

University of Dundee

Attacks on RFID Protocols

van Deursen, Ton; Radomirovi, Saša

Published in:
Cryptology ePrint Archive

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
van Deursen, T., & Radomirovi, S. (2009). Attacks on RFID Protocols. Cryptology ePrint Archive, 2008(310), 1-
56.

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 07. Nov. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dundee Online Publications

https://core.ac.uk/display/84158472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://discovery.dundee.ac.uk/portal/en/research/attacks-on-rfid-protocols(37a7b88e-b6de-4bbf-9294-0f25ea5970ff).html

Attacks on RFID Protocols

Ton van Deursen
ton.vandeursen@uni.lu

Saša Radomirović
sasa.radomirovic@uni.lu

August 6, 2009
Version 1.1

Abstract

This document consists of a description of attack methodologies and

a collection of detailed attacks upon RFID protocols. It is meant to serve

as a quick and easy reference and it will be updated as new attacks are

found. Currently the only attacks on protocols shown in full detail are

the authors’ original attacks with references to similar attacks on other

protocols.

The main security properties considered are authentication, untrace-

ability, and desynchronization resistance.

Keywords: RFID, identification protocols, attacks.

Parts of this document have appeared in [DR08a, DR08b, DR09].

Contents

Preliminaries 4
Terminology . 4
Notation . 4
Conventions . 6
Security Properties . 6
Intruder Model . 7

Attacking RFID Protocols 7
Algebraic Replay Attacks . 8
Attribute Acquisition Attacks . 10
Cryptanalytic Attacks . 13

1 [CH07] 15
1.1 Description . 15
1.2 Claimed Attacks . 15

1.2.1 Tag authentication . 15
1.3 Related Protocols . 16

1

2 [DM07] 17
2.1 Description . 17
2.2 Claimed Attacks . 18

2.2.1 Authentication and Untraceability 18
2.3 Related Protocols . 19

3 [HMNB07a] 20
3.1 Description . 20
3.2 Claimed Attacks . 20

3.2.1 Tag authentication . 20
3.2.2 Untraceability . 20
3.2.3 Desynchronization resistance 21

3.3 Related Protocols . 22

4 [KCL07] 24
4.1 Description . 24
4.2 Claimed Attacks . 24

4.2.1 Untraceability . 24

5 [KCLL06] 26
5.1 Description . 26
5.2 Claimed Attacks . 26

5.2.1 Reader authentication . 26
5.3 Related Protocols . 27

6 [KN05] 28
6.1 Description . 28
6.2 Claimed Attacks . 29

6.2.1 Tag authentication . 29
6.2.2 Reader authentication . 29
6.2.3 Untraceability . 29
6.2.4 Desynchronization resistance 29

6.3 Related protocols . 30

7 [LAK06] 31
7.1 Description . 31
7.2 Claimed Attacks . 31

7.2.1 Tag Authentication . 31
7.3 Related Protocols . 32

8 [LBV07] 33
8.1 Description . 33
8.2 Claimed Attacks . 33

8.2.1 Untraceability . 33
8.3 Related Protocols . 34

2

9 [LBV08] 35
9.1 Description . 35
9.2 Claimed Attacks . 35

9.2.1 Untraceability . 35
9.3 Related Protocols . 36

10 [LD07] 37
10.1 Description . 37
10.2 Claimed Attacks . 37

10.2.1 Untraceability . 37
10.3 Reader Authentication . 38
10.4 Related Protocols . 39

11 [OTYT06] 40
11.1 Description . 40
11.2 Claimed Attacks . 40

11.2.1 Reader authentication . 40
11.2.2 Desynchronization resistance 40
11.2.3 Untraceability . 41

11.3 Related Protocols . 41

12 [LY07a, LY07c, LY07b, HM04] 42
12.1 Description . 42
12.2 Claimed Attacks . 42

12.2.1 Tag authentication . 42
12.3 Related Protocols . 42

13 [SLK06] 43
13.1 Description . 43
13.2 Claimed Attacks . 43

13.2.1 Tag authentication . 43
13.2.2 Desynchronization resistance 43
13.2.3 Untraceability . 44

13.3 Related Protocols . 44

14 [SM08] 45
14.1 Description . 45
14.2 Claimed Attacks . 46

14.2.1 Tag authentication . 46
14.2.2 Reader authentication . 46
14.2.3 Desynchronization resistance 47
14.2.4 Untraceability . 47

14.3 Related Protocols . 48

3

15 [YPL+05] 49
15.1 Description . 49
15.2 Claimed Attacks . 49

15.2.1 Untraceability . 49
15.2.2 Desynchronization resistance 49

15.3 Related Protocols . 50

Change Log 57

Preliminaries

Terminology

In this document, reader refers to the actual RFID reader as well as a potential
database or server communicating with the reader, since in all protocols con-
sidered this communication takes place over a secure channel. An agent can be
a tag or a reader, while a role refers to the protocol steps a tag or reader is
expected to carry out. A run is the execution of a role by an agent. A nonce is
a random number or a random string.

For convenience and intuition, we will refer to certain attacks on protocols as
quality-time attacks. These are attacks in which the adversary interacts with a
tag in absence of an honest or trusted RFID reader. The attacks can be carried
out on tags that happen to be in the vicinity of an adversary for a short period
of time or on tags the attacker is able to isolate from their environment for an
extended period of time.

When we refer to the untraceability property of a protocol, we mean the
tag’s untraceability.

Notation

The exclusive or (xor) operator is a commutative, associative operator, denoted
by ⊕. The xor operator has the property that equal terms cancel each other
out, i.e. (a ⊕ b) ⊕ a = b for any a and b.

We use message sequence charts, such as in Figure 1, for the description
of protocols as well as attacks on protocols1.We add textual explanations only
when the message sequence chart is ambiguous or insufficient in some form.

Every message sequence chart shows the role names, framed, near the top
of the chart. Above the role names, the terms known to the role are shown.
Actions, such as nonce generation, computation, verification of terms, and as-
signments are shown in boxes. Messages to be sent and expected to be received
are specified above arrows connecting the roles. It is assumed that an agent
continues the execution of its run only if it receives a message conforming to its
role. Other conditions that need to be satisfied are shown in diamond boxes.
Such conditions will include security claims made by the protocol’s authors,

1Note that attacks can be viewed as protocols in which the intruder’s role has been specified.

4

such as untraceability or authentication claims, which will appear typically at
the bottom of the chart. There are two types of condition boxes that represent
security claims. The first type is a crossed-out diamond box, representing a
security claim we invalidate. Such an invalidated claim will be accompanied by
an explicit attack on the security claim. The second type is a normal diamond
box, representing a security claim we have not invalidated nor proven.

For example, in Figure 1, the role names are R and T , both know the secret
term k, only T knows TSlast. The picture represents the following execution
flow. R generates the timestamp TS before sending the first message. After
reception of the first message, T verifies the condition TS > TSlast before
continuing its run. T generates a nonce r and sends the second message to R.
The reader hashes the key k and the second part of the message (r) and verifies
that the hash is equal to the first part of the message (h(k, r)). If not, the reader
stops its execution, else it continues by hashing r and k and sending the third
message to T . The tag verifies that the received value matches h(r, k) and if so
it sets TSlast to TS. The protocol has been claimed to satisfy untraceability of
the tag role and authentication of the tag role towards the reader role but the
latter claim can be shown to be false.

k

R

k, TSlast

T

timestamp TS

TS

TS > TSlast

nonce r

h(k, r), r

h(r, k)

TSlast := TS

auth(T) untrac

Figure 1: Example protocol

We simplify the presented protocols whenever possible by leaving out ir-
relevant steps, communications, and terms. The description given suffices to
reconstruct the attacks on the original protocols. Furthermore, for the reader’s
convenience, when describing a protocol, we consistently use the notation shown
in Table 1. Whenever additional functions and variables are needed we use the
notation that was originally chosen by the authors of the protocol. When sev-
eral runs of a protocol are shown, the terms used in the second run are primed,
the terms in the third run are double primed, etc. Similarly, in protocols where

5

Table 1: Notation
Symbol Meaning
A, B, R, T agent names
h cryptographic hash function
, concatenation
⊕ exclusive or operator
ID , k, k0, k1, . . . shared secret between reader and tag
r, r0, r1, r2 . . . random numbers

reader or tag update stored variables, the variables whose values are being up-
dated are shown with a prime after the update.

Convention

To simplify references, we name the presented protocols with the citation key
which consists of the first letters of the last names of the protocol’s authors and
the year of publication appended. Thus for instance, the Diffie-Hellman key
exchange protocol would be named [DH76].

Security Properties

In terms of Lowe’s authentication hierarchy [Low97], we consider recent alive-
ness to be the most appropriate authentication requirement for RFID protocols.
Recent aliveness captures the fact that the tag needs to have generated a mes-
sage as a consequence of a reader’s query. More formally, a protocol guarantees
to an agent a in role A that any corresponding agent b in role B has been re-
cently alive, iff whenever a completes a run, there has been an event of b during
that run. What recent aliveness does not capture, is the requirement that the
tag needs to be in the vicinity of the reader at the time of the communication.
We do not consider this issue in the present paper.

We consider the notion of untraceability as defined in [DMR08] which cap-
tures the intuitive notion that a tag is untraceable if an adversary cannot tell
whether he has seen the same tag twice or two different tags.

The third security property we investigate is desynchronization resistance
as defined in [DMRV09]. It ensures that the system in which the protocol
runs will never evolve into a state where there is nobody who can successfully
execute the protocol with a tag. In this paper, we restrict ourselves to the three
aforementioned properties.

Other properties which are relevant to the RFID setting are distance bound-
ing and scalability. A distance-bounding protocol ensures that the tag is in close
proximity to the reader when communicating. In particular, distance-bounding
protocols prevent man-in-the-middle attacks on the protocols. Scalability en-
sures that the reader can efficiently authenticate any tag and is is therefore only
tangentially related to the security of an RFID protocol.

6

Intruder Model

We perform our security analyses in the Dolev–Yao intruder model [DY83]. In
this model, the adversary may eavesdrop on any message exchanged between
tag and reader, modify or block any message sent from tag to reader or vice
versa, and may inject his own messages making them look like they were sent by
tag or reader. We additionally assume that the adversary can observe whether
an agent successfully completed its run. This is in line with adversary mod-
els designed for RFID protocol analysis, such as Avoine [Avo05], Juels and
Weis [JW07], Vaudenay [Vau07], Damg̊ard and Pedersen [DP08], and Paise and
Vaudenay [PV08].

Attacking RFID Protocols

From the general description of the adversary’s capabilities we derive three types
of attack strategies for the adversary which are meant to enhance the intuition
for the attacks and simplify their description.

The simplest strategy is to eavesdrop on messages transmitted between tag
and reader. The adversary may then deduce information and combine messages
to later impersonate or trace a tag.

The second strategy is to spend some “quality time” with a tag. In these
attacks, to which we refer as quality-time attacks, the adversary interacts with a
tag in absence of an honest or trusted RFID reader. The point of such an attack
is to send carefully designed challenges to the tag in order to obtain information
which can later be used to impersonate a reader or the tag, trace the tag, or
attack any other security requirement of a protocol.

Quality-time attacks are facilitated by the mobile and wireless nature of
RFID tags. The attacks can be carried out on tags that happen to be in the
vicinity of an adversary for a short period of time or on tags the attacker is able
to isolate from their environment for an extended period of time. In case tags
and readers share secret keys, a quality time attack might be mounted on the
reader as well.

The third strategy involves modifying messages transmitted between a reader
and a tag. This attack works best when the adversary has simultaneous access
to a legitimate reader and a tag which is not in the reader’s vicinity. The
adversary may modify transmitted messages and then observe the evolution of
the communication session.

For each of the three strategies, the feasibility of an attack depends on many
factors. In general, it is obvious that the fewer interactions an adversary needs
to engage in, eavesdrop on, or modify, the more feasible the attack becomes.

By applying these strategies to several proposed RFID protocols we have
identified three types of attacks, which we discuss in subsequent sections. These
types of attacks are what we call algebraic replay attacks targeting the challenge-
response mechanism in authentication protocols, attribute acquisition attacks
on untraceability of tags, and cryptanalytic attacks on secrecy of keys and tag

7

identities.

Algebraic Replay Attacks

A common way to authenticate RFID tags is by means of the following challenge-
response mechanism. The RFID reader challenges the tag with a nonce r1 to
which the tag replies with a term derived from the nonce r1, some information s
identifying the tag, and potentially a nonce r2 generated by the tag. If present,
the nonce r2 serves as the tag’s challenge to the reader in mutual authentication
protocols or as a “blinding term” to achieve tag untraceability. We can thus
represent the tag’s reply to the reader’s challenge as the term r2, g(r1, r2, s) with
the understanding that r2 may be constant or empty. The reader verifies the
authenticity by applying the inverse of the function g to the term and checking
whether the response contains r1 and a valid s. If g is a one-way function
then the reader verifies the authenticity of the tag by computing the function
g(r1, r2, s) and comparing it to the received value. The reader can compute
this function, since it generated the value r1 itself, the value r2 is supplied by
the tag, and the reader has a database with values of s for every tag it may
authenticate.

We now argue that the following two properties are necessary in order for
the challenge-response mechanism to guarantee recent aliveness of the tag.

Freshness For fixed r2 and s the range of the function r1 → g(r1, r2, s) must
be large. More precisely, given r2, s, the adversary’s advantage in guess-
ing g(r1, r2, s) correctly for an unknown, randomly chosen r1 must be
negligible.

ARR Let Os(x) be an oracle which upon input x randomly chooses y and
returns y and g(x, y, s). If s is unknown, then given access to a polyno-
mial number of queries Os(x1), . . . , Os(xl) to the oracle, it is infeasible to
compute g(r1, r2, s) for a given r1 6∈ {x1, . . . , xl} and any r2.

If the freshness property is satisfied, then as stated, the probability of the
adversary guessing g(r1, r2, s) is negligible. Thus with overwhelming probability,
a response r2, g(r1, r2, s), to the reader’s challenge r1 must have been generated
after the challenge was sent. This property is obviously necessary for recent
aliveness and in particular excludes classic replay attacks.

The ARR (algebraic replay resistance) property guarantees that there is
no efficient algorithm to compute a response r2, g(r1, r2, s) to the challenge
r1 even after having observed previous challenge-response pairs. Clearly, an
attacker’s ability to compute such a response violates recent aliveness and this
property is thus necessary for recent aliveness. Such an attack generalizes replay
attacks in that instead of merely replaying previously observed information, the
attacker combines previously obtained challenge-response pairs to compute the
response to a fresh challenge. Hence, we refer to attacks on challenge-response
authentication protocols exploiting the lack of the ARR property as algebraic
replay attacks.

8

It is obvious that for a function g(r1, r2, s) to have the ARR property, it must
preserve the secrecy of s. Indeed, cryptographic hash functions are frequently
used for the type of challenge-response mechanism considered here. Since the
collision resistance property of cryptographic hash functions does not seem nec-
essary for the challenge-response mechanism, the question arises whether all
one-way functions satisfy the ARR property and the answer is negative. It is
certainly false for all homomorphic one-way functions. Consider, for instance,
the Rabin function, defined by x → x2 mod N for certain composite integers
N . If (r1, r2, s) → g(r1, r2, s) = (r1r2s)

2 mod N is a Rabin function, then given
only one challenge-response pair, r1, g(r1, r2, s) it is easy to compute responses
for any challenge r′1, since g(r′1, r2, s) = g(r1, r2, s) · (r

′

1/r1)
2.

Furthermore, even non-homomorphic one-way functions will in general not
have the ARR property if their argument has algebraic properties. As demon-
strated in the examples below, there are several protocols that fail to achieve
recent aliveness for this very reason. In these protocols the challenge-response
construction can typically be represented as g(r1, r2, s) = f(r1 ◦ r2, s), where f
is a (non-homomorphic) cryptographic hash function and ◦ denotes an operator
with the following algebraic property. Given a, b, and c, it is easy to find d
with a ◦ b = c ◦ d. This construction clearly does not have the ARR property,
regardless of the properties of f . The algebraic replay attack on such a protocol
works as follows. An adversary observing one execution of the protocol learns
r1, r2, and f(r1 ◦ r2, s). When challenged with r′1, the adversary finds r′2 such
that r1 ◦ r2 = r′1 ◦ r′2 and replies with r′2, f(r1 ◦ r2, s). The attack succeeds
because f(r1 ◦ r2, s) = f(r′1 ◦ r′2, s).

Examples of operators ◦ for which this type of attack succeeds are xor,
modular addition, and any associative operator for which it is easy to compute
left inverses.

Examples

The protocols by Chien and Huang [CH07], Kim et al. [KCLL06], Lee et al. [LAK06],
and Song and Mitchell [SM08], shown in sections 1, 5, 7, 14, respectively, are
vulnerable to this type of attack. This is due to the fact that they employ a
hash-like function or a cryptographic hash function composed with xor which
fits into the challenge-response construction with the function f(r1◦r2, s) shown
above.

Attacks which we classify as algebraic replay attacks have also been described
by Peris-Lopez et al. [PLHCETR07, §4.2] and Bringer et al. [BCI08]:

1. Chien and Chen [CC07] implement the challenge-response mechanism by
composing the cyclic redundancy check (CRC) function with xor. To
a challenge r1, the tag responds with r2, CRC(EPC, r1, r2) ⊕ k, where
EPC is a constant representing the identity of the tag. The attack on this
protocol has been first reported by Peris-Lopez et al. [PLHCETR07, §4.2].
It uses the fact that CRC is a homomorphism, i.e. CRC(a) ⊕ CRC(b) =
CRC(a ⊕ b).

9

To attack the protocol, the adversary observes one protocol execution.
When challenged with r′1 the adversary computes the xor of the observed
response CRC(EPC, r1, r2) ⊕ k with

CRC(0EPC , r1,0r2
) ⊕ CRC(0EPC , r′1,0r2

).

The terms 0EPC and 0r2
are 0-bit strings of length equal to the length

of EPC and r2, respectively. Because CRC is a homomorphism, the
computation will result in a correct response CRC(EPC, r′1, r2) to the
challenge r′1.

2. The protocol proposed by Lee et al. [LBV08], described in detail in Sec-
tion 9, is vulnerable to an algebraic replay attack in which the adversary
needs to observe three protocol executions or perform a quality-time attack
consisting of three queries. The algebraic replay attack can then be exe-
cuted by solving a small system of equations yielding a constant particular
to the tag. While this constant does not reveal the tag’s secret informa-
tion, it can still be used to compute the correct response to a reader’s
challenge. This attack has been first described by Bringer et al. [BCI08].

Attribute Acquisition Attacks

A simple, necessary condition for tag untraceability is that an adversary, which
has observed a particular tag once, must not be able to recognize the tag as being
the same tag in the future. To make this more precise, we call a term, which
the adversary can derive from one or more runs of a tag and which identifies the
tag to the adversary, a unique attribute of the tag. The necessary condition for
a tag to be untraceable then is that the adversary must not be able to derive a
unique attribute for the tag. Should the adversary be able to compute a unique
attribute, then we refer to the adversary’s steps to arrive at such a term as the
attribute acquisition attack.

A simple unique attribute can be found in protocols where the tag’s answer
to a challenge c is merely a function f(c, k) of the challenge and a secret (or
collection of secrets) k and does not involve any nonce created by the tag. In
this case, c is under the adversary’s control, k is unique to the tag, and the
adversary learns f(c, k) after one round of communication with the tag. Thus
for constant c chosen by the adversary, f(c, k) is a unique attribute of the tag
whose secret is k.

To prevent long-term traceability in protocols that employ the challenge-
response mechanism described, the tag typically updates its secret k at the
end of a run. The secret k must therefore also be updated by the reader and
in order to avoid desynchronization attacks, the tag needs to authenticate the
communicating reader before updating k. Yet, a tag following such a protocol
can still be traced by an adversary between two updates by querying the tag and
then aborting the protocol. Furthermore, if the update of the secret k at the
end of the protocol involves operators with algebraic properties, it is frequently
possible for the adversary to compute a unique attribute for the tag which will

10

be valid after the update. References to such protocols are given in the examples
section below.

To find unique attributes in general, consider a given RFID protocol in a
formal trace model such as the one proposed by Cremers and Mauw [CM05],
extended by Van Deursen et al. [DMRV09], or the strand spaces model of Thayer
Fàbrega et al. [THG98]. Then the unique attribute for the tag role can be
obtained, if it exists, by computing the intersection of the adversary’s knowledge
with the set of terms which can be constructed from constants that are unique
to the tag and terms that are under the adversary’s control. Such a term can
be found effectively, provided that the intersection is non-empty.

To find a term in the intersection for the special class of challenge-response
protocols in which the tag includes a fresh nonce r in its reply f(c, k, r) to a
challenge c, the adversary needs to find challenges c1, . . . , cl and an efficiently
computable function g(x1, . . . , xl), such that

g(f(c1, k, r1), . . . , f(cl, k, rl)) = g̃(c1, . . . , cl, k)

does not depend on the tag’s nonces r1, . . . , rl. In this case g̃(c1, . . . , cl, k) is
the unique attribute. The attribute acquisition problem displayed in this form
is more amenable to solutions by algebraic methods, as the following examples
show.

Examples

1. A simple attribute acquisition attack exists on the protocol proposed by
Kim et al. [KCL07], shown in Section 4. In this protocol, the tag’s response
can be represented by f(c, k, r) = k1 ⊕ r, h(c, k2) ⊕ r, where k = k1, k2 is
the tag’s secret, c the reader’s challenge and r the tag’s nonce. To find a
unique attribute, the attacker challenges the tag with a constant c1 and
computes the unique attribute by taking the xor of the two terms in the
response: k1 ⊕ r ⊕ h(c1, k2) ⊕ r = k1 ⊕ h(c1, k2) = g̃(c1, k).

2. The protocols by Li and Ding [LD07], Osaka et al. [OTYT06], and Yang
et al. [YPL+05], shown in Sections 10, 11, 15, respectively, are stateful pro-
tocols that update the shared secrets between reader and tag at the end of
a successful protocol execution. The updates take the old secret and a fresh
value exchanged in the protocol execution, and apply an operator with al-
gebraic properties to obtain the new secret. By observing the messages
exchanged in a protocol execution, the attacker can fabricate a challenge
to which the tag will respond with the same term: the unique attribute.
In other words, the attacker uses his knowledge to “undo” the update of
the tag. In the simplest of these, the protocol by Osaka et al. [OTYT06],
the reader’s challenge is c, the tag’s response is f(c, k) = h(k ⊕ c), where
k is the tag’s secret. The tag updates its secret by computing the xor of
it with a third message r it receives from the reader. Disregarding other
flaws this protocol suffers from, the attribute acquisition attack consists
in challenging the tag the first time with a constant c1. After an update

11

with message r the tag is challenged with c1 ⊕ r. After the next update
with message r′, the tag is challenged with c1 ⊕ r ⊕ r′ and so forth. The
tag’s response to these challenges is each time h(k ⊕ c1).

3. A more challenging example is the authentication protocol proposed by
Lee et al. [LBV08] and shown in Section 9. The protocol is based on a
fixed, system-wide elliptic curve over a finite field. The points P , Y = yP ,
x1P , x2P on the elliptic curve are publicly known, the scalar y is only
known to the reader, and the scalars x1, x2 are unique to each tag and
only known to the tag. The elliptic curve is assumed to have been chosen
such that the computational Diffie-Hellman problem is hard, that is, given
only the points xP , yP , and P on the elliptic curve, it is hard to compute
xyP .

In the protocol, the reader challenges the tag with a random number r2 6= 0
to which the tag responds with two points T1 = r1P , T2 = (r1 + x1)Y on
the elliptic curve and a scalar v = r1x1 + r2x2. Using this information,
the reader can infer the tag’s identity.

Thus, this protocol, too, is a challenge-response protocol with challenge r2

and a response that can be written as f(r2, k, r1) = r1P, (r1+x1)yP, r1x1+
r2x2, where k = x1, x2. The points P and yP are constant. To find a
unique attribute, the adversary needs to find challenge terms c1, . . . , cl and

functions g, g̃ such that g(f(c1, k, r1), . . . , f(cl, k, r
(l)
1)) = g̃(c1, . . . , cl, k),

where g̃ does not depend on the tag’s random numbers r1, . . . , r
(l)
1 .

If we write f(c, k, r1) = T1, T2, v as in the protocol specification, and recall
that primes indicate terms transmitted in the second run, then

g(f(c, k, r1), f(c, k, r′1)) =
T1 − T ′

1

v − v′
= x−1

1 P

depends only on the first part of the secret k = x1, x2. Thus g̃(k) = x−1
1 P

is a unique attribute.

From the definition of the function g, it is now easy to obtain the attribute
acquisition attack. By carrying out a quality-time attack, the adversary
challenges the tag twice with the same value c. The information received
from the tag in the two runs can be used to compute the term x−1

1 P as
follows. Observe that v− v′ = (r1 − r′1)x1 and T1 −T ′

1 = (r1 − r′1)P , thus,
multiplying T1 − T ′

1 with the inverse of v − v′ modulo the order of the
elliptic curve, the attacker obtains x−1

1 P .

Note that after executing this quality-time attack, it suffices for the adver-
sary to challenge any given tag only once with the previously used value
c to determine whether the presented tag is equal to the tag identified by
x−1

1 P .

A similar attack on untraceability of the protocol was independently found
by Bringer et al. [BCI08]. The authors observe that for any two protocol
executions, the following equations hold:

12

r2v
′ − r′2v = (r2r

′

1 − r′2r1)x1

r2T
′

1 − r′2T1 = (r2r
′

1 − r′2r1)P

The attacker may then combine these two equations to obtain x−1
1 P and

proceed as described above.

Cryptanalytic Attacks

The authentication and untraceability properties of RFID protocols often rely
on the secrecy of shared keys. In some cases, revealing parts of a secret key may
already be enough to trace the tag. If sufficiently many bits of a key can be
revealed, brute-forcing the remaining bits may become feasible. Formal methods
approaches typically do not consider attacks in which an adversary may learn
just a few bits of a key, since keys are modeled as atomic terms.

If we assume that operators with algebraic properties are applied to terms
sent back and forth between a reader and a tag, then a natural point of attack
is to set up equations involving the terms on whose secrecy a protocol depends.
Such equations may be obtained by observing several protocol runs, but also
by selectively modifying parts of messages. In other words, one may attempt
to apply any cryptanalytic method known to mankind. While this is hardly an
original strategy, it turns out to be quite successful in the domain of RFID pro-
tocols. One reason for this is the popularity of simple operators with algebraic
properties. The other reason is due to the simple structure of typical RFID pro-
tocols. The reader challenges the tag with a nonce r to which the tag responds
with a message involving that nonce and a secret k. This leads to a function
r 7→ f(k, r) which can be compared to a cipher m 7→ C(k, m) or keyed hash
function x 7→ h(k, x). The tag’s response can further be analyzed by forwarding
a modified version of it to the reader and checking the reader’s response. For
RFID protocols with three or more messages, a tag-generated nonce, may fre-
quently be considered as a known plaintext. Finally, stateful RFID protocols,
i.e. RFID protocols in which the tag upon successful completion of the protocol
updates its secret ID or cryptographic key, can be analyzed by taking advantage
of algebraic relations between previous and future ID’s or keys.

Examples

The protocol [KN05], shown in Section 6, is vulnerable to cryptanalytic attacks.
There are also several examples of cryptanalytic attacks in the literature:

• In the HB+ protocol of Juels and Weis [JW05], tags use the binary inner
product and xoroperator to hide their secret keys while proving knowledge
of it. The attack by Gilbert et al. [GRS05] breaks secrecy of a tag’s key
by first modifying the messages exchanged between reader and tag, then
observing the reader’s behavior, and finally using the observed information
to set up and solve a system of linear equations.

13

• Van Deursen et al. [DMR08] use information obtained through eavesdrop-
ping on executions of the Di Pietro and Molva protocol [DM07] to expose
two thirds of the bits of a tag’s secret key. In the protocol execution, bits
of the tag’s secret key are combined with random nonces using xor and
logical and and or operators and then sent from the tag to the reader.
The attack is carried out by solving a system of linear equations derived
from the observed messages which yields two thirds of the secret key’s
bits. This is enough to break untraceability. It furthermore permits a
brute force attack on the remaining bits in order to break authentication.
A simpler, but less efficient attack is shown in Section 2.

• In the protocols of Peris-Lopez et al. [PLCETR06c, PLCETR06a, PLCETR06b],
logical and and or operators are used in addition to xor and modular arith-
metic leading to information leaks exploited by Alomair et al. [ALP07] and
Li and Wang [LW07].

• Vajda and Buttyán have proposed several lightweight authentication pro-
tocols in [VB03]. Their first protocol uses xor and bit permutations to up-
date keys shared between reader and tag. The attack of Alomair et al. [ALP07]
correlates keys across updates thereby breaking authentication. Vajda and
Buttyán’s second protocol is vulnerable to an active attack in which the
adversary recovers the shared secret by querying the tag with a challenge
of his choice and analyzing the response.

14

1 [CH07]

1.1 Description

The reader R and tag T share secrets k and ID. The reader starts by sending a
random bit string r1. The tag generates a random string r2 and hashes the xor
of r1, r2, and the secret k. This hash and ID are used as input for a function in
which the ID is rotated by a value depending on the hash. The tag computes
the xor of the rotated ID and the hash, before sending the left half of the
resulting bits and r2 to the reader. The reader performs the same operations
on every pair of ID and k until it finds the corresponding tag. It then sends
the right half of the corresponding bits to the tag.

k, ID

R

k, ID

T

nonce r1
Query,r1

nonce r2

g̃ := h(r1 ⊕ r2 ⊕ k)

ID2 := rotate(ID, g̃)

r2,Left(ID2 ⊕ g̃)

find ID

g̃ := h(r1 ⊕ r2 ⊕ k)

ID2 := rotate(ID, g̃)

Right(ID2 ⊕ g̃)

auth(T) auth(R)

untrac

Figure 2: The protocol

1.2 Claimed Attacks

1.2.1 Tag authentication

To impersonate a tag, it suffices to notice that the tag’s response to the reader’s
challenge only depends on r1 ⊕ r2 and a shared secret. The adversary can

15

challenge a tag with any r1 to obtain a valid combination of r1, r2,Left(ID2⊕g̃).
This information suffices for the adversary to be able to respond to any future
challenge r′1 received from a reader. When challenged, the adversary sets r′2 =
r′1 ⊕ r1 ⊕ r2 and sends r′2,Left(ID2 ⊕ g̃).

1.3 Related Protocols

We have found the same attack on the protocols [LAK06, KCLL06, SM08].

k, ID

R E

k, ID

T

nonce r1
Query,r1

nonce r2

g̃ := h(r1 ⊕ r2 ⊕ k)

ID2 := rotate(ID, g̃)

r2,Left(ID2 ⊕ g̃)

nonce r′1
Query,r′1

r′2 := r1 ⊕ r′1 ⊕ r2

r′2,Left(ID2 ⊕ g̃)

find ID

g̃ := h(r′1 ⊕ r′2 ⊕ k)

ID2 := rotate(ID, g̃)

Right(ID2 ⊕ g̃)

auth(T)

Figure 3: Attack on tag authentication

16

2 [DM07]

2.1 Description

This is an authentication protocol which not only aims to keep tags untraceable,
but also to limit the damage a compromised reader can cause.

In the protocol, depicted in Figure 4, the function DPM(x) is defined as
the parity of majority functions of consecutive bit-triplets of x. The size of its
output is therefore one bit. The protocol begins with the reader sending its name
and a nonce r0 to the tag. The tag replies with the message α1, . . . , αq, V, ω,
where αi = k ⊕ ri for randomly chosen ri (a bit-string of length ℓ, ℓ = 117
suggested by authors), the i-th bit of V (a bit string of length q) is DPM(ri), and
ω = h(k, r0, r1, k). The reader has a database of all tags’ keys it is authorized
to identify. The reader can find a particular tag’s key k with the help of the
vectors αi and values DPM (ri) by going through all the keys in its database
and iteratively excluding the impossible ones, namely those for which DPM(k⊕
αi) 6= DPM (ri). It is expected that each αi reduces the number of possible keys
by approximately one half. At last, the reader uses ω to uniquely identify the
correct key and authenticate the tag. The last message of the protocol allows
the tag to authenticate the reader.

k

R

k

T

nonce r0

R, r0

nonce r1, . . . , rq

αi := k ⊕ ri

V := DPM(r1), . . . , DPM(rq)

ω := h(k, r0, r1, k)

α1, . . . , αq, V, ω

find k
h(k, r1, k)

auth(T) auth(R)

untrac

Figure 4: The protocol

17

2.2 Claimed Attacks

2.2.1 Authentication and Untraceability

In the following we show that over several rund, the protocol leaks 2ℓ
3 bits of k.

This allows an attacker to brute-force the remaining bits of k for the suggested
parameter ℓ = 117.

Let x = x1x2 · · ·xℓ be a bit string of length ℓ, for some positive integer ℓ
divisible by three. Then DPM(x) = M(x1, x2, x3) ⊕ · · · ⊕ M(xℓ−2, xℓ−1, xℓ),
where M(a, b, c) is the majority function on three bits. Let x̄i denote the com-
plement of the bit xi. It is easy to see that M(x̄1, x2, x3) = M(x1, x2, x3) if and
only if x2 = x3. Analogous equations hold for the complements of x2 and x3.
It follows that

DPM(x̄1, x2, x3, . . .) = DPM(x1, x2, x3, . . .) ⇔ x2 = x3, (1)

again with analogous equations for any other bit of x.
The adversary can take advantage of the property (1) as follows. Suppose

the adversary intercepts the tag’s message, flips the first bit of α2 = r2 ⊕ k to
obtain α̃2 and forwards the modified message to the reader. If the second and
third bit of r2 are equal, then DPM(k ⊕ α̃2) = DPM(k ⊕ α2) = DPM(r2). In
this case, the reader will still be able to find the correct key k and answer the
tag with the third message of the protocol. However, if the second and third bit
of r2 are not equal, then DPM(k⊕ α̃2) 6= DPM(r2) and the reader will remove
the key k from the list of possible keys. No other key will pass the verification
with ω, thus the reader will not answer with the third message. The adversary
can therefore distinguish the two cases.

It follows that by selectively flipping bits of α2 an adversary may, after several
protocol executions, determine for each consecutive bit triplet of k which bits
are equal to each other. In other words, the adversary may determine the bits
of k up to complements of consecutive bit-triplets.

This information can be used to reduce the complexity of computing all bits
of k to a brute force search of a space whose size is the cubic root of the full
key space. For the parameters of the system suggested by Di Pietro and Molva,
this brute force search becomes feasible (239 keys). The knowledge of the secret
key k then allows the attacker to also impersonate the tag to the reader, thus
breaking the authentication claim of the protocol. By sufficiently increasing the
key length, however, this attack becomes infeasible.

To break untraceability, the brute force search is not necessary. The prob-
ability that two keys are equal up to complements of consecutive bit-triplets
is vanishingly small [DMR08]. Increasing the key length does not prevent this
attack.

The attack outlined above is not efficient. In [DMR08] we describe an ef-
ficient quality-time attack on this protocol which reveals the same information
about k as the attack described above.

18

2.3 Related Protocols

The presented attack is similar to the active attack on the HB+ protocol [JW05]
discovered by [GRS05] in that it exploits an algebraic property by modifying
messages and observing the reader’s behavior.

19

3 [HMNB07a]

3.1 Description

The protocol starts with the reader querying the tag with a nonce r1. The
response of the tag depends on the value of a state variable S. In case the
previous run ended successfully the value of S is 0 and the tag will respond
with h(ID). In case it did not end successfully the value of S is 1 and the tag
will respond with h(ID, r2, r1). In either case, the tag will set its S to 1. The
reader will authenticate the tag if the response is equal to HID, h(ID, r2, r1)
or h(PID, r2, r1) for any stored value of HID, ID or PID. The reader will
then update the information for the particular tag according to Table 2. The
reader then sends h(PID, r2) to the tag, after which the tag replaces its ID by
h(PID, r1) and sets S to 0. The protocol is depicted in Figure 5.

Table 2: Reader’s verification and update procedure

Tag response Reader action
h(ID), r2 ID′ := h(ID, r1); HID′ := h(ID); PID′ := ID;
h(ID, r2, r1), r2 ID′ := h(ID, r1); HID′ := h(ID); PID′ := ID;
h(PID, r2, r1), r2 ID′ := h(PID, r1); HID′ := h(ID); PID′ := PID;
other reject tag

3.2 Claimed Attacks

3.2.1 Tag authentication

Note that if no messages are blocked or lost, the tag always responds with
h(ID) allowing for an efficient lookup by the reader. An attacker can thus
impersonate any tag which is in state 0 by sending a query to it and replaying
the tag’s response before the tag has been queried by an authorized reader. The
attack is depicted in Figure 6.

3.2.2 Untraceability

The tag’s response depends on the value of S, i.e. the state the tag is in. If
S = 0 the tag responds with h(ID), r2 and otherwise the tag responds with
h(ID, r1, r2). Because the attacker does not know ID, he can not conclude
from the response in which state the tag is. However, the attacker may use the
fact that if the tag is in state 0, changing r2 does not result in a rejection of
the response by the reader. If the tag is in state 1, changing r2 would lead to a
rejection of the response and a termination of the execution of the reader.

20

3.2.3 Desynchronization resistance

Any tag that is in state S = 0 can be desynchronized from a reader by a
man-in-the-middle attack. In a communication between the reader and a tag,
the adversary intercepts and modifies the reader’s challenge r1 to any value
r′1 6= r1. The adversary then sends the modified value to the tag and forwards
all other messages between reader and tag without modification. Since in the
case S = 0 the reader does not verify that the tag received the correct value
r1, the adversary’s modification goes by unnoticed. Thus, at the end of the
protocol execution, reader and tag update ID to different values. The reader
stores h(ID, r1), while the tag stores h(ID, r′1). Therefore, the reader and tag
will be in a desynchronized state and future authentication of the tag becomes
impossible. The attack is depicted in Figure 7.

ID,PID,HID

R

ID,S

T

nonce r1
r1

nonce r2

if S = 0 then P := h(ID)
else P := h(ID, r2, r1)

S′ := 1

P, r2

verify P, r2

update ID,PID,HID

h(PID′, r2)

if h(PID′, r2) = h(ID, r2)
then

ID′ := h(ID, r1), S′ := 0

auth(T) auth(R)

untrac

desynchronization resistance

Figure 5: The protocol

21

3.3 Related Protocols

The protocols in [LY07c, LY07a, LY07b, HM04] are challenge-response-based
protocols with a similar authentication flaw.

A similar untraceability flaw in [HM04] was found by [Avo05]. There a
quality time attack is used to increase a tag’s internal counter to an abnormal
level in order to recognize the tag later.

ID,PID,HID

R E

ID,S = 0

T

nonce r′1 r′1

nonce r2

P := h(ID)

P, r2

nonce r1
r1

P, r2

verify P, r2

update

ID,PID,HID

h(PID′, r2)

auth(T)

Figure 6: Attack on tag authentication

22

ID,PID,HID

R E

ID,S = 0

T

nonce r1
r1

nonce r′1
r′1

nonce r2

P := h(ID)

P, r2

P, r2

verify P, r2

update

ID,PID,HID

h(PID′, r2)

h(PID′, r2)

ID′ := h(ID, r1) ID′ := h(ID, r′1)

desynchronization resistance

Figure 7: Attack on desynchronization resistance

23

4 [KCL07]

4.1 Description

The protocol is depicted in Figure 8.

k, ID

R

k, ID

T

nonce r1

r1

nonce r2

ID ⊕ r2, h(r1, k) ⊕ r2

auth(T)

untrac

Figure 8: The KCL07 protocol

4.2 Claimed Attacks

4.2.1 Untraceability

E

k, ID

T

nonce r1

r1

nonce r2

ID ⊕ r2, h(r1, k) ⊕ r2

r1

nonce r′2

ID ⊕ r′2, h(r1, k) ⊕ r′2

untrac

Figure 9: The attack on untraceability

To attack untraceability, the adversary challenges the tag twice with the

24

same nonce. He can then calculate the xor of the two parts ID ⊕ r2 and
h(r1, k)⊕ r2 of the responses, the adversary then twice obtains ID⊕ h(r1, k), if
and only if it was twice the same tag that he challenged. The attack is depicted
in Figure 9.

25

5 [KCLL06]

5.1 Description

The protocol is depicted in Figure 10. In the original specification, the protocol
control bits (PC) and a CRC are transmitted in the fourth message. These are
irrelevant to any of the considered security properties and are therefore left out.

After being powered up, the tag generates a nonce r1 and sends the xor of
the nonce and its PIN1 to the reader. The reader acknowledges the message
and generates a nonce r2. Both the acknowledgement and the nonce are sent
to the tag. The tag calculates the next message as is displayed in Figure 10.
The reader applies a one-way function f to the xor of the two nonces and the
PIN2. The result is xored with the PIN and sent to the tag.

EPC,S, PIN1, P IN2

R

EPC,S, PIN1, P IN2

T
Query request

nonce r1

r1 ⊕ PIN1

nonce r2

ACK (M1), r2

M2 = r2 ⊕ PIN2 ⊕ r1

M3 = f(M2)
T := 0‖r1‖M2‖M3
(minus last bit)
E := (T + S) ⊕ EPC

E

PIN ⊕ f(r2 ⊕ PIN2 ⊕ r1)

auth(R)auth(T)

untrac

Figure 10: The protocol

5.2 Claimed Attacks

5.2.1 Reader authentication

The adversary can impersonate a legitimate reader by sending a nonce r′2 that
allows him to replay a message he previously observed as a last message. In

26

order to be able to replay PIN ⊕ f(r2 ⊕ PIN2 ⊕ r1) in another session, the
following condition must be satisfied: r1 ⊕ r2 = r′1 ⊕ r′2. This can be done by
setting r′2 to r1 ⊕ r2 ⊕ r′1. The attack is depicted in Figure 11.

5.3 Related Protocols

We have found a similar attack on the protocols [CH07, LAK06, SM08].

E

EPC,S, PIN1, P IN2

T

obtain PIN⊕
f(r2 ⊕ PIN2 ⊕ r1)

Query request

nonce r1

r′1 ⊕ PIN1

ACK (M1), (r1 ⊕ PIN1) ⊕ (r′1 ⊕ PIN1) ⊕ r2

M2 = PIN2 ⊕ r′1 ⊕ r2

M3 = f(M2)
T := 0‖r′1‖M2‖M3
(minus last bit)
E := (T + S) ⊕ EPC

PC,E, CRC16

PIN ⊕ f(r2 ⊕ PIN2 ⊕ r1)

auth(R)

Figure 11: Attack on reader authentication

27

6 [KN05]

6.1 Description

In this protocol, the tag generates a random value r0 from a small domain and
a random value r1 of length n. The tag sends the two hashes h(ID, r0), h(r1, k)
and ID ⊕ r1 to the reader. Using h(ID, r0), the reader finds ID by trying out
all combinations of values for ID stored in its database and of all possible values
for r0. This is possible for the reader because r0 is chosen from a small domain
and the number of IDs stored in its database is very small compared to the
number of possible IDs. Using ID the reader retrieves k from its database, and
using ID ⊕ r1 and ID, the reader finds r1 and may then verify the correctness
of the value of h(r1, k). The reader then generates a random value r2 of length
n and sends ID ⊕ r2 and h(r1, r2) to the tag. The tag verifies these and sends
r1 + r2 mod 2n back to the reader. Both tag and reader update the ID by
xor -ing it with r1 ⊕ r2.

The protocol is depicted in Figure 12. Note that r0 is chosen from a small
domain, and can therefore be brute-forced from h(ID, r0) if ID is known.

k, ID

R

k, ID

T
Query

nonce r0

nonce r1

h(ID, r0), h(r1, k), ID ⊕ r1

nonce r2

h(r1, r2), ID ⊕ r2

r1 + r2 mod 2n

k′ := r1 + r2 mod 2nk′ := r1 + r2 mod 2n

ID′ := ID ⊕ r1 ⊕ r2ID′ := ID ⊕ r1 ⊕ r2

auth(R)auth(T)

untrac

desynchronization resistant

Figure 12: The protocol

28

6.2 Claimed Attacks

6.2.1 Tag authentication

An eavesdropping adversary is able to find bits of the ID by combining h(ID, r0),
ID⊕ r1, ID⊕ r2, and r1 + r2 mod 2n observed in the last three messages of the
protocol.

Since hash functions are assumed to be perfect, we consider the terms ID⊕
r1, ID⊕ r2, and r1 + r2 mod 2n, setting up a system of equations involving the
variables ID, r1, r2, and the values observed during runs of the protocol. A
moment’s thought shows that we may combine the first two equations to obtain
r1 ⊕ r2.

For convenience, we set V = r1+r2 mod 2n and W = r1⊕r2. Let V [i] be the
i-th bit of V , and similarly for W , r1, and r2. Furthermore, let V [1] be the least
significant bit of V . By comparing addition modulo 2n with xor it is easy to see
that V [i+1] 6= W [i+1] only if there is a carry bit in the computation of V [i]. If
this is the case, then r1[i] 6= r2[i] ⇔ W [i] = 1 and r1[i] = r2[i] = 1 ⇔ W [i] = 0.

Since the latter case determines r1[i] and r2[i] uniquely, it follows that it
can be used to find the i-th bit of ID. More bits from ID can be obtained
by noticing that a carry bit in V [i] followed by no carry bit in V [i + 1] implies
r1[i + 1] = r2[i + 1] = 0.

Since r1 and r2 are chosen at random, on average, every communication
session leaks roughly n−1

4 bits of ID. Revealing all bits of ID, once sufficiently
many bits are known, can be achieved with a brute-force search over possible
values for ID and r0 and comparing their hash to h(ID, r0). Revealing all bits
of ID is made a little more complicated by the fact that reader and tag update
ID at the end of every protocol execution by setting it to ID ⊕ r1 ⊕ r2. The
adversary may therefore need to keep track of two or three consecutive protocol
executions between the tag and reader before performing the exhaustive search
in order to completely reveal the tag’s ID. Knowing the ID, the adversary can
impersonate both tag and reader and furthermore trace the tag.

6.2.2 Reader authentication

Revealing the tag’s ID as in Section 6.2.1 breaks reader authentication as well.

6.2.3 Untraceability

Revealing the tag’s ID as in Section 6.2.1 breaks untraceability as well.

6.2.4 Desynchronization resistance

Revealing the tag’s ID as in Section 6.2.1 breaks desynchronization resistance
as well since the adversary can falsely authenticate to either the reader or the
tag. The result is that reader and tag are desynchronized.

29

6.3 Related protocols

Many similar flaws have been documented in the literature. [CLL05] uses a
counter in conjunction with xor. In [HMNB07b] the predictability of the counter
and its interaction with xor are used to break the protocol. In [PLCETR06c,
PLCETR06a, PLCETR06b] logical and and or operators are used in addition to
xor and modular arithmetic leading to flaws described in [ALP07, LW07]. The
cyclic redundancy check function is used with xor in [CC07] making the proposed
protocol vulnerable to impersonation of tags and readers, and traceability of tags
discovered in [PLHCETR07]. Finally, [DFJ07] breaks authentication in [VB03]
where xor is used with bit-permutations.

30

7 [LAK06]

7.1 Description

The reader and tag share a secret k which is used for mutual authentication. To
prevent desynchronization due to message loss, the old values of k is stored in
k′. The reader initiates the protocol by challenging the tag with a nonce r0. The
tag generates a nonce r1 and computes the response as in Figure 13. The reader
uses the response to find the corresponding k in its database. The reader xors
the response with the reader nonce and the key and sends the cryptographic
hash of the result to the tag.

k, k0

R

k

T

nonce r0

r0

nonce r1

r1, h(r0 ⊕ r1 ⊕ k)

h(h(r0 ⊕ r1 ⊕ k) ⊕ k ⊕ r0)

k′

0 := k
k′ :=
h(k)

k′ := h(k)

auth(T) auth(R)

untrac

desynchronization resistant

Figure 13: The protocol

7.2 Claimed Attacks

7.2.1 Tag Authentication

The adversary challenges the tag with a random value r0, obtaining a response
r1, h(r0 ⊕ r1 ⊕ k). When queried by a trusted reader with challenge r′0, the
adversary uses the response generated by the tag.

The attack is depicted in Figure 14. The adversary may replay h(r0⊕r1⊕k)
if he ensures that r0 ⊕ r1 = r′0 ⊕ r′1. To satisfy this condition the adversary sets
r′1 to r0 ⊕ r1 ⊕ r′1.

31

7.3 Related Protocols

We have found a similar attack on the protocols [CH07, KCLL06, SM08].

k, k0

R E

k

T

nonce r0

r0

nonce r1

r1, h(r0 ⊕ r1 ⊕ k)

nonce r′0

r′0

r′1 := r0 ⊕ r′0 ⊕ r1

r′1, h(r0 ⊕ r1 ⊕ k)

h(h(r0 ⊕ r1 ⊕ k) ⊕ k ⊕ r′0)

k′

0 := k
k′ :=
h(k)

auth(T)

Figure 14: Attack on tag authentication

32

8 [LBV07]

8.1 Description

The protocol, shown in Figure 15 aims to efficiently authenticate a tag to a
reader while keeping the tag untraceable. The protocol is based on a fixed,
system-wide elliptic curve over a finite field. P , yP , x1P , x2P are publicly
known points on the elliptic curve, the scalar y is only known to the reader, and
the scalars x1, x2 are unique to each tag and only known to the tag. The elliptic
curve is assumed to have been chosen such that it is difficult to compute, x1, x2, y
from x1P, x2P, yP . The reader challenges the tag with a random number r1,
the tag responds with two points T1 = r2P , T2 = (r2 + x1)Y on the elliptic
curve and a scalar v = r1(x2 + r2) + x1. The reader infers the tag’s identity
and authenticates it from the points and the scalar as follows. Since the reader
knows y it can compute y−1T2 −T1 = x1P to obtain the identity of the tag and
then compute (vP − x1P)r−1

1 − T1 = x2P to authenticate the tag.

y, P, x1P, x2P

R

x1, x2, P, Y = yP

T

nonce r1

r1

nonce r2

T1 := r2P

T2 := (r2 + x1)Y

v := r1(x2 + r2) + x1

T1, T2, v

find x1P = y−1T2 − T1

(vP − x1P)r−1
1 − T1 = x2P

auth(T) untrac

Figure 15: The protocol.

8.2 Claimed Attacks

8.2.1 Untraceability

• If the tag is challenged with r1 = 0 the tag always responds with v = x1.

33

• If the tag is challenged with r1 = 1, the information obtained from the
tag’s response, T1 = r2P , T2 = (x1 +1)yP , v = (x2 +r2)+x1, can be used
to compute a constant, unique value for the tag vP − T1 = (x1 + x2)P .

• If a tag is challenged twice, once with a random value r1 and once with
r′1 = r1 + 1, then the information received from the tag in the two runs
can be used to compute the constant term −x2P as follows. Recall that
primes indicate terms transmitted in the second run. Observe that

v − v′ = r1(x2 + r2) − (r1 + 1)(x2 + r′2) = −x2 − r′2 + r1(r2 − r′2),

thus we can compute

−x2P = (v − v′)P + T ′

1 − r1(T1 − T ′

1)

since the terms on the right-hand side are known.

8.3 Related Protocols

[LBV08] is an improvement over [LBV07] but only addresses the first two flaws
listed in section 8.2.1 but not the third one.

34

9 [LBV08]

9.1 Description

The protocol, shown in Figure 16 aims to efficiently authenticate a tag to a
reader while keeping the tag untraceable. The protocol is based on a fixed,
system-wide elliptic curve over a finite field. P , Y = yP , x1P , x2P are publicly
known points on the elliptic curve, the scalar y is only known to the reader, the
scalars x1, x2 are unique to each tag and only known to the tag. The elliptic
curve is assumed to have been chosen such that it is difficult to compute, x1, x2, y
from x1P, x2P, yP .

y, P, x1P, x2P

R

x1, x2, P, Y = yP

T

nonce r2

r2

r2 6= 0

nonce r1

T1 := r1P

T2 := (r1 + x1)Y

v := r1x1 + r2x2

T1, T2, v

find x1P = y−1T2 − T1

(vP − x1T1)r
−1
2 = x2P

auth(T) untrac

Figure 16: The protocol

9.2 Claimed Attacks

9.2.1 Untraceability

An attacker carries out two sessions with the tag sending the same nonce r2 in
both sessions. The attacker then computes (using primes for the second session)
v − v′ = (r1 − r′1)x1 and T1 − T ′

1 = (r1 − r′1)P . Thus computing the inverse of
v − v′ modulo the order of the elliptic curve, the attacker obtains x−1

1 P which
identifies the tag uniquely.

35

9.3 Related Protocols

This is an improved version of [LBV07].

36

10 [LD07]

10.1 Description

The [LD07] protocol was designed for use in supply chains. Each supply chain
consists of a chain of partners, each of which is represented by a reader. Reader
Ri and tag T share a secret k0. Additionally, reader Ri knows secrets ki and
ki+1. At the end of a successful protocol execution, the tag updates the shared
secret.

k0, ki, ki+1

Ri

α = k0 ⊕ ki

T

nonce r

r

h(r ⊕ α)

a := ki ⊕ ki+1

b := h(a ⊕ k0 ⊕ ki)

a, b

if b = h(a ⊕ α), then α′ := α ⊕ a

auth(T) auth(R)

untrac

Figure 17: The protocol

10.2 Claimed Attacks

10.2.1 Untraceability

The protocol does not satisfy untraceability for the tag role, which is acknowl-
edge by the protocol’s authors and hence not claimed. This is because between
any two updates of α, an adversary that twice sends the same challenge r to
the same tag, will twice receive the same response. The authors do claim a
weak form of untraceability, namely untraceability after updates. This claim is
not satisfied either. The attack is shown in Figure 18 and runs as follows. By
observing the authentication session the adversary learns r, h(r ⊕ α), a, and b.
The adversary can now query the tag with r′ = r ⊕ a, to which the tag will
respond with h(r′ ⊕ α′). This response is equal to the previously observed one:

h(r′ ⊕ α′) = h(r ⊕ a ⊕ α ⊕ a) = h(r ⊕ α). (2)

37

10.3 Reader Authentication

Reader authentication can be broken by setting a = r and b = h(r ⊕ α). The
tag accepts a and b, because b = h(a ⊕ α) = h(r ⊕ α). The attack is shown
in Figure 19. This attack also results in desynchronization of the database and
the tag.

k0, ki, ki+1

Ri

α = k0 ⊕ ki

T E

nonce r

r

h(r ⊕ α)

a := ki ⊕ ki+1

b := h(a ⊕ k0 ⊕ ki)

a, b

α′ := α ⊕ a

r ⊕ a

h(r ⊕ α)

untrac

Figure 18: Attack on untraceability

E

α = k0 ⊕ ki

T

nonce r

r

h(r ⊕ α)

r, h(r ⊕ α)

α′ := α ⊕ r

auth(R)

Figure 19: Attack on reader authentication

38

10.4 Related Protocols

We have found similar attacks on untraceability in [YPL+05, OTYT06, KCL07].
The protocol [LCUL06] is vulnerable to a simpler form of this attack which has
been shown in [CH07].

39

11 [OTYT06]

11.1 Description

The protocol is depicted in Figure 20.

k

R

k

T

nonce r1

r1

h(k ⊕ r1)

nonce k1

k ⊕ k1

k′ := k1 k′ := k1

auth(R)auth(T)

untrac

desynchronization resistance

Figure 20: The protocol

11.2 Claimed Attacks

11.2.1 Reader authentication

Since the tag does not know the new key k1, the tag is not able to verify whether
the third message is indeed k⊕k1. Since no check can be performed by the tag,
the adversary may send a random message r to the tag which will cause the tag
to replace k by k ⊕ r.

11.2.2 Desynchronization resistance

• The attack on reader authentication desynchronizes the secret key k,
shared between the tag and the reader, rendering future authentication
impossible. Note that the attacker is the only one who can re-synchronize
the secret information between reader and tag since he is the only one who
knows k ⊕ r.

• Modifying the third message leads tag and reader to carry out different
key updates, leaving them in a desynchronized state.

40

• Blocking the last message from reader to tag leads the reader to update k
while the tag does not carry out the update, leaving tag and reader in a
desynchronized state.

11.2.3 Untraceability

An attacker observing a protocol run obtains a triple (r, h(k ⊕ r), k ⊕ k1). He
may now challenge a tag with r⊕k⊕k1 giving him the same response he already
observed, provided that the tag is the same as the one which was eavesdropped
on before. The attack is depicted in Figure 21.

k

R E

k

T

nonce r1

r1

r1

h(k ⊕ r1)

h(k ⊕ r1)

k ⊕ k1

k ⊕ k1

k′ := k1 k′ := k1

r1 ⊕ k ⊕ k1

h(k ⊕ r1)

untrac

Figure 21: Attack on untraceability

11.3 Related Protocols

We have found similar flaws in the protocols [YPL+05, KCL07].

41

12 [LY07a, LY07c, LY07b, HM04]

12.1 Description

The protocols have a challenge-response structure as depicted in Figure 22. The
reader challenges the tag, the tag computes a function over one or more terms
in its knowledge and sends the result to the reader. However, the challenge is
not used by the tag as an input to the function.

k

R

k

T
c

f(k)

. . .

auth(T)

Figure 22: General protocol structure.

12.2 Claimed Attacks

12.2.1 Tag authentication

Because the tag’s response does not depend on the reader’s challenge, an adver-
sary may query a tag and later replay the response to a reader when challenged.
Therefore, none of these protocols satisfy the recent aliveness claim with respect
to the tag role. The general structure of the attack is depicted in Figure 23.

k

R E

k

T
c

f(k)

c′

f(k)

. . .

auth(T)

Figure 23: Attack on tag authentication

12.3 Related Protocols

The protocols [SLK06, HMNB07a] suffer from the same problem.

42

13 [SLK06]

13.1 Description

The protocol assumes that the reader and tag share the secrets k, ID, and PIN .
While ID and PIN are unique to each tag, k is equal for all tags the reader is
allowed to authenticate. The tag further stores the timestamp TSlast of the last
successful mutual authentication initialized to 0 at the factory. The protocol is
depicted in Figure 24.

k, ID,PIN

R

k, ID,PIN, TSlast

T

timestamp TS

h(k, TS), TS

TS > TSlast

h(ID)

h(ID,PIN)

ID′ := h(ID,PIN, TS) ID′ := h(ID,PIN, TS)

TS′

last := TS

auth(T) untrac

auth(R)

desynchronization resistant

Figure 24: The protocol

13.2 Claimed Attacks

13.2.1 Tag authentication

To attack the protocol, it suffices to note that the challenge of the reader and
the response of the tag are not related. See Section 12 for the attack.

13.2.2 Desynchronization resistance

The attack described in section 13.2.1 leads to a situation in which the reader
updates ID, but the tag does not. The same result can be achieved by blocking
the last message from a reader to a tag. This essentially kills the tag since the
reader will not accept the tag’s h(ID) message in a future protocol run.

43

13.2.3 Untraceability

The fact that a reader and tag do not agree on the value ID, i.e. are desyn-
chronized, is observable, since in such a case the reader terminates the protocol
early. Thus the adversary can trace such tags. Furthermore, when a tag becomes
desynchronized, it will not be able to update ID and TSlast anymore, thus its
response to any valid challenge h(k, TS), TS with TS > TSlast will remain con-
stant allowing an adversary to distinguish between recently desynchronized tags
and earlier desynchronized tags.

13.3 Related Protocols

The same authentication problem exists in the protocols [LY07c, LY07a, LY07b,
HMNB07a].

In [Avo05] a quality-time attack on the untraceability claim of the stateful
protocol [HM04] is presented. The attack involves increasing a tag’s internal
counter to an abnormal level in order to recognize the tag later.

44

14 [SM08]

14.1 Description

The protocol is depicted in Figure 25. Bit rotations are denoted by ≫ and ≪
where a ≫ b means a shifted cyclically to the right by b bits. The function ft

that is used to compute M2 is a keyed hash function, where t is the key.
The reader and tag share a secret t which is used for mutual authentication.

The reader also stores the hash of t in u. To prevent desynchronization due to
message loss, the old values of t and u are stored in t′ and u′. The reader initiates
the protocol by generating a random value r1 of length ℓ and challenging the
tag with r1. The tag generates a nonce r2 and computes the response M1, M2

as in Figure 25. The reader uses M1 and M2 to find the tag in its database.
The reader computes M3 and sends it to the tag, after which both reader and
tag update their secrets.

u, t, u0, t0
R

t

T

nonce r1

r1

nonce r2

M1 := t ⊕ r2

M2 := ft(r1 ⊕
r2)

M1, M2

M3 := u ⊕ (r2 ≫ ℓ/2)

M3

u′

0 := u
t′0 := t
u′ := (u ≪ ℓ/4)⊕(t ≫
ℓ/4) ⊕ r1 ⊕ r2

t′ := h(u′)

u′ := M3 ⊕ (r2 ≫ ℓ/2)
if h(u′) = t then
t′ := h(u′ ≪ ℓ/4) ⊕
(t ≫ ℓ/4) ⊕ r1 ⊕ r2)

auth(T) auth(R)

untrac

desynchronization resistant

Figure 25: The protocol

45

14.2 Claimed Attacks

14.2.1 Tag authentication

The attack on tag authentication is depicted in Figure 26. The attacker uses
the fact that he may replay M2 for M ′

2 if he ensures that r1 ⊕ r2 = r′1 ⊕ r′2. To
satisfy this condition he sets M ′

1 to M1 ⊕ r1 ⊕ r′1.

u, t, u0, t0
R E

t

T

nonce r1

r1

nonce r2

M1 := t ⊕ r2

M2 := ft(r1 ⊕
r2)

M1,M2

nonce r′1

r′1

M ′

1 = M1 ⊕ r1 ⊕ r′1
M ′

2 = M2

M ′

1, M
′

2

M ′

3 := u ⊕ (r2 ⊕ r1 ⊕ r′1 ≫ ℓ/2)

M ′

3

u′

0 := u
t′0 := t
u′ := (u ≪ ℓ/4)⊕(t ≫
ℓ/4) ⊕ r1 ⊕ r2

t′ := h(u′)

auth(T)

Figure 26: Attack on tag authentication

14.2.2 Reader authentication

The attack on reader authentication is depicted in Figure 27.

46

14.2.3 Desynchronization resistance

The attack depicted in Figure 27 desynchronizes the reader from the tag.

14.2.4 Untraceability

After the reader and tag are desynchronized using the attack depicted in Fig-
ure 27, the adversary can recognize it since it is no longer accepted by a valid
reader.

u, t, u0, t0
R E

t

T

nonce r1
r1

r1

nonce r2

M1 := t ⊕ r2

M2 := ft(r1 ⊕ r2)

M1,M2
M1, M2

M3 := u ⊕ (r2⊕ ≫ ℓ/2)
M3

nonce r′1
r′1

nonce r′2
M1 := t ⊕ r′2
M2 := ft(r

′

1 ⊕ r′2)

M ′

1,M
′

2

M ′

3 := M3 ⊕ (M1 ⊕ M ′

1) ≫ ℓ/2

M ′

3

u′

0 := u; t′0 := t
u′ := (u ≪ ℓ/4)⊕(t ≫
ℓ/4) ⊕ r1 ⊕ r2

t′ := h(u′)

u′ := M ′

3 ⊕ (r2 ≫ ℓ/2)
if h(u′) = t then
t′ := h(u′ ≪ ℓ/4) ⊕
(t ≫ ℓ/4) ⊕ r′1 ⊕ r′2)

auth(R)

untrac

desynchronization resistant

Figure 27: Attack on reader authentication

47

14.3 Related Protocols

We have found a similar attack on the protocols [CH07, LAK06, KCLL06].

48

15 [YPL+05]

15.1 Description

The reader and tag share secrets k, k1, k2. The reader initiates the protocol by
challenging the tag with a nonce r1. The tag responds with h(k1 ⊕ r1 ⊕ k). The
reader then replies with h(k2) and both tag and reader update secrets k1 and
k2. Figure 28 depicts the protocol.

k, k1, k2

R

k, k1, k2

T

nonce r1

r1

h(k1 ⊕ r1 ⊕ k)

h(k2)

k′

1 := k1 ⊕
h(k2)
k′

2 := k2 ⊕
h(k1⊕r1⊕k)

k′

1 := k1 ⊕
h(k2)
k′

2 := k2 ⊕
h(k1⊕r1⊕k)

untrac

desynchronization resistant

auth(R)auth(T)

Figure 28: The protocol

15.2 Claimed Attacks

15.2.1 Untraceability

An attacker observing a communication session of the protocol obtains the mes-
sages r1, h(k1 ⊕ r1 ⊕ k), h(k2). Reader and tag then update their secrets. The
attacker can recognize the tag by challenging it with r1 ⊕ h(k2) to which the
previously observed tag will respond with h(k1 ⊕ r1 ⊕ k). Figure 29 depicts the
attack.

15.2.2 Desynchronization resistance

Blocking the third message in the protocol from the reader to the tag, leads
to the reader updating its secrets while the tag does not update them. There-
fore, the secret information between the reader and tag will be desynchronized,
rendering future authentication impossible.

49

k, k1, k2

R E

k, k1, k2

T

nonce r1

r1

r1

h(k1 ⊕ r1 ⊕ k)

h(k1 ⊕ r1 ⊕ k)

h(k2)

h(k2)

k′

1 := h(k2)
k′

2 := k2 ⊕
h(k1⊕r1⊕k)

k′

1 := h(k2)
k′

2 := k2 ⊕
h(k1⊕r1⊕k)

r1 ⊕ h(k2)

h(k1 ⊕ r1 ⊕ k)

untrac

Figure 29: Attack on the untraceability

15.3 Related Protocols

We found similar flaws in the protocols in [OTYT06, KCL07].

50

References

[ALP07] Basel Alomair, Loukas Lazos, and Radha Poovendran. Passive
attacks on a class of authentication protocols for RFID. In
ICISC, pages 102–115, 2007. 6.3

[Avo05] Gildas Avoine. Adversary model for radio frequency identi-
fication. Technical Report LASEC-REPORT-2005-001, Swiss
Federal Institute of Technology (EPFL), Security and Cryptog-
raphy Laboratory (LASEC), Lausanne, Switzerland, September
2005. 3.3, 13.3

[BCI08] Julien Bringer, Hervé Chabanne, and Thomas Icart. Crypt-
analysis of EC-RAC, a RFID identification protocol. In CANS,
pages 149–161, 2008.

[CC07] Hung-Yu Chien and Che-Hao Chen. Mutual authentication pro-
tocol for RFID conforming to EPC class 1 generation 2 stan-
dards. Computer Standars & Interfaces, Elsevier Science Pub-
lishers, 29(2):254–259, February 2007. 6.3

[CH07] Hung-Yu Chien and Chen-Wei Huang. A lightweight RFID pro-
tocol using substring. In Embedded and Ubiquitous Computing
(EUC), pages 422–431, 2007. 1, 5.3, 7.3, 10.4, 14.3

[CLL05] Eun Young Choi, Su Mi Lee, and Dong Hoon Lee. Efficient
RFID authentication protocol for ubiquitous computing envi-
ronment. In Tomoya Enokido, Lu Yan, Bin Xiao, Daeyoung
Kim, Yuanshun Dai, and Laurence Yang, editors, International
Workshop on Security in Ubiquitous Computing Systems – se-
cubiq 2005, volume 3823 of Lecture Notes in Computer Science,
pages 945–954, Nagasaki, Japan, December 2005. Springer-
Verlag. 6.3

[CM05] C.J.F. Cremers and S. Mauw. Operational semantics of security
protocols. In S. Leue and T.J. Systä, editors, Scenarios: Mod-
els, Algorithms and Tools (Dagstuhl 03371 post-seminar pro-
ceedings, September 7–12, 2003), volume 3466 of LNCS, pages
66–89, 2005.

[DFJ07] Benessa Defend, Kevin Fu, and Ari Juels. Cryptanalysis of two
lightweight RFID authentication schemes. In PerCom Work-
shops, pages 211–216, 2007. 6.3

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in
cryptography. IEEE Transactions on Information Theory, IT-
22(6):644–654, 1976.

51

[DM07] Roberto Di Pietro and Refik Molva. Information confinement,
privacy, and security in RFID systems. In ESORICS, pages
187–202, 2007. 2

[DMR08] Ton van Deursen, Sjouke Mauw, and Saša Radomirović. Un-
traceability of RFID protocols. In Information Security Theory
and Practices. Smart Devices, Convergence and Next Genera-
tion Networks, volume 5019 of Lecture Notes in Computer Sci-
ence, pages 1–15, Seville, Spain, 2008. Springer.

[DMRV09] Ton van Deursen, Sjouke Mauw, Saša Radomirović, and Pim
Vullers. Secure ownership and ownership transfer in RFID sys-
tems. In Proc. 14th European Symposium On Research In Com-
puter Security (ESORICS’09), Lecture Notes in Computer Sci-
ence. Springer, 2009. To appear.

[DP08] Ivan Damg̊ard and Michael Østergaard Pedersen. RFID secu-
rity: Tradeoffs between security and efficiency. In CT-RSA,
pages 318–332, 2008.

[DR08a] Ton van Deursen and Saša Radomirović. Security of an RFID
protocol for supply chains. In Proceedings of the 1st Workshop
on Advances in RFID, AIR’08 (to appear). IEEE Computer
Society, October 2008.

[DR08b] Ton van Deursen and Saša Radomirović. Security of RFID pro-
tocols – A case study. In Proceedings of the 4th International
Workshop on Security and Trust Management, STM 2008 (to
appear), ENTCS. Elsevier, June 2008.

[DR09] Ton van Deursen and Saša Radomirović. Algebraic attacks on
RFID protocols. In Information Security Theory and Practices.
Smart Devices, Pervasive Systems, and Ubiquitous Networks (to
appear), Lecture Notes in Computer Science, Brussels, Belgium,
2009. Springer.

[DY83] D. Dolev and A.C. Yao. On the security of public key protocols.
IEEE Transactions on Information Theory, IT-29(2):198–208,
March 1983.

[GRS05] Henri Gilbert, Matthew Robshaw, and Hervé Sibert. An active
attack against HB+ – a provably secure lightweight authentica-
tion protocol. Manuscript, July 2005. 2.3

[HM04] Dirk Henrici and Paul Müller. Hash-based enhancement of lo-
cation privacy for radio-frequency identification devices using
varying identifiers. In PerCom Workshops, pages 149–153, 2004.
3.3, 12, 13.3

52

[HMNB07a] JaeCheol Ha, Sang-Jae Moon, Juan Manuel González Nieto,
and Colin Boyd. Low-cost and strong-security RFID authenti-
cation protocol. In Embedded and Ubiquitous Computing (EUC)
Workshops, pages 795–807, 2007. 3, 12.3, 13.3

[HMNB07b] JaeCheol Ha, Sang-Jae Moon, Juan Manuel González Nieto,
and Colin Boyd. Security analysis and enhancement of one-
way hash based low-cost authentication protocol (OHLCAP).
In PAKDD Workshops, pages 574–583, 2007. 6.3

[JW05] Ari Juels and Stephen Weis. Authenticating pervasive devices
with human protocols. In Victor Shoup, editor, Advances in
Cryptology – CRYPTO’05, volume 3126 of Lecture Notes in
Computer Science, pages 293–308, Santa Barbara, California,
USA, August 2005. IACR, Springer-Verlag. 2.3

[JW07] Ari Juels and Stephen Weis. Defining strong privacy for RFID.
In International Conference on Pervasive Computing and Com-
munications – PerCom 2007, pages 342–347, New York, USA,
March 2007. IEEE, IEEE Computer Society Press.

[KCL07] Il Jung Kim, Eun Young Choi, and Dong Hoon Lee. Secure
mobile RFID system against privacy and security problems. In
SecPerU 2007, 2007. 4, 10.4, 11.3, 15.3

[KCLL06] Kyoung Hyun Kim, Eun Young Choi, Su-Mi Lee, and
Dong Hoon Lee. Secure EPCglobal class-1 gen-2 RFID sys-
tem against security and privacy problems. In On The Move
(OTM) Workshops (1), pages 362–371, 2006. 1.3, 5, 7.3, 14.3,
15.3

[KN05] Jeonil Kang and Daehun Nyang. RFID authentication protocol
with strong resistance against traceability and denial of service
attacks. In Refik Molva, Gene Tsudik, and Dirk Westhoff, ed-
itors, European Workshop on Security and Privacy in Ad hoc
and Sensor Networks – ESAS’05, volume 3813 of Lecture Notes
in Computer Science, pages 164–175, Visegrad, Hungary, July
2005. Springer-Verlag. 6, 15.3

[LAK06] RFID mutual authentication scheme based on synchronized se-
cret information. In Symposium on Cryptography and Informa-
tion Security, Hiroshima, Japan, January 2006. 1.3, 5.3, 7, 14.3,
15.3

[LBV07] Yong Ki Lee, Lejla Batina, and Ingrid Verbauwhede. Provably
secure RFID authentication protocol EC-RAC (ECDLP based
randomized access control). 2007. 8, 8.3, 9.3

53

[LBV08] Yong Ki Lee, Lejla Batina, and Ingrid Verbauwhede. EC-RAC
(ECDLP based randomized access control): Provably secure
RFID authentication protocol. In Proceedings of the 2008 IEEE
International Conference on RFID, pages 97–104, 2008. 8.3, 9

[LCUL06] Yong-Zhen Li, Young-Bok Cho, Nam-Kyoung Um, and Sang Ho
Lee. Security and privacy on authentication protocol for low-
cost RFID. In Computational Intellegence and Security (CIS),
pages 788–794, 2006. 10.4

[LD07] Yingjiu Li and Xuhua Ding. Protecting RFID communications
in supply chains. In ASIACCS, pages 234–241, 2007. 10, 10.1

[Low97] Gavin Lowe. A hierarchy of authentication specifications. In
CSFW, pages 31–44, 1997.

[LW07] Tieyan Li and Guilin Wang. Security analysis of two ultra-
lightweight RFID authentication protocols. In IFIP SEC 2007,
Sandton, Gauteng, South Africa, May 2007. IFIP. 6.3

[LY07a] N. W. Lo and Kuo-Hui Yeh. An efficient mutual authentication
scheme for EPCglobal class-1 generation-2 RFID system. In
Embedded and Ubiquitous Computing (EUC) Workshops, pages
43–56, 2007. 3.3, 12, 13.3

[LY07b] N. W. Lo and Kuo-Hui Yeh. Hash-based mutual authentica-
tion protocol for mobile RFID systems with robust reader-side
privacy protection, to appear. 2007. 3.3, 12, 13.3

[LY07c] N. W. Lo and Kuo-Hui Yeh. Novel RFID authentication
schemes for security enhancement and system efficiency. In Se-
cure Data Management, pages 203–212, 2007. 3.3, 12, 13.3

[OTYT06] Kyosuke Osaka, Tsuyoshi Takagi, Kenichi Yamazaki, and Os-
amu Takahashi. An efficient and secure RFID security method
with ownership transfer. In Computational Intellegence and Se-
curity (CIS), pages 778–787, 2006. 10.4, 11, 15.3

[PLCETR06a] Pedro Peris-Lopez, Julio César Hernández Castro, Juan M.
Estévez-Tapiador, and Arturo Ribagorda. EMAP: An efficient
mutual-authentication protocol for low-cost RFID tags. In On
The Move (OTM) Workshops (1), pages 352–361, 2006. 6.3

[PLCETR06b] Pedro Peris-Lopez, Julio César Hernández Castro, Juan M.
Estévez-Tapiador, and Arturo Ribagorda. LMAP: A real
lightweight mutual authentication protocol for low-cost RFID
tags. Printed handout of Workshop on RFID Security – RFID-
Sec 06, July 2006. 6.3

54

[PLCETR06c] Pedro Peris-Lopez, Julio César Hernández Castro, Juan M.
Estévez-Tapiador, and Arturo Ribagorda. M2AP: A minimal-
ist mutual-authentication protocol for low-cost RFID tags. In
Ubiquitous Intellegence and Computing (UIC), pages 912–923,
2006. 6.3

[PLHCETR07] Pedro Peris-Lopez, Julio Cesar Hernandez-Castro, Juan
Estevez-Tapiador, and Arturo Ribagorda. Cryptanalysis of a
novel authentication protocol conforming to EPC-C1G2 stan-
dard., 2007. 6.3

[PV08] Radu-Ioan Paise and Serge Vaudenay. Mutual authentication in
RFID: Security and privacy. In ACM Symposium on Informa-
tion, Computer and Communications Security (ASIACCS’08),
pages 292–299. ACM Press, 2008.

[SLK06] Youngjoon Seo, Hyunrok Lee, and Kwangjo Kim. A scalable
and untraceable authentication protocol for RFID. In Embedded
and Ubiquitous Computing (EUC) Workshops, pages 252–261,
2006. 12.3, 13

[SM08] Boyeon Song and Chris J. Mitchell. RFID authentication pro-
tocol for low-cost tags. In Wireless Network Security (WISEC),
pages 140–147, 2008. 1.3, 5.3, 7.3, 14, 15.3

[THG98] F.J. Thayer Fàbrega, J.C. Herzog, and J.D. Guttman. Strand
spaces: Why is a security protocol correct? In Proc. 1998
IEEE Symposium on Security and Privacy, pages 66–77, Oak-
land, California, 1998.

[Vau07] Serge Vaudenay. On privacy models for RFID. In Advances in
Cryptology - ASIACRYPT 2007, volume 4833 of Lecture Notes
in Computer Science, pages 68–87, Kuching, Malaysia, Decem-
ber 2007. Springer-Verlag.

[VB03] István Vajda and Levente Buttyán. Lightweight authentication
protocols for low-cost RFID tags. In Second Workshop on Se-
curity in Ubiquitous Computing – Ubicomp 2003, Seattle, WA,
USA, October 2003. 6.3

[YPL+05] Jeongkyu Yang, Jaemin Park, Hyunrok Lee, Kui Ren, and
Kwangjo Kim. Mutual authentication protocol for low-cost
RFID. Handout of the Ecrypt Workshop on RFID and
Lightweight Crypto, July 2005. 10.4, 11.3, 15, 15.3

55

Change Log

V1.0 to V1.1

• Added Change Log.

• Added attacks to [SM08].

• Added sections describing algebraic replay attacks, attribute acquisition
attacks, and cryptanalytic attacks.

• Expanded descriptions of [KCLL06], [KN05], [LAK06], and [YPL+05].

• Edited section on preliminaries, added reference for desynchronization re-
sistance.

56

	Preliminaries
	Terminology
	Notation
	Conventions
	Security Properties
	Intruder Model

	Attacking RFID Protocols
	Algebraic Replay Attacks
	Attribute Acquisition Attacks
	Cryptanalytic Attacks

	CH07
	Description
	Claimed Attacks
	Tag authentication

	Related Protocols

	DM07
	Description
	Claimed Attacks
	Authentication and Untraceability

	Related Protocols

	HMNB07
	Description
	Claimed Attacks
	Tag authentication
	Untraceability
	Desynchronization resistance

	Related Protocols

	KCL07
	Description
	Claimed Attacks
	Untraceability

	KCLL06
	Description
	Claimed Attacks
	Reader authentication

	Related Protocols

	KN05
	Description
	Claimed Attacks
	Tag authentication
	Reader authentication
	Untraceability
	Desynchronization resistance

	Related protocols

	LAK06
	Description
	Claimed Attacks
	Tag Authentication

	Related Protocols

	LBV07
	Description
	Claimed Attacks
	Untraceability

	Related Protocols

	LBV08
	Description
	Claimed Attacks
	Untraceability

	Related Protocols

	LD07
	Description
	Claimed Attacks
	Untraceability

	Reader Authentication
	Related Protocols

	OTYT06
	Description
	Claimed Attacks
	Reader authentication
	Desynchronization resistance
	Untraceability

	Related Protocols

	LY07,LY07b,LY07c,HM04
	Description
	Claimed Attacks
	Tag authentication

	Related Protocols

	SLK06
	Description
	Claimed Attacks
	Tag authentication
	Desynchronization resistance
	Untraceability

	Related Protocols

	SM08
	Description
	Claimed Attacks
	Tag authentication
	Reader authentication
	Desynchronization resistance
	Untraceability

	Related Protocols

	YPLRK05
	Description
	Claimed Attacks
	Untraceability
	Desynchronization resistance

	Related Protocols

	Change Log

