and session-to-session transfers [11, 12]. As a result,
these variations may often appear as covariate shifts, wherein the input data distribu-
tions differ significantly between training and testing phases, while the conditional
distribution remains the same[?, 13, 14, ?]. The traditional BCI systems are built
upon a conservative approach to NSL i.e., passive approach, where the learning sys-
tem is updated continuously, assuming that the environment is constantly shifting.
Furthermore, both single and ensemble of classifier(s) based learning methods were
developed for these passive approaches to improve the MI detection performance.
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In contrast, an active approach provides a more intuitive option for NSL learning
involving a covariate shift detection (CSD) test to capture the presence of covariate
shifts (CSs) in the streaming EEG features followed by an adaptive action based on
the correctly detected CSs.

The aim of this chapter is to present a CSD related non-stationary adaptation
(CSD-NSA) algorithm for EEG-based BCI systems. Different from the existing
methods, the CSD-NSA algorithm is an active approach to learning in NSEs, wherein
a CSD test is applied to initiate adaptation by adding new information from the test-
ing data to the existing training data and retrain the updated classifier. This active
approach aims at better managing computational resources, by adapting the classi-
fier only when it is necessary i.e., once the data from a novel distribution have to
be processed. Specifically, for the detection of CSs in the EEG features, we consid-
ered an exponential weighted moving average (EWMA) model based CSD test that
reacts to the CSs in non-stationary conditions [15]. At the point of shift detection,
the classifier can be adapted either in supervised or unsupervised manner. To assess
the performance of the proposed CSD-NSA algorithms (i.e., supervised and unsu-
pervised), experimental evaluations have been performed on publicly available MI
related EEG dataset.

1.2 Background

1.2.1 Covariate Shift in EEG Signals
CS is a case where the conditional probability distribution remains the same i.e.
(Ptrain(y|x) = Ptest(y|x), whereas the input data distribution shifts i.e. (Ptrain(x) 6=
Ptest(x)), while transitioning from the training to testing stage. A typical example
of the CS for ten overlapping frequency bands ([8-12], [10-14],...[26-20] Hz) in
the feature set of EEG data is illustrated in Figure 1.1 for the subject A07 of BCI
competition-IV dataset 2A (the description of the dataset is present in section IV).
For each plot, the blue solid ellipse and line show the input data distribution Ptrain(x)
and the classification hyperplane for training dataset, respectively. Likewise, the red
dashed ellipse and dash line show input data distribution Ptest(x) and the classifica-
tion hyperplane for test dataset.

1.2.2 Adaptive Learning Methods in EEG-based BCI
To enhance the performance of MI related BCI systems, a large variety of signal
processing methods have been proposed to extract features in the temporal and spa-
tial domains to manage the non-stationarity in EEG signals. In the temporal do-
main, band-power and band-pass based filtering methods have been commonly used
[12, 16], whereas in the spatial domain, common averaging, current source density,
and CSP-based features were widely explored for the detection of MI related re-
sponses [17, 7, 18]. The issue of low classification accuracy with the existing BCI
systems has been one of the main concerns in their rather low uptake among people
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Figure 1.1 Covariate shift between the training and test distributions of subject
A07 of BCI competition-IV dataset 2A. (a)− ( j) illustrates the
covariate shift in the [8-12], [10-14],...[26-20] Hz frequency bands.
For each plot, the blue solid ellipse and sold line show the input data
distribution Ptrain(x) and the classification hyperplane for training
dataset. Likewise, the red dashed ellipse and dash line show input data
distribution Ptest(x) and the classification hyperplane for test dataset.

with severe physical disability [17].

To tackle the issue of low performance of a BCI system due to the CSs, several
adaptive learning algorithms have been proposed to devise adaptive BCI systems
with encouraging results, such as Vidaurre et al. [19] have developed an adaptive
classifier using an adaptive estimation of information matrix. Next, Shenoy et al.
[1] have provided quantified systematic evidence of statistical differences in data
recorded during multiple sessions and various adaptive schemes to enhance the BCI
performance. Additionally, a covariate shift minimization (CSM) method was pro-
posed for the non-stationary adaptation to reduce the feature set overlap and unbal-
ance for different classes in the feature set domain [13]. More interestingly, Li et
al.(2010) have contributed a covariate shift adaptation (CSA) method for the BCI
system [10] based on a density ratio estimation technique. Density ratio based CSA
is an unsupervised adaptation method that can adapt to the testing session without
knowing the true labels. However, there exists a limitation that requires all the test-
ing unlabeled data before starting the testing phase to estimate the importance for the
non-stationarity adaptation, which makes this approach impractical in the real-time
BCI systems for both communication and rehabilitation purposes.

Furthermore, since the last decade, ensemble based machine learning methods
have become popular for NSL, where a set of classifiers is coupled to provide an
overall decision. In the EEG-based BCI systems, ensemble learning based methods
have been evaluated to improve the classification performance (e.g. bagging, boost-
ing, and random subspace [20]). Impressively, a dynamically weighted ensemble
classification (DWEC) method has been proposed, wherein an ensemble of multiple
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classifiers is trained on cluster features to handle the issue of non-stationarity adap-
tation [21]. The DWEC method partitions the EEG data using clustering analysis
and multiple classifiers were trained using different partitioned datasets. The final
decision of the ensemble was then obtained by appropriately weighting the classifi-
cation decisions of individual classifiers. In a recent study, the ensemble of common
spatial pattern patches (CSPP) has shown a potential for improving the performance
of online MI related BCI system [22]. Both single and ensemble of classifier(s)
based approaches were developed based on the passive mechanism to improve the
MI detection performance. In contrast, an active approach based NSL method in BCI
system could offer a possible solution that involve an active shift detection mecha-
nism, which leads to an efficient adaptation to non-stationarity in the streaming EEG
features.

1.3 Covariate Shift Detection based Non-Stationary Adaptation
(CSD-NSA) Algorithm

1.3.1 Problem Formulation
Given a set of training samples XTr =

{
xtr

i ,y
tr
i
}

, where i ∈
{

1...n
}

is the number of
training data observations, xtr

i ∈Rd (d denotes the input data dimensionality) is a set
of input training features drawn from a probability distribution with density Ptr(x),
and ytr

i ∈
{

C1,C2
}

is a set of training labels, where ytr
i = C1, if xtr

i belongs to class
ω1, and ytr

i = C2, if xtr
i belongs to class ω2. Here, we have assumed that the input

data distribution remains stationary during the training phase. Furthermore, given an
unlabelled test input data samples XT s =

{
xts

i
}

, where i ∈
{

1...m
}

is the number of
test data observations, xts

i ∈ Rd is a set of test input features, drawn independently
from a probability distribution with density Pts(x). Note that Ptr(x) 6= Pts(x) in gen-
eral, and thus the input distributions may be different during the training and test
phases, leading to covariate shifts.

1.3.2 Covariate shift detection (CSD) Test
The CSD test is an unsupervised method for detecting non-stationary changes in
the unlabelled testing data (XT s) during the testing phase [23]. For this study we
estimated the CSD parameters (i.e., smoothing constant (λ ) and control limit mul-
tiplier (L)) during the training phase with an assumption that the training data dis-
tribution is different from testing data distribution (Ptr(x) 6= Pts(x)). Next, during
the testing phase, an exponentially weighted moving average (EWMA) model was
implemented for the detection of the covariate shifts in the incoming data-stream
(trial-based estimation). The EWMA is a type of infinite impulse response filter
that applies weighting factors, which decrease exponentially. The weight of each
older observation decreases exponentially, however, never reaching zero value. The
weighting factor is one of the strengths of the EWMA model. The EWMA control
chart overtakes other control charts because it pools the present and the past data
together in such a way that even small shifts in the time-series can be detected more
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easily and quickly. Thus, the incoming observations are continuously examined to
provide a 1-step-ahead prediction (1-SAP). Next, the 1-SAP error was plotted on the
control chart and if the estimated error falls outside the control limits (L), the point
was said to be a point of covariate shift. The EWMA model can be presented as,

z(i) = λx(i)+(1−λ )z(i−1) (1.1)

where, z(i) is an EWMA statistics of the current trial, λ is a smoothing constant,
which is selected based on minimizing 1-SAP error on the training dataset (XTr).
The selection of the value of λ is a key issue in the CSD test. In particular, for the
auto-correlated time series data, it is suggested to select a value of λ that minimizes
the sum of the squares of the 1-SAP errors [24]. In the current approach, the value
of λ was obtained by testing different values of λ in the range of [0 : 0.01 : 1] on the
training dataset. In particular, the CSD test further consists of two stages. In the first
stage, it detects the covariate shift in the first principal component extracted from a
principal component analysis (PCA) based EEG feature vector of each trial using the
EWMA model and issue a covariate shift warning (CSW). In case of positive CSW
outcome, a covariate shift validation (CSV) process is performed in the second stage
in order to reduce the number of false alarms. During CSV stage, a multivariate two-
sample Hotelling’s T-Square statistical hypothesis test was performed to compare the
two distinct samples with an equal number of observations generated before and at
the CSW time point [25]. If the test rejects the null hypothesis, the existence of CS
was confirmed during the CSV stage, otherwise, it was considered as a false alarm
[23]. This CSD test has been successfully applied in our previous studies for the
detection of covariate shifts in EEG features for different covariate shift adaptive
methods [15].

1.3.3 Supervised CSD-NSA Algorithm
The Supervised Covariate Shift Detection-Non-Stationary Adaptation (S-CSD-NSA)
algorithm combines the aforementioned CSD test and a supervised adaptation (SA)
method as described in the Algorithm 1. In the training phase, a support vector ma-
chine (SVM) classifier fs was trained using the dataset XTr. The total number of
detected and validated shifts was denoted by s, whereas in the training phase s was
set equal to 0, and the index of the current example is denoted by i. The next step
involves the classification of the first trial of the testing data using classifier ( fs).
Next, for each new unlabelled trial, the features were monitored to detect a covariate
shift using the CSD test. If the test provides positive outcome, then a covariate shift
was confirmed in the features of the current trial, otherwise, the trial was classified
with the existing classifier fs. In case of confirmed covariate shift, the value of s was
incremented by 1. The next step is to select and store the correctly predicted trials in
a buffer XNew =

{(
xts

v ,y
ts
v
)}

v=1:l , where l is the number of correctly predicted trials
before the ith trial in which a CS was most recently detected. Afterward, the training
dataset XTr was merged with XNew to update the training dataset. Also, a new clas-
sifier fs was trained on the updated dataset and discard the old classifier fs−1. As the
initial classifier was obtained from the training phase, wherein, the initial value of s
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Algorithm 1 :Supervised CSD-NSA Algorithm
Input : XTr =

{
xtr

i ,y
tr
i
}

, where i ∈
{

1...n
}

: XT s =
{

xts
i
}

where i ∈
{

1...m
}

Output : Y T s

TRAINING:
1: Tr( f0,XTr)
2: Set s = 0, where s counts the number of covariate shift detection (CSD)

TEST:
3: Start evaluation using testing dataset XT s

4: Set i = 1
5: ŷi = f (xi)
6: for i = 2 to m do

7: p←CSD(xts
i )

8: if (p < 0.05) then
9: s = s+1
10: XNew =

{(
xts

v ,y
ts
v
)}

v=1:l
11: XTr = (XTr ∪XNew)
12: Train( fs,XTr)
13: end if
14: ŷi = f (xi)

15: end for
16: return Y T s

was set to zero. This procedure of single-trial EEG classification was repeated for
each new incoming trial until all the m trials were classified in the testing phase.

1.3.4 Unsupervised CSD-NSA Algorithm
The Unsupervised Covariate Shift Detection-Non-Stationary Adaptation (U-CSD-
NSA) algorithm combines the aforementioned CSD test and an unsupervised adap-
tation method using a transductive-inductive classifier as described in the Algorithm
2. The idea of the proposed U-CSD-NSA algorithm is to adapt to the non-stationary
changes by using both the training dataset and the new knowledge obtained in un-
supervised mode from the testing phase. The transductive classifier was only used
for adding new information to the existing training dataset and the inductive clas-
sifier was used for predicting the BCI outputs, after being retrained each time the
CS was detected. It is thus a learning approach wherein the transductive and the
inductive learning approaches were combined to update the training dataset and to
adapt to the evolution of CS over the time period in the feature set of the testing
phase. The transductive learning was implemented using a probabilistic weighted
K-nearest neighbour (PWKNN) method (i.e. instance-based learning). The output
from the transductive method was used to determine if a trial and its corresponding
estimated label can be added to the training dataset and subsequently, the learning
model was updated. Transductive learning combines induction and deduction in a
single step and is related to the field of semi-supervised learning (SSL), which uses
both labelled and unlabelled data during learning [26]. By eliminating the need to
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Algorithm 2 :Unsupervised CSD-NSA Algorithm
Input : XTr =

{
xtr

i ,y
tr
i
}

, where i ∈
{

1...n
}

: XT s =
{

xts
i
}

where i ∈
{

1...m
}

Output : Y T s

TRAINING:
1: Tr( f0,XTr)
2: Set s = 0, where s counts the number of covariate shift detection (CSD)
3: Set λ by minimizing 1-step-ahead-prediction error on the training dataset (XTr)

TEST:
4: Start evaluation using testing dataset XT s

5: Set i = 1,sl(0) = 1
6: ŷi = f (xi)
7: for i = 2 to m do

8: p←CSD(xT s
i ,λ )

9: if (p < 0.05) then
10: s = s+1
11: sl(s) = i
12: XNew =

{
xts

v
}

v=sl(s−1):sl(s)
13: (CR, ŷ) = PWkNN(XTr,XNew,CRα ,k)
14: XTr = (XTr ∪XNew)
15: Train( fs,XTr)
16: end if
17: ŷi = f (xi)

18: end for
19: return Y T s

construct a global model, transductive learning offers prospect to achieve higher ac-
curacy. However, in order to make use of unlabelled data, it is necessary to assume
some structure to the underlying distribution of the data. Additionally, it is essential
that the SSL approach must satisfy at least one of the following assumptions such
as smoothness, cluster, or manifold assumption [26], [27]. U-CSA-NDA algorithm
makes use of the smoothness assumption (i.e. the points which are closest to each
other are more likely to share the same label) to implement a transductive learning
algorithm. The second classifier i.e. a linear support vector machine (SVM) clas-
sifier ( f ) was inductive and its outputs were used to determine the single-trial BCI
outputs.

1.3.4.1 Probabilistic k-Nearest Neighbor
Probability theory plays a vital role in solving several of pattern recognition prob-
lems, as majority of these problems can be solved using a density estimation tech-
nique [27]. The task involved in this is to model a probability density function P(x)
of a random variable X , given a training input data XTr. There are two approaches
for the density estimation, namely, parametric and non-parametric. One of the key
limitations of the parametric approach is that it assumes a precise practical form for
the distribution which may be incompatible for a specific application. An alternative
approach is the non-parametric density estimation, which estimates density function
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without applying any assumption about underlying data distribution. Here, we con-
sidered a non-parametric approach based on k-nearest-neighbors (kNN) being it a
transductive learning methods, it uses the test data point to determine a decision. In
the kNN algorithm, we considered a small sphere centered at the point x where the
density P(x) should be estimated. We allowed the radius of the sphere to grow until
it contains k data points and the estimate of the density is then given by:

P(x) = k/(N ·V ) (1.2)

where, V is set to the volume of the sphere, and N is the total number of points.
The parameter k governs the degree of smoothing. The technique of kNN density
estimation may be extended to the classification task in which the kNN density es-
timation is obtained for each class and the Bayes’ theorem is used to perform a
classification task. Now, let’s suppose that we have a data set comprising Nωi points
in the class ωi within the set of classes ω , where i ∈ 1,2, so that ∑ωi Nωi = N. If
we wish to classify a new data point x, we draw a sphere centered on x containing
precisely k points irrespective of their classes. Now, if this sphere has a volume V
and contains k(ωi) from class ωi as an estimate of the density associated with each
class or likelihood can be obtained by:

P(x|ωi) =
kωi

Nωi ·V
(1.3)

Similarly, the unconditional density is given by P(x) = k/(N ·V ). The class prior
probability is given by:

P(ωi) = Nωi/N (1.4)

Using the Bayes’ theorem, we can obtain the posterior probability of the class
membership:

P(ωi|x) =
P(x|ωi)P(ωi)

P(x)
=

kωi

k
(1.5)

Further, we wish to minimize the probability of misclassification, this can be
achieved by assigning the test point x to the class ωi having the largest posterior
probability, i.e. corresponding to the largest value of kωi/k. Thus, to classify a
new point, identify the k-nearest points from the training dataset and then assign the
new point to the set having the largest number of representatives. This posterior
probability is also known as the Bayesian belief or confidence ratio (CR). However,
the overall estimate obtained by the kNN method may not be satisfactory because
the resulting density is not a true probability density since its integral over all the
samples space diverges [28]. Another drawback is that it considers only k points to
build the density and each neighbor has an equal weight. An extension to the above
kNN method is to assign the weight to each sample that depends on its distance to x.
A radial basis function (RBF) kernel was used to obtain these weights. Using RBF
Kernel, the nearest points have weights with the higher value than furthest points. A
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PWkNN approach based on an RBF kernel is thus proposed to devise the transductive
classifier with RBF(p,q), which is given as

RBF(p,q) = exp(−
d2
(p,q)

2σ2 ) (1.6)

where d(p,q) is the Euclidean distance from the unlabelled data point xp to the
labeled data point xq is computed as given below:

d(p,q) =

√
m

∑
i=1

(xp(i)− xq(i))2 (1.7)

and x(i) is the ith feature of x and m is the number of features. For binary
detection, the confidence ratio of CRωi of the class ωi, for a data point xp, is defined
by:

CRω1 =

K
∑
j=1

RBF(p, j) · (l j == ω1)

K
∑
j=1

RBF(p, j)

(1.8)

CRω2 = 1−CRω1 (1.9)

where 1 ≤ j ≤ k, corresponds to the jth nearest neighbor of xp. The outputs of
PWKNN include the overall confidence of the decision, given by:

CR = max(CRω1 ,CRω2) (1.10)

and the output class ŷ is equals to 1 if xp is assigned to ω1 otherwsie equals to 0.

1.4 Experimental Validation of the CSD-NSA Algorithms

1.4.1 EEG Dataset
The BCI Competition-IV dataset 2A [29] comprised of EEG signals acquired from
nine healthy participants, namely [A01−A09], during two sessions on separate days
using a cue-based MI paradigm. Each session consists of 6 runs where each run
comprised of 48 trials (12 trials for each class). Thus, the complete study involved
576 trials from both sessions of the dataset. The total trial length is 7.5 s with variable
inter-trial duration. The data were acquired from 25 channels (22 EEG channels
along with three monopolar EOG channels) with a sampling frequency of 250 Hz
and bandpass filtered between 0.5 Hz to 100 Hz (notch filter at 50 Hz). Reference
and ground were placed at the left and right mastoid, respectively. Among the 22
EEG channels, 10 channels, which are responsible for capturing most of the MI
related activations, were selected for this study (i.e. channels: C3, FC3, CP3, C5,
C1, C4, FC4, CP4, C2, and C6). The dataset consist of four different MI tasks: left
hand (class 1), right hand (class 2), both feet (class 3), and tongue (class 4). Only the
classes corresponding to the left hand and right hand were considered in the present
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Figure 1.2 Schematic diagram of signal processing pipeline for implementation of
CSD-NSA for MI-BCI system. The analysis consists of two phases.
During the training phase, the features were extracted in the signal
processing block from the filter-bank band-passed EEG signals using
CSP algorithm and a classifier was trained on the labeled observation
(i.e. XTrain). Also, two parameters (i.e., smoothing constant (λ ) and
control limit multiplier (L)) were estimated/set during this phase. In the
testing phase, a similar signal processing approach was applied
initially and CSP features were monitored by the CSA block. In the
CSA block, the CSD test detects the presence of CSs and initiates
adaptation using supervised or unsupervised adaptation. Finally, the
classification was performed with the trained classifier model.

study. The MI data from the session-I was used for training phase and the MI data
from the session-II was used for testing phase.

1.4.2 Signal Processing and Feature Extraction
Figure 1.2 illustrates the complete signal processing pipeline implemented in this
study for CSD based NSA in MI related EEG patterns. The following steps have been
executed: band-pass filtering, feature extraction (log variance of CSP), detection and
validation of CSs, non-stationary adaptation in supervised or unsupervised manner,
and finally the binary classification.

In the signal processing and feature extraction stage, a set of band-pass filters
was used to decompose the EEG signals into different frequency bands (FBs) by em-
ploying an 8th order, zero-phase forward and reverse band-pass Butterworth filter. A
total of 10 band-pass filters (i.e. filter bank) with overlapping bandwidths, including
[8-12], [10-14], [12-16], [14-18], [16-20], [18-22], [20-24], [22-26], [24-28], and
[26-30] Hz were used for temporal filtering of the data. Next, spatial filtering using
CSP algorithm was performed to maximize the divergence of band-pass filtered sig-
nals under one class and minimize the divergence for the other class. In MI-related
BCI systems, both physical and imaginary movements cause a growth of bounded
neural rhythmic activity known as event related synchronization/desynchronization
(ERD/ERS). The CSP algorithm has been widely implemented for estimating spa-
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tial patterns for detecting ERD/ERS [21]. Each combination of the band-pass filter
and extreme left and right components of the CSP filter provides the discriminative
features that are specific to a particular frequency range. Next to CSP filtering, the
discriminating features were extracted using a time window of 3 s after the cue onset
so as to continue our further analysis on the MI-related features only. Finally, the
obtained features from all FBs were merged to create the set of input features for a
linear SVM classifier.

1.4.3 Feature Selection and Parameter Estimation
The parameters for the CSD test (i.e. λ and L) were computed during the training
stage. The smoothing constant (λ ) was selected by minimizing the sum of squared
1-step-ahead prediction errors. The control limit multiplier L was set equal to 2. The
value of L is needed to be carefully selected because it has a major impact in the
performance of the CSD test. A small value of L makes the system more sensitive
to minor shifts in EEG features. Moreover, the shifts in the feature set generated due
to the noise were smoothed by proper selection of λ . In the testing phase, the CSD
test was applied on the multivariate inputs features of EEG data using the estimated
values of parameters. Due to the high dimensionality of the EEG features, the PCA
algorithm was used to reduce the dimensionality to a single component [30]. Next,
the CSD test was applied to the PCA output features for detecting CSs at the first
stage of the CSD test. Based on the positive outcome of the CSD test in stage I,
stage II gets activated. In stage II, a window of 3 s of CSP features after the cue
onset in the current trial was extracted to use as a first sample and a window of
averaged CSP features from the previous data trials was used as the second sample
to execute the multivariate two-sample Hotelling’s T-Square statistical hypothesis
test. If the p-value of the Hotelling’s T-Square test is less than 0.05, a CSD was
confirmed in the current trial and an adaptive action was initiated. In U-CSD-NSA
algorithm, the value of CRT hres was set equal to 0.70, which means if the probability
of the classification is more than 0.70 then only the example was added to the training
dataset.

1.4.4 Empirical Results
The performance of the CSD-NSA algorithm has been evaluated with active ap-
proach for covariate shift adaptation. With a single classifier, active approach was
employed with both supervised adaptation and unsupervised adaptation (i.e. S-CSD-
NSA and U-CSD-NSA, respectively). In the S-CSD-NSA algorithm, the adaptation
was achieved after detection of each shift, wherein the data from the correctly pre-
dicted trials were merged with the existing training dataset to enrich the data distri-
bution, and the classifier was re-trained on the updated dataset. Likewise, U-CSD-
NSA algorithm has been implemented using the PWkNN method for the unsuper-
vised adaptation, wherein the training dataset was updated at the instances of shift
detection only.

We have compared the classification accuracies (in %) obtained by the two pro-
posed algorithms with the baseline method (i.e., CSP features) for a binary classifica-
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Table 1.1 Performance of the Covariate Shift Detection based Non-Stationary
Adaptation (CSD-NSA) Algorithm

Subjects Baseline S-CSD-NSA U-CSD-NSA

A01 87.50 91.75 93.06
A02 58.33 58.33 59.03
A03 84.72 91.75 95.14
A04 63.89 68.33 71.53
A05 67.55 68.33 71.53
A06 62.50 62.50 62.50
A07 70.83 71.53 71.53
A08 86.11 91.75 91.75
A09 86.11 89.58 89.58

Mean 74.17 77.09 78.41
Std 11.84 13.92 14.00

p-value 0.0156 0.0078

tion task of MI-related BCI system. Table 1.1 provides the classification accuracies
(in %) for the nine healthy participants along with the mean and SD. The average
binary classification accuracy (mean±SD) for the baseline method, S-CSD-NSA,
and U-CSD-NSA are 74.17±11.84, 77.09±13.92, and 78.41±14.00, respectively.
Thus, both CSD-NSA algorithms enhances the discriminability of the MI features as
compared to the non-adaptive system. Furthermore, the Wilcoxon signed rank statis-
tical test provided significant p-values for both methods i.e., 0.0156 for S-CSD-NSA
and 0.0078 for U-CSD-NSA in comparision with the baseline method.

1.5 Discussion and Future Prospects

Learning in NSEs provides a challenging and inspiring area of research in the fields
of machine learning and computational intelligence, and secured escalating interest
of the researchers globally because of its increasing prevalence in real-world applica-
tions involving streaming and big data. EEG-based BCI systems involve learning of
features from brain generated electrical potentials which in turn provides a highly dy-
namic and complex environment. In such applications, using traditional approaches
that either ignore the underlying shifts or their passive approach based handling are
inevitably bound to low performance. Thus, an active approach based shift detection
and subsequent adaptive measure is necessary to achieve high classification accura-
cies. In this chapter, we presented two algorithms for supervised and unsupervised
adaptive learning in NSEs based on CSD and NSA framework. The results, with a
benchmark MI-related BCI dataset, showed statistically significant improvement of
the system performance.
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The EWMA-CSD test is a good option for detecting covariate shifts because it
circumvents false detections resulting from noise or spurious shifts through much
more intense smoothing of the EEG signal. A central issue in the CSD test is the se-
lection of the value for λ and L. For the auto-correlated data, it is suggested to select
a value of λ that minimizes the sum of the squares of the 1-SAP errors. Moreover, for
L, considering smaller value (L = 2) results in concentrating on trivial shifts, such as
temporary disturbance in user concentration and muscular artefacts emerging during
trial-to-trial transfer. Conversely, the long term covariate shift may be handled by fix-
ing a large value (L = 3). The value of parameter CRT hres resolves importance of the
current information. If the value of CR is above this threshold, then it is beneficial to
be into the existing knowledge base (KB) otherwise rejected. The rejected instance
may belong to a shifted distribution but it is not providing higher confidence to be
merged into the KB. Thus, the values of CRT hres and L are needed to be cautiously
selected in order to get greater classification accuracy and these hyper-parameters
can be subject specific as well [31, 32, 33].

There are, however, a few limitations to be considered while using the active
approach based non-stationary learning algorithm for BCI systems and can be taken
into account in future studies. First, the CSD test has been applied on the com-
bined CSP features of multiple frequency bands, which creates a high dimensional
input vector and may affect the robustness of the covariate shift detection process.
Furthermore, several other feature types have been utilised in MI-BCI systems and
NSA for these feature sets may warrant further investigation of the proposed methods
[8]. Second, we have used a supervised approach (i.e., S-CSD-NSA) for adaptation,
which can be of limited usage in case of real-time BCI-based applications such as for
rehabilitation or communication, where the labels are not available during the test-
ing phase. However, the unsupervised adaptation method to learn with the upcoming
shifts in unlabeled streaming EEG data. Third, the proposed system has been imple-
mented on the feature set of two sessions only whereas practical BCI applications
may have more number of sessions recorded on different days, and this condition
can make the adaptive learning task further challenging. Moreover, single classi-
fier based learning can be replaced by ensemble based learning by recruiting several
classifiers. In that case, a recurrent concept handling method may be needed to dy-
namically replace the old classifier with the updated classifier in the ensemble and
when the concept reappears, the old classifier will be re-activated. Fourth, datasets
are assumed to be labeled when presented to a supervised algorithm or unlabeled for
an unsupervised one. However, the data streams may contain a mixture of labeled
and unlabeled data. Thus, one interesting prospect of further research is to examine
the collective concept of supervised and unsupervised learning in NSEs. Fifth, one
of the central issues with current BCI technology is the need to increase the num-
ber of classes for optimizing the practical application. Also hybrid BCI systems can
provide further flexibility to the system [34]. However, these enhancements gen-
erate data with different characteristics, such as multi-dimensionality, multi-scale,
and multi-label. Thus, future learning algorithms should include new modeling and
adaptive strategies to be able to cope with such data and conditions.
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