28 research outputs found

    Attacks on RFID Protocols

    Get PDF
    This document consists of a collection of attacks upon RFID protocols and is meant to serve as a quick and easy reference. This document will be updated as new attacks are found. Currently the only attacks on protocols shown are the authors\u27 original attacks with references to similar attacks on other protocols. The main security properties considered are authentication, untraceability, and - for stateful protocols - desynchronization resistance

    Character-angle based video annotation

    Get PDF
    A video annotation system includes clips organization, feature description and pattern determination. This paper aims to present a system for basketball zone-defence detection. Particularly, a character-angle based descriptor for feature description is proposed. The well-performed experimental results in basketball zone-defence detection demonstrate that it is robust for both simulations and real-life cases, with less sensitivity to the distribution caused by local translation of subprime defenders. Such a framework can be easily applied to other team-work sports

    Norms for Modeling Agents' Interaction in Ubiquitous Environments

    Get PDF

    Report of Working Group 22 on Iron Supply and its Impact on Biogeochemistry and Ecosystems in the North Pacific Ocean

    Get PDF
    The Working Group on Iron Supply and its Impact on Biogeochemistry and Ecosystems in the North Pacific Ocean (WG 22) was established October 2007 under the direction of the Biological Oceanography Committee (BIO) and consisted of 20 members from all PICES member countries, including Co-Chairmen, Drs. Shigenobu Takeda (Japan) and Fei Chai (USA). The purpose of the Working Group was to examine the role of iron biogeochemistry and its impact on biological productivity and marine ecosystems. WG 22 has completed the following four goals in its terms of reference: 1. Compile and synthesize available iron biogeochemistry data in the North Pacific; 2. Review the past and ongoing laboratory, field and modeling studies on iron biogeochemistry and its impact on biological productivity and marine ecosystems in the North Pacific Ocean; 3 Determine the natural supplies of iron to the North Pacific, which include atmospheric dust transport and movement of iron-enriched waters, and examine linkages between iron supply and ecosystem responses; 4. Identify gaps and issues related to experimental and modeling activities, encourage and plan national and international scientific programs on iron biogeochemistry and its impact on marine ecosystems in the North Pacific. WG 22 has accomplished most of its originally proposed objectives. Through Annual Meetings, we kept the iron community in all PICES member countries together on a regular basis. Our Working Group members actively exchanged ideas and discussed their ongoing research results, which led to several important publications. We also consolidated some of available iron data for the North Pacific, and more data will be added to this data set as time goes on. We are confident that our short 3-year effort will provide a sound foundation for future iron-related research in the North Pacific Ocean

    Aggregatable Certificateless Designated Verifier Signature

    Get PDF
    In recent years, the Internet of Things (IoT) devices have become increasingly deployed in many industries and generated a large amount of data that needs to be processed in a timely and efficient manner. Using aggregate signatures, it provides a secure and efficient way to handle large numbers of digital signatures with the same message. Recently, the privacy issue has been concerned about the topic of data sharing on the cloud. To provide the integrity, authenticity, authority, and privacy on the data sharing in the cloud storage, the notion of an aggregatable certificateless designated verifier signature scheme (ACLDVS) was proposed. ACLDVS also is a perfect tool to enable efficient privacy-preserving authentication systems for IoT and or the vehicular ad hoc networks (VANET). Our concrete scheme was proved to be secured underling of the Computational Diffie-Hellman assumption. Compared to other related schemes, our scheme is efficient, and the signature size is considerably short

    APEX2S: A Two-Layer Machine Learning Model for Discovery of host-pathogen protein-protein Interactions on Cloud-based Multiomics Data

    Get PDF
    Presented by the avalanche of biological interactions data, computational biology is now facing greater challenges on big data analysis and solicits more studies to mine and integrate cloud-based multiomics data, especially when the data are related to infectious diseases. Meanwhile, machine learning techniques have recently succeeded in different computational biology tasks. In this article, we have calibrated the focus for host-pathogen protein-protein interactions study, aiming to apply the machine learning techniques for learning the interactions data and making predictions. A comprehensive and practical workflow to harness different cloud-based multiomics data is discussed. In particular, a novel two-layer machine learning model, namely APEX2S, is proposed for discovery of the protein-protein interactions data. The results show that our model can better learn and predict from the accumulated host-pathogen protein-protein interactions

    Improving Prediction Accuracy for WSN Data Reduction by Applying Multivariate Spatio-Temporal Correlation

    Get PDF
    This paper proposes a method based on multivariate spatial and temporal correlation to improve prediction accuracy in data reduction for Wireless Sensor Networks (WSN). Prediction of data not sent to the sink node is a technique used to save energy in WSNs by reducing the amount of data traffic. However, it may not be very accurate. Simulations were made involving simple linear regression and multiple linear regression functions to assess the performance of the proposed method. The results show a higher correlation between gathered inputs when compared to time, which is an independent variable widely used for prediction and forecasting. Prediction accuracy is lower when simple linear regression is used, whereas multiple linear regression is the most accurate one. In addition to that, our proposal outperforms some current solutions by about 50% in humidity prediction and 21% in light prediction. To the best of our knowledge, we believe that we are probably the first to address prediction based on multivariate correlation for WSN data reduction

    A PUF-and biometric-based lightweight hardware solution to increase security at sensor nodes

    Get PDF
    Security is essential in sensor nodes which acquire and transmit sensitive data. However, the constraints of processing, memory and power consumption are very high in these nodes. Cryptographic algorithms based on symmetric key are very suitable for them. The drawback is that secure storage of secret keys is required. In this work, a low-cost solution is presented to obfuscate secret keys with Physically Unclonable Functions (PUFs), which exploit the hardware identity of the node. In addition, a lightweight fingerprint recognition solution is proposed, which can be implemented in low-cost sensor nodes. Since biometric data of individuals are sensitive, they are also obfuscated with PUFs. Both solutions allow authenticating the origin of the sensed data with a proposed dual-factor authentication protocol. One factor is the unique physical identity of the trusted sensor node that measures them. The other factor is the physical presence of the legitimate individual in charge of authorizing their transmission. Experimental results are included to prove how the proposed PUF-based solution can be implemented with the SRAMs of commercial Bluetooth Low Energy (BLE) chips which belong to the communication module of the sensor node. Implementation results show how the proposed fingerprint recognition based on the novel texture-based feature named QFingerMap16 (QFM) can be implemented fully inside a low-cost sensor node. Robustness, security and privacy issues at the proposed sensor nodes are discussed and analyzed with experimental results from PUFs and fingerprints taken from public and standard databases.Ministerio de Economía, Industria y Competitividad TEC2014-57971-R, TEC2017-83557-
    corecore