
Binding Hardware and Software to Prevent Firmware
Modification and Device Counterfeiting

Robert P. Lee
robert.lee.2013@live.rhul.ac.uk

Konstantinos
Markantonakis

k.markantonakis@rhul.ac.uk

Raja Naeem Akram
r.n.akram@rhul.ac.uk

Smart Card Centre, Information Security Group, Royal Holloway, University of London
Egham, Surrey, TW20 0EX, United Kingdom

ABSTRACT
Embedded systems are small scale computing devices that
are increasingly located in more of the items we use and own.
The number of embedded systems in the world is increasing
dramatically as the “internet of things” concept becomes
more prevalent in the market. The value of the market for
embedded systems is predicted to increase to being worth
trillions of dollars by 2020. With great value in the embedded
system market, there is a need for preventing unauthorised
firmware tampering or product counterfeiting. Here is presen-
ted a technique for binding software to hardware instances
that uses hardware intrinsic security properties of the devices
being protected. The proposed technique provides assurance
to manufacturers that only they can perform their hardware
and software binding and create their products. Also presen-
ted is an FPGA implementation of the described scheme
that binds the hardware and software together with only a
6.7% increase in execution time. Thus, making it difficult
for an attacker to either counterfeit the device or extract the
(software) Intellectual Property.

Keywords
Binding; hardware; software; intrinsic; security; PUF; firm-
ware; modification; counterfeiting.

1. INTRODUCTION
Embedded systems are used in many different settings

such as in mobile phones, MP3 players, cars, aeroplanes
as well as fridges and utility meters [15]. With the rise of
ubiquitous computing and the “internet of things” (IoT),
it is becoming more common for computer systems to be
included in more devices [19]. The IoT concept has gathered
interest from businesses with some estimating the market to
be worth trillions of dollars by 2020 [22]. However the market
for counterfeit electronic goods is also increasing with some
suggesting that 10% of all IT products sold are counterfeit [1].
A further risk to products comes from the nature of their

ACM ISBN .

DOI:

manufacturing. In some areas, such as graphics cards, it
is common to produce just a single design of integrated
circuit (IC) and then construct different level products by
including or excluding cores or features using the device
firmware. Vendors who develop products in this manner are
at risk of their sales revenue affected by people who buy
cheaper products and load them with software from more
powerful devices in order to unlock premium features or
performance [21]. With large amounts of money available to
be made or lost it is important for organisations to be able
to prevent unauthorised firmware modification and platform
counterfeiting.

This paper considers the problem of securely binding soft-
ware to individual hardware devices. If a piece of software
has been bound to a hardware device then this ensures that
the software will only run on the hardware it has been loaded
onto. We propose that binding a piece of software to a hard-
ware instance can be used to prevent unauthorised firmware
tampering, counterfeiting of “platforms” or potentially be
used to protect the intellectual property of a manufacturer.
In this paper, a “platform” is a deployed product considered
as an entire entity comprised of both hardware and software.

The intuition behind this paper is that unauthorised firm-
ware alteration and counterfeiting can be prevented in the
following way. Only the legitimate manufacturer is able to
install or provision software for execution on their platforms
because only they are able to bind software to their hardware.
Conversely, attackers are unable to use alternative firmware
or create counterfeit products using legitimate products be-
cause software extracted from a legitimate product cannot be
copied onto an illegitimate hardware as it will only operate
correctly on the hardware it was bound to.

We propose the following setting as a real-world case study
for our problem. A manufacturer has developed a Graphics
Processing Unit (GPU) for use in graphics cards. They send
the design of the GPU to be fabricated and after receiving
the manufactured chips run tests on the ICs. The GPUs are
then tested to see how successfully they have been fabricated.
After testing the GPUs are split into three sets: the chips
that performed best, those that performed worst and also
the chips that were of middling standard. The three groups
of chips are all included into graphics card which are loaded
with firmware that determines the voltage and clock speed
the GPUs are to be set to. The performance settings included
in the firmware are assigned based on what the IC tests show
they are capable of.

One threat to the manufacturer in the case study described
previously is that some may wish to have a top-level product

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/77298174?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


without paying the full price for it. Those wishing to do
this may purchase a mid-level product and then replace the
firmware running on the graphics card purchased. If the IC
is made to the same design on all devices then it may be that
a middle level product is able to run at the same clock speed
and with all the features of a top-level product. This may
be the case if the IC testing is overly cautious in order to
ensure that the products sold are as reliable as possible. In
that case, switching the firmware on a mid-level product for
that of a top-level product could allow customers to avoid
paying full price for the best graphics card. The business
of the manufacturer will suffer if there are many customers
who choose to avoid buying the top-level product in favour
of buying the cheaper products and modifying them.

However, if the graphics card firmware were securely bound
to the devices it is installed onto then this attack would be
prevented. Firmware taken from a top-level product would
have been bound to the device it was taken from and would
fail to execute correctly on any other device it was loaded
on. Therefore, customers who wished to own a device with
the same performance and features as the top-level product
would be required to buy the top-level product.

In this paper we make the following contributions:

• This paper identifies a new problem setting for bind-
ing software with hardware devices which considers
a powerful attacker who can access all device storage
as well as duplicate hardware created from the same
specification as the original (Section 2).

• We propose a flexible technique which would allow an
application to be bound to a hardware instance and
thus prevent unauthorised software from executing on
the hardware device (Section 4).

• We describe several different security primitives which
could be used in the proposed scheme in order to se-
curely bind a software program to a hardware instance
(Section 4.3).

• We have also developed a prototype implementation of
the proposed scheme that demonstrates how it may be
used and at what performance cost (Section 5).

The paper is structured as follows: Section 2 contains a
more detailed examination of the problem considered in this
paper. Section 3 contains a survey of previous work related to
this paper. Section 4 contains the solution we are proposing
to the problem considered in this paper. Section 5 describes
the proof-of-concept implementation of the proposed solution
that has been developed. Section 6 concludes the paper and
describes the future work still required in this area.

2. PROBLEM DESCRIPTION
In this section we will expand on the previously described

settings in order to formalise the problem we are considering.

2.1 Notation
The following notation will be used when describing the

problem.

A The attacker who is attempting to create counter-
feit platforms.

x, y Platforms comprised of a hardware and software
element.

SW (x) The software which is personalised to a platform
x.

HW (x) The hardware of the platform x.

MEM(x) The memory of a platform x. This includes both
the persistent and non-persistent storage of the
platform x.

2.2 Problem Scenarios
The different scenarios considered in this paper are listed

here.

1. The manufacturer of a platform has a hardware device
HW (x) and software which will be run upon it. The
manufacturer wishes to personalise the software for use
on only the hardware device HW (x), creating a device-
personalised software SW (x), which is loaded onto the
device HW (x). This process creates the platform x
which is the amalgamation of HW (x) and SW (x).

2. The platform manufacturer wishes to ensure that only
they are able to install software onto the products they
create. The manufacturer is seeking to prevent the
owner of a legitimate device HW (x) from executing
alternative software to the SW (x) which was originally
loaded onto the platform x.

3. The manufacturer of a platform wants to ensure that
there does not exist an attacker A who can create
counterfeit versions of his platforms. We assume that
the attacker will seek to create a counterfeit platform
y by purchasing a legitimate platform x, extracting
the contents of MEM(x) and loading them onto an
illegitimate device HW (y) where HW (y) has been built
to the same specification as HW (x). How the attacker
A is able to access hardware such as HW (y) is outside
of the scope of this paper, however it may be that
HW (y) is a device in the same product line as x but a
different level of product as in the case study described
in Section 1.

2.3 Attacker Model
The attacker A shall have the power to:

1. Read and copy the entire memory, MEM(x), of the
device.

2. Make use of software, SW (y) taken from legitimate
devices. The software the attacker can access is software
extracted from legitimate devices and will be bound to
the devices it has been taken from.

3. Make use of hardware built to the same specification
as the device it wishes to counterfeit. The attacker
can create a hardware for a counterfeit platform y such
that HW (y) is created from the identical specification
as HW (x) for a target platform x. Note that our
attacker does not have the ability to exactly copy any
properties intrinsic to the original hardware HW (x),
only to create hardware according to the same design.
Using properties intrinsic to hardware is described in
Section 3.2.

4. Read and copy any data which is loaded onto any of
the buses which make up the embedded system.



Bus

External devices

Flash
Memory RAM

CPU

I/O

Embedded System

Figure 1: Block diagram of a generic embedded sys-
tem’s hardware

The attacker A has achieved their aim if they achieve either
of the following:

1. The attacker creates a functioning, duplicate platform
y which cannot be differentiated from a legitimate
platform x.

2. The attacker installs a software SW ′(x) which can
successfully execute on a hardware HW (x), where
SW ′ 6= SW . The software SW is the software which
was loaded onto the device by the manufacturer.

2.4 Assumptions
It is assumed that the application is suitably complex that

it would be non-trivial for an attacker to simply recreate
it. If the application was simple, then the most practical
approach for an attacker would be to write their own version.
It follows that developing a product equivalent to the original
is likely to require a significant investment from the attacker;
this would make their counterfeiting venture significantly less
profitable.

We assume that the attacker is unable to read the contents
of any registers which are part of CPU. The attacker is also
unable to directly query any individual parts of the CPU.
The attacker is able to access any of the memory of the
device and observe data sent via buses, however the attacker
is not able to see within the processor itself. A diagram of
the embedded system being considered in this paper, and
the elements of it accessible by the attacker, can be found
in Figure 1; the grey portion indicates the “safe zone” that
cannot be viewed or accessed by the attacker.

We also assume that the manufacturing of platforms is
carried out in a secure location. The attacker is not able to
choose, access or interfere with the software before it is loaded
onto a platform. The attacker is only able to access software
which has been bound to a platform by the manufacturer.

2.5 Design Requirements
To prevent the attacker from achieving its goals, a solution

to the problem posed in this paper must meet the following
requirements.

1. The proposed technique must grant the ability
to securely personalise software to a hardware
device. The security of the personalisation shall en-
sure that only the legitimate manufacturer is able to
personalise their software. If only the manufacturer
is able to personalise their software, this technique as-
sures that only they are able to provision software for
their products. The technique proposed must account

for the fact that tamper resistance storage, that would
allow us to securely store/have keys, is not available.

2. The software personalisation must make use of
a hardware fingerprinting technique. This pro-
posed technique must allow the software running on
the hardware device to be bound to the specific hard-
ware instance that it is personalised for. Personalising
the hardware to a property intrinsic to the device would
provide confidence that software on one device cannot
be copied onto another. A property intrinsic to the
hardware instance is required because it is assumed
that tamper-resistant storage is not available.

3. The solution must protect all data that is to
be stored in any of the storage areas that are
present on the device. This requirement is necessary
because the attacker is able to access any of the memory
contents of the platform. If the data is ever unprotected
in the memory of the device then an attacker could gain
data unbound to the platform. Because the attacker
can access all device storage, the only “safe zone” it
cannot view or access is within the processor of the
device.

3. RELATED WORK
This section describes related work in the areas of pre-

venting counterfeiting, unauthorised device modification and
hardware intrinsic security. The first half of this section
considers different anti-counterfeiting and device integrity
protection techniques in the context of the problem described
in Section 2. The second half considers the use of physically
unclonable functions for hardware fingerprinting.

3.1 Anti-counterfeiting measures
The piracy and protection of Intellectual Property (IP) is

an area which has received a large amount of interest as will
be discussed below.

One technique for preventing device counterfeiting is to use
Trusted Platform Modules (TPMs) to ensure the integrity
of applications, securely store cryptographic keys or provide
a secure boot process [20]. The cryptographic operations
and storage of a TPM are attractive because they exist in
a tamper resistant environment which protects data and
prevents counterfeiting [26]. However, TPMs are not suitable
for solving the addressed problem which assumes that there
is no tamper-resistant storage; in this setting trust cannot
be placed in the security offered by a TPM.

A software-based method for protecting IP is making use
of code obfuscation. Simply put, code obfuscation is the act
of “jumbling up” a program in order to render a program
very difficult to analyse/modify while retaining performance
[2, 5, 25].

Code obfuscation could be applied to solving the problem
posed in this paper as it would prevent the application data
from being understood by an attacker. However, preventing
attempts to analyse the program would not be sufficient for
our requirements. Our attacker has the ability to copy all
data from one platform and load it onto another. An ob-
fuscated program copied from a different, legitimate device
would operate on the device it was loaded onto as it did on
the device it was taken from. Code obfuscation is designed
to protect a company’s IP by preventing reverse engineering



or third party modification of the firmware rather than un-
authorised replacement of firmware. The difference between
the goal of obfuscation techniques and the problem in this
paper leads to the conclusion that an obfuscation technique
would not be suitable for our purposes. Another concern
with using obfuscation is that there are some who claim that
secure obfuscation is not possible [3, 4].

Unlike other solutions described in this section, our prob-
lem is one of controlling platform manufacturing in order
to prevent unauthorised firmware modification and product
counterfeiting. This problem was considered by Kean who,
in 2002, introduced the problem of a company providing li-
censes for a limited number of uses of a Field Programmable
Gate Array (FPGA) IP core to a customer [13]. Kean’s
techniques allow for a different licensing model by moving
from a large up-front fee to licensing per FPGA IP core. The
protocol contained two main steps: providing the bitstream
to the customer and loading the IP core onto the FPGA. To
prepare the bitstream it would be encrypted by the company
providing the IP core and then it would be sent to the cus-
tomer. A trusted programming software would be used by
the customer to decrypt the bitstream and then customise
the bitstream using secrets known only by itself and the
FPGA. The customised bitstream would then be loaded to
the FPGA [13].

However, this solution is not suitable to this work because
while Kean’s scenario is related to that considered here, it
is different. Firstly, Kean considers an IP producer selling
uses of an FPGA bitstream to customers whereas in this
work the entity programming the platform is the developer of
the IP and not a separate entity. Secondly, this work is not
interested in limiting how many times a legitimate IP may
be used, a solution is required to prevent any unauthorised
modification of device firmware.

3.2 Hardware Intrinsic Security
Hardware intrinsic security is a field which encompasses

several different areas concerned with trying to use or pro-
tecting against some of the physical properties of hardware
devices such as side channel leakage or random variations in
hardware fabrication.

3.2.1 Physically Unclonable Functions
Physically Unclonable Functions (PUFs) were first intro-

duced in 2002 by Gassend et al. [8]. A PUF can be considered
as a fingerprint for an electronic device.

A PUF is a circuit which if two copies are constructed,
then they will not have precisely the same behaviour. PUFs
have been the subject of a large amount of study and many
different designs of PUFs have been proposed [10,16,18,24].
The security (or lack thereof) of PUFs is a question without
a strong answer however some circuits have been proved to
be much more effective PUFs than others [12].

PUFs have been used as part of solutions to various security
problems. One area that PUFs have been used in is as part
of authentication mechanisms [6, 7].

The potential for using PUFs for preventing counterfeiting
was first described by Simpson and Schaumont in 2006. In
their paper they described a technique by which hardware
and software developers could combine their products with
confidence that their IP is secured. PUF challenges and
responses for the hardware device are stored with a trusted
third party (TTP); using these and encryption, the hardware

and software can authenticate with each other offline [23].
The work of Simpson and Schaumont was extended in 2007
by Guajardo et al., who simplified original protocol and
removed the need for secure channels, preventing even the
TTP from seeing the IP of the software developer [10].

The solutions produced by Simpson and Schaumont, and
the later improvement by Guajardo et al., controls the ability
for an IP to be used on a piece of hardware. However their
problem scenario is significantly different from that of this
paper which results in their solution being inapplicable to
our problem. The authors are solving a problem wherein a
system developer (SYS) wishes to use the IP of an IP Provider
(IPP). These parties use a TTP to authenticate in order to
ensure that the genuine IP is loaded onto a genuine SYS’s
product. However, in our problem the SYS and IPP are the
same company so will not require a TTP for communication.

PUFs have also been applied to problems similar to that
of this paper of protecting IP, as by Guajardo et al. in 2008
or by controlling the ability to manufacture a platform, as
by Gora et al. in 2009 with later work by van der Leest et al.
in 2012 [9,11,27]. The paper of Gora et al. introduced the
problem of binding a piece of Software Intellectual Property
(SWIP) to a particular FPGA in order to ensure that the
SWIP would function on the intended FPGA only [9]. Their
technique consists of two main components: an enrolment
phase and an operational phase. Firstly the enrolment con-
sists of extracting the encryption key to be used from the
PUF on the FPGA device and using it to encrypt the SWIP.
The operational phase is where the device has been deployed
and is used and begins with a secure boot process, during
which the SWIP is decrypted by the device. After decryption
the SWIP is used by the FPGA which can now execute the
SWIP as normal [9].

The proposal by Gora et al. is a solution which effectively
meets several of the requirements defined in Section 2.5. A
SWIP is successfully bound to a HW device and the technique
takes steps to protect the SWIP while it is stored on the
device. However, there are some areas for improvement on
their scheme. Firstly, the attacker described in Section 2.3
can access any part of the storage on a platform and there
are no restrictions on when the attacker can use its access to
the storage. Against the scheme of Gora et al. our attacker
could wait until the secure boot has decrypted the SWIP
before copying it from the storage. However, in the proposed
scheme there the unmasked application is only ever present
within the processor and is never stored in the memory.

Another approach to including PUFs in processor execu-
tion was published by Kleber et al. in 2015 [14]. Their paper
presents a Secure Execution PUF-based Processor (SEPP)
that uses a PUF generated key with AES in counter-mode to
encrypt the instructions stored in the devices memory. The
SEPP may meet the requirements of a solution for the prob-
lem of this paper, however the performance impact of using
their technique is large. Therefore a more specialised solution
to the problem is required in order to preserve performance
while protecting against attackers.

4. PROPOSED SOLUTION
In this section we provide a description of the scheme

proposed as a solution for the problem described in Section 2.

4.1 Design Overview
We consider the case that the software ran on a platform x



I0
I1
I2
I3

In−1
In

Source Application
I ′0 = I0 ⊕ F (C0)
I ′1 = I1 ⊕ F (C1)
I ′2 = I2 ⊕ F (C2)
I ′3 = I3 ⊕ F (C3)

I ′n−1 = In−1 ⊕ F (Cn−1)
I ′n = In ⊕ F (Cn)

Personalised Application

Figure 2: The transformation of source memory con-
tent into a personalised application

is comprised of a set of instructions Ii, where i is the memory
location that the individual instruction Ii is stored in. We as-
sume that the instructions comprising the program are stored
in memory sequentially without gaps. Different portions of
code may be navigated to via control flow instructions (such
as jump or call instructions). However the code is stored in
one unbroken portion of memory.

As stated in Section 2.5, we wish to personalise an applic-
ation for a device. This requirement will be met by using a
masking technique to conceal the instructions/data wherever
they are stored on the device.

To meet with the listed requirements (Section 2.5) we
require the masking to be specific to the device in some way.
We will mask each instruction by using a challenge/response
function F . F will yield different masks for instructions/data
based on whatever the challenge for that data is. The use
of F must also make use of some property intrinsic to the
device. The masked instructions will be written as I ′i, and
will be calculated by the following function:

I ′i = Ii ⊕ F (Ci).

Where Ci is the challenge used for calculating the mask
for the instruction Ii. However, requiring challenges for
each instruction adds two additional problems: how much
storage will be required for the challenges and how will the
challenges be chosen. To address these problems we propose
the following method for assigning the challenge values:

Ci = I ′i−1.

This choice of Ci reduces the storage requirement for the
challenges used in masking the application instructions to
one single challenge. The one challenge required is the C0

that would be generate by a secure random number generator
and would be used in protecting the instruction in the first
location in the memory. A diagram of the transformation
applied to the contents of memory when personalising for a
device is included in Figure 2.

An alternative approach would be to use the memory ad-
dress as the challenge value, however this would introduce
a security flaw in a multi-application setting. In a multi-
application setting, each application will be loaded from
virtual memory address 0 onwards. If applications are pro-
duced by different developers then each application could
be vulnerable to attacks from the developers of the other
applications. The attack would involve a platform x which
contains applications from two developers A and B. De-

veloper A would buy a legitimate product which contains
both applications, A would then copy their own application
from the platform. Using the source code for its application,
A could recover the mask values used to conceal his applic-
ation; the responses to F (0)–F (n) where n is the length of
the application as stored on the platform x. Developer A
could then recover the first n instructions of the application
developed by B as it would have used the same challenges
and responses. However, the proposed choice of challenge
avoids the possibility of this type of attack.

4.2 Securing Mutable Data
The ability to secure any of the data which must be stored

on the platform, but which may change, is a significant
challenge for solutions to our problem.

Unlike when protecting the application instructions, cas-
cading previous masked values as challenges is not practical
for data that may change. If the contents of one memory
location were changed, the subsequent value would have
to be updated to reflect the change in its challenge value.
After the immediately following value was updated, the next
value would also have to be updated to reflect the different
challenge stored. Updating the values in memory would
continue until the end of the memory used by the application
was reached. The large number of updates would add a
considerable overhead to the storing of data in memory.

One potential solution to this problem is to store an extra
challenge value for each mutable value. This would result
in an increased storage requirement for platforms using our
defence mechanism. However it would prevent one change of
a stored value requiring updates to all the following stored
values, as was previously described. With the challenges
needing to be stored, as well as the data, it is likely that
they will require regular updating to prevent data leakage.
This approach would incur a large storage overhead as the
amount of data to be stored would be doubled. Alternatively,
the mutable data could be split into smaller groups of values
that would each be allocated an extra challenge value. This
technique would limit the amount of extra challenges required
however if a value is updated then the proceeding locations
in the same group would need updating. This approach
would allow a tradeoff to be made between performance and
memory overheads.

One remaining open question surrounding memory is how
to handle memory that is requested/allocated at runtime.
A similar technique to protecting other mutable data could
be used to protect the data stored in allocated memory.
Therefore, extra challenges would also be required for each
dynamically allocated memory location. Any extra challenges
required for dynamically allocated memory would need to be
generated and used securely to avoid giving away information
to attackers. Care will also be needed to prevent applications
accessing the memory locations that are used to store the
extra challenge values.

4.3 Choice of Function F

The central element in the technique which we propose is
the use of a function which creates a masking value based
on an inputted challenge. The security of this element is
critical to the security of the entire technique and so it must
be chosen with care. It is required that the function used
for F must be able to provide a value of output based on an
input challenge.



In the setting we propose for the use of the function, F . We
require that the output of F must be unpredictable because
if the output of F could be predicted from the input, an
attacker could recover the data stored. Therefore, as the
challenges are known to an attacker, if the function used
is public, it must also make use of something secret. If a
closed function were chosen for F , the unpredictability would
stem from the unknown nature of the function. However
this would not be advised by the authors as it would result
in the platform only being protected by a “security through
obscurity” approach.

We propose that there are several different potential can-
didates which may be chosen for F . For example, hash
functions, block ciphers or PUFs could all perform as re-
quired for F . However, as each of these different options
have significantly different properties they would each need
to be used in different ways. These different uses would
be needed in order to ensure the security of the proposed
binding technique. Due to the different properties of the
candidates for F , different amounts of extra information will
be needed for each. The changes in required information
will also have an impact on what secrets are required for
each candidate function. Note that we also assume that
only public functions will be used for F and we assume that
attackers will know our choice of F .

We are now going to consider how the suggested functions
may be used for F . One potential type of function which
could be used for F are hash functions. Using a hash func-
tion does not address all of our requirements as it does not
incorporate any properties intrinsic to the hardware. If a
hash function were to be used for F then an extra element
would need to be added in order to use hardware intrinsicness
in protecting the application. This extra element could be a
value representing a hardware fingerprint of the device which
could be mixed with each challenge before hashing. A PUF
could be used to provide the secret, hardware fingerprint
value which would be mixed with the input or output of the
hash function.

Block ciphers could also be used for the function F . A
secure block cipher would ensure that only an entity who
knows the secret key would be able to calculate the mask
values used to conceal the application. However, similarly to
using a hash function simply, a block cipher alone will not
meet our requirements as there is no use of hardware intrinsic
properties. A simple method for incorporating hardware
intrinsicness could be to use a PUF to provide the key used
by the block cipher. This would provide assurance that
duplicate hardware constructed from the same specification
would not possess the key used in binding an application to
a different device.

A drawback to using a block cipher or hash function for
the function F is that it would result in a large number
of encryptions/hashes being performed. If each instruction
were masked separately then a performance penalty may
be incurred with methods using these types of functions so
grouping instructions into basic blocks may be considered in
order to require less encryptions/hashes to be computed.

A third type of function which could be used for F is a PUF.
PUFs have many properties which would make them useful
in solving the problem posed in this paper. Firstly they are
an element of hardware which, by definition, will be unique1

1It is technically possible that two PUFs could have identical

per device. If a PUF is included in the platform then it will
ensure that exactly identical copies of hardware cannot be
made. By binding the application to the PUF, the software
found on a platform will only function on that particular
platform. One challenge of using PUFs is that many are
noisy and have to be combined with fuzzy extractors (or
similar) for their output to be usable [10,17].

Of the suggested candidates, only a PUF would incorporate
hardware intrinsic behaviour into the function F directly.
When considering other choices of F there has been a need for
some information to remain secret, e.g. encryption keys. If a
PUF is chosen then the unclonable nature of PUFs ensures
that neither F nor any other information must remain secret.
The definition of a PUF states that simply knowing the
design of the circuit and the input used is not enough to
predict the output. The PUF would be incorporated into
the design of the CPU and so by our assumptions it cannot
be queried directly by the attacker. As the attacker is not
able to directly query the PUF, the outputs from the PUF
cannot be discovered by them. Using a PUF for the function
F would meet with our requirements as its responses would
be unpredictable and based on properties intrinsic to the
device. Under our assumptions using a PUF as the function
would securely bind the application to the device which it is
loaded onto.

4.4 Implementation Considerations
We have proposed a technique to securely bind a piece of

software to an individual hardware instance. However, there
are several factors which would need to be considered when
implementing this technique on a platform as well as the
choice of function F .

Firstly, the masking and unmasking of operations/data
would have to exist in the CPU only in order to prevent the
scheme from being bypassed by an attacker. The unbinding
must be a step in the execution process; as the operation/data
is loaded from memory into the CPU it is unmasked before
it is executed/used. If the masking is specific to a device and
unmasking is a step in execution then programs copied from
one hardware onto another would fail to execute correctly.
An attacker will have to remove the binding from a piece of
copied software before it could be executed correctly on a
different piece of hardware.

Secondly, when choosing the function F it will be important
to consider how to use the function securely and efficiently.
For example, if F is chosen to be a block cipher is used with
a 128 bit block size. If the device being protected uses 32
bit instructions then it will likely be more efficient to protect
four instructions per challenge instead of one. Combining
instructions may be required for the security of the scheme
too. If 32 bit instructions were protected individually then
each output of F is only one of 232 possibilities. However the
number of possible outputs of the function increases rapidly

behaviour. However this is extremely unlikely, as a circuit
would need to be created/found which always gave the same
response as another circuit. Furthermore, even if by coin-
cidence an attacker found a device ‘x’ that might have the
same PUF behaviour as a device ‘y’, this would not help the
attackers cause. The attacker wishes to make a large number
of devices that have the same PUF behaviour as ‘y’ which
will prove extremely difficult. We assume that our attacker
cannot access a device with an identically behaving PUF as
the platform it wishes to counterfeit.



if more instructions are protected simultaneously and so the
output is one of 264, 2128 or more possibilities.

A further factor that would need to be considered when
implementing the scheme is when and how the masking would
be applied to the software. One approach would be for the
software to be loaded to the device already masked. However
this would require the manufacturer to interrogate the device
in order to learn about the hardware intrinsic properties
of that hardware instance. If this involved using an extra
personalisation circuit that might introduce an attack surface
for adversaries to use, it might also add a significant delay
in the manufacturing process. Alternatively the device could
add the masking when the software is loaded to it. This
technique would prevent the manufacturer ever knowing the
information about any particular hardware device, this may
prevent insider attacks. However for the device to personalise
itself it may require additional hardware increasing design
complexity and the cost of producing each device.

4.5 Solution Analysis
A technique for preventing the counterfeiting of devices

has been proposed in the preceding sections. This section
will examine how it meets with the three requirements set
out in Section 2.5.

1. The proposed technique must grant the ability
to securely personalise software to a hardware
device. The proposed technique provides the ability
for a manufacturer to create a device-specific masking
to bind software to hardware devices. The function F
is used to provide device-specific mask values which
are mixed with the instructions and data stored in the
device memory. Several different candidate functions
were proposed which would allow for different, secure
personalisations for different devices. The suggested
functions for F were described in Section 4.3 and sug-
gestions for how they would be used in the proposed
scheme were given. The security of the scheme was
considered against two different attackers and an ar-
gument for the security of the scheme was included in
Section 4.6.

2. The software personalisation must make use of
a hardware fingerprinting technique. Of the three
candidate functions proposed for F , only a PUF provides
an adequate inclusion of hardware fingerprinting into
the scheme by definition. However the alternative func-
tions could also include the use of a PUF to provide
a hardware fingerprint, which may be preferred if a
PUF cannot be found which satisfies the unclonability
requirement. A key programmed into the silicon of
the CPU could be used to provide a device specific
secret, however this would not provide the hardware
intrinsicness required. Methods for including hardware
intrinsic features when using block ciphers or hash func-
tions were suggested when the different candidates for
F were described in Section 4.3.

3. The solution must protect all data that is to
be stored in any of the storage areas that are
present on the device. The proposed technique
would be implemented as an extension to the pipeline
of instructions and data being loaded into the processor.
Adding the technique as a pipeline stage would allow

the instructions and data to be masked/demasked as
they enter/exit the processor. In this setting there
would be no data stored in memory in a non-protected
manner.

4.6 Security Evaluation
This subsection will evaluate the security of the solution

presented in this paper.
The proposed scheme uses an XOR operation to combine

instructions with generated mask values. Due to the use of
XOR, this scheme will remain secure only while two of the
three elements involved (In, F (Cn) and I ′n) remain secret.
The values of I ′n are stored in the memory and will be
available to the attacker. The values of In are the values
sought by the attacker; these are only calculated within the
CPU where the attacker cannot view them. To recover the
values of the instructions In, the attacker must find or deduce
the values of F (Cn). The results of the function F on the
values Cn are only calculated within the CPU, therefore, by
assumption, the attacker is unable to read them. Therefore
the security of the scheme is based on the strength of the
function F .

The attacker described in Section 2.3 has the power to
access all of the storage MEM(x) of a platform x. Most of
the challenges used with the function F are the masked in-
structions that are known to the attacker. The first challenge
C0 is also known to the attacker. It is therefore required that
knowing only the input to F does not allow its output to be
predicted. If the output of F is predictable then, using the
challenges Cn, the attacker can recover the instructions In.
If the attacker is unable to calculate the values F (Cn), it is
unable to either create a correct mask for its own application
or unmask the instructions I ′n.

We now consider an attacker who is the developer of one
of the multiple applications loaded onto a device x. This
attacker has access to all of the masked instructions I ′n and
their corresponding challenges Cn as well as a subset of the
values for In which are the instructions comprising its own
application. The developer-attacker uses its application and
its masked version recovered from x to recover a set of cor-
responding Cn and F (Cn) pairs. This poses a risk that the
developer-attacker may be able to unmask a portion of any
other applications found on the device x using the Cn/F (Cn)
pairs. Similarly the attacker might be able to use its know-
ledge to create the correct masking for any application of
its choice. If the CPU were a 32 bit processor then the
maximum application size would be 232 addresses; however
it is unlikely for an embedded application to be so large. If
the applications were much smaller than 232, such as in the
embedded setting, the chance of challenges for instructions
of one application overlapping with instructions of another
application significantly decreases. If this scheme were used
in the multi-application setting, care would need to be taken
by the manufacturer to choose a maximum application size
that would keep the chance of significant challenge-space
overlap between applications at an acceptable level. A coun-
termeasure against challenge-space overlap would be to mask
multiple instructions at the same time. If two operations were
masked at once then the challenge space for a 32 bit processor
would increase to 264, lowering the chance of challenges from
applications overlapping one another. Overlapping of mask
values used for binding software to hardware can also be



PicoBlaze
Unmasking

Unit
ROM

UART

LEDs

PC Terminal

enable in

address in

instruction out

pb pause

enable out

address out

instruction in

FPGA

Figure 3: Diagram of implemented system.

decreased by ensuring that no two applications on a platform
use the same C0.

5. IMPLEMENTATION
A prototype implementation has been developed to demon-

strate the viability of the scheme proposed in Section 4. The
prototype also allows the performance impact of the scheme
to be analysed.

The first half of this section describes the implementa-
tion including a system diagram of how the scheme was
included into an example embedded system. Also described
are the three different transitions that are possible between
operations and how they are addressed by the prototype.

The second half of this section analyses the prototype im-
plementation, describes the overheads of using the proposed
scheme and also describes the costs associated with different
choices for the function F .

5.1 Development Platform
The prototype implementation was designed and imple-

mented on a Xilinx Spartan-6 FPGA SP601 evaluation board.
VHDL was used to describe the circuits for the Unmasking
Unit and other components in the prototype. The VHDL
was synthesised for the Spartan 6 using the Xilinx ISE design
suite. An Apple Macbook Pro was used for running the ISE
design suite and synthesis tools as well as the terminal pro-
gram PuTTY that read the serial output data transmitted
by the prototype system.

The prototype implementation was developed for the FPGA
board to create a real system operating using the proposed
countermeasure. The implementation is similar to a normal
embedded system, it contains a processor, a ROM that stores
the application and IO devices. The IO devices used by the
prototype are two LEDs and the serial output port of the
evaluation board. The serial port functionality is used by the
prototype implementation to output to a terminal program
running on a laptop computer.

The processor included in the prototype system is the
PicoBlazeTM open soft-core processor developed by Xilinx
and made freely available online [28]. The PicoBlazeTM is
attached to one of the block RAMs in the FPGA that is used
as a ROM to store the program executed by the prototype.
Example VHDL code for using the UART serial interface
with a PicoBlazeTM processor is provided with the processor
and was used to connect the serial output to the system.
A diagram of the prototype system is included in Figure 3,
the Unmasking Unit is the element that was developed to
implement the proposed scheme.

5.2 Demonstration Application
An example program was installed onto the prototype

system that made use of the hardware devices attached to the
PicoBlazeTM system. This was so that the prototype would
give an obvious indicator that it was executing correctly.
The example program was written in PicoBlazeTM Assembly
Code and comprises two different stages of execution. Firstly
the application runs through a set of instructions that use the
UART serial output to transmit “Hello World!” to the laptop
terminal application. This involved loading the characters to
be outputted into a register and then outputting the value
in the register to the UART data transfer component. Serial
output from the prototype requires 2608 cycles to transmit
one byte to the laptop, because of this it contains a buffer
to store the data to be transmitted. However, the UART
components buffer for data to be outputted over the serial
line can store only a limited amount of data. Therefore,
before sending data to be transmitted, the application checks
the UART buffer to ensure that it is not full before adding the
character to be outputted. This check is carried out by calling
a simple procedure that reads from the UART transmit
component and waits until the full flag is ‘0’ (indicating that
the buffer is not full). Once the UART buffer is not full the
procedure finishes by executing a RETURN instruction.

The second half of the application ran on the prototype
system increments a series of counters that are used to turn
two LEDs on the evaluation board on and off. This part of
the application comprises an infinite loop that repeatedly
turns the two LEDs on and off. To ensure the LED flashing
can be observed with the human eye a significant delay is
required between each changing of the status of the LEDs.
Three counters are used to create three loops with one loop
executed inside another loop inside the third loop. Values of
the two most significant bits of the third, outermost counter
are assigned to the LEDs resulting in them following a off-off,
off-on, on-off, on-on sequence.

5.3 Unmasking Unit
The scheme, as proposed in Section 4, was implemented us-

ing an Unmasking Unit positioned between the PicoBlazeTM

and the ROM components. For the prototype system the con-
tents of the ROM were changed outside of execution and the
masked values were loaded as the FPGA was programmed.
The Unmasking Unit was developed to relay address, enable
and instruction values between the PicoBlazeTM and the
ROM during execution and also to forward extra values in
the case of the execution of JUMP or CALL instructions. The
Unmasking Unit also calculates the mask (F (Cx)) values
and on receipt of the masked I ′x instructions from the ROM
it performs the required XOR operation before passing the
resultant unmasked Ix instructions. The last function of the
Unmasking Unit is to pause execution of the PicoBlazeTM

processor when required (this is described and explained in
more detail later in this section). Due to the Unmasking Unit
being entirely responsible for latching/fetching the masked
instructions I ′x, the PicoBlazeTM and FPGA RAM modules
did not require any modification before being used in the
prototype system (other than the data being stored in the
RAM being changed). A diagram showing the inclusion of
the Unmasking Unit is included in Figure 3.

The scheme implemented by the Unmasking Unit behaved
as described in Section 4, a function of the contents of the
previous memory address is used as a mask value for a



memory location. The function used in the prototype is a
simple Linear Feedback Shift Register (LFSR). The LFSR
is used to calculate the mask value F (Cx) by setting the
LFSR state to Cx and then generating three bits for the
LFSR according to the taps used. The state of the LFSR
after generating the three bits is used as the value F (Cx)
which is XOR’d with the masked instruction I ′x to reveal the
instruction to be executed Ix.

The Unmasking Unit developed comprises three main pro-
cesses as well as two much simpler pieces of logic that determ-
ined the values of the enable_out and address_out ports.
During execution of the application being ran on the proto-
type system there are three situations that the Unmasking
Unit may encounter. Firstly is the case of normal instruction
execution: an instruction Ix is currently being executed and
the next instruction to be executed is the following instruc-
tion Ix+1. In this case the Unmasking Unit will need to have
stored the value I ′x such that Ix+1 can be unmasked using
F (I ′x).

The second possible situation for the Unmasking Unit is
that instruction Ix is a JUMP or CALL instruction. PicoBlazeTM

assembly code includes conditional and unconditional branch
instructions, however they are both treated in the same way
by the Unmasking Unit. In this situation the next instruc-
tion is either Ix+1 (if the branch is not executed) or it is a
different instruction Iy. To prepare for the possible branch
instruction two features of the PicoBlazeTM are exploited by
the Unmasking Unit. The PicoBlazeTM requires two cycles
to execute an instruction, however the RAM can be accessed
in only one cycle. To save power the PicoBlazeTM only en-
ables the RAM when it is in the second cycle of executing
an operation, this is also when it sends the address of the
next instruction to the RAM. Therefore there is a “spare”
cycle available for the Unmasking Unit to use to load the
extra data from memory it may require. In the example
suggested previously this extra value would be I ′y−1 and this
would be read from the memory in the “spare” first cycle of
the execution of Ix. To know the correct address for I ′y−1

another feature of the PicoBlazeTM is used. Most JUMP and
CALL instructions include the address to be jumped to in the
opcode; 0x36031 is the code for JUMP NZ 031, or if the ZERO

flag is not set, then jump to address 031. The address that
may be branched to is therefore known to the Unmasking
Unit so it is able to read the extra data it may need for
unmasking the next instruction before the address of the
next instruction required is known.

In the case of a JUMP or CALL instruction the enable and
address values from the PicoBlazeTM are not forwarded to the
RAM. During the first half of the execution of an instruction
the enable signal is 0, however the Unmasking Unit must
transmit a 1 for the extra memory access. The address value
from the PicoBlazeTM will still be the address of the current
instruction, however the Unmasking Unit will transmit an
alternative value for the extra memory access.

A combinational process is used to handle changes on the
instruction in port of the Unmasking Unit. This process uses
the calculated mask value to unmask the instruction read
from the ROM. A sequential process, triggered by the system
clock, is used to latch the instruction in values and calculate
the mask values used. The instruction latch process uses
the enable signal to determine if the first or second half of
the instruction is being executed, this is used when deciding
if the value read from memory will create the next mask

instruction handler : process (instruction in)

instruction in
has changed

instruction out :=
instruction in
XOR mask

instruction out
is a JUMP or

CALL instruction

fetchAddress :=
instruction out
argument − 1

end process

true

false

true

false

Figure 4: A flowchart of the instruction in handling
of the Unmasking Unit.

value or not. Diagrams of the operation of the combination
instruction in handler process and the clocked instruction
latch process are found in Figures 4 and 5.

The third scenario the Unmasking Unit may encounter
is when Ix is a RETURN type instruction or either a JUMP@

or CALL@ instruction. In this situation the address of the
next instruction Iy is not known until halfway through the
execution of Ix when the PicoBlazeTM requests the next
instruction. Before Iy is executed the Unmasking Unit will
need to calculate the appropriate mask value F (I ′y−1), which
will require a cycle before I ′y can be read and unmasked.

Therefore the execution of the PicoBlazeTM must be paused
for one cycle to allow the Unmasking Unit to read the ne-
cessary data from memory and calculate the mask value
required before loading, unmasking and outputting the next
instruction. Therefore the Unmasking Unit includes an extra
process that is responsible for detecting RETURN instructions
and pausing the processor when required. A diagram of the
operation of the pause process is included in Figure 6.

5.4 Performance Analysis
This subsection analyses the performance of the prototype

presented above and also examines how other functions may
be used as part of the scheme and the costs resulting from
using a different function.

As described, the scheme has a performance impact on only
one situation faced by the PicoBlazeTM. Out of the 69 dif-
ferent instructions supported by the PicoBlazeTM processor
only 8 of the instructions require any delay at all before they
can be executed. Furthermore, as it is only RETURN and the
JUMP@/CALL@ instructions that are slowed down by the scheme
the impact on execution performance is likely to be minimal.
The affected instructions are likely to be a small subset of
the instructions which comprise a program. In a program
there cannot be more RETURN instructions executed than



instruction latch : process (clk)

rising edge(clk)

enable in = 0

address in /=
predicted address

predicted address
:= address in + 1

mask :=
F (instruction in)

end process

true

true

false

true

false

false

Figure 5: A flowchart of the calculation of the in-
struction mask values.

pause process : process (clk)

falling edge(clk)

pb pause = 1

pb pause := 0

RETURN instruc-
tion and ad-

dress in changed

pb pause := 1

end process

true

true

false

true

false

false

Figure 6: A flowchart of the operation of the
PicoBlazeTM pause process.

CALL instructions. It is also reasonable to assume that data
arithmetic, logic, input/output and loading/storing instruc-
tions make up a larger amount of any applications executed
than the RETURN instructions. Considering the prototype
system, the example program is comprised of 65 instructions,
including only one RETURN instruction (although there are 14
CALL instructions). The procedure that is called is made up
of 5 instructions including the CALL and RETURN. The impact
of the scheme was to increase the execution time from 10
cycles to 11, an increase of 10%. However, the procedure
that is called is part of the first half of the application that,
including the block called, is made up of 52 instructions.
Allowing for the procedure being called multiple times, the
first half of the application requires 104 instructions to be
executed, completing in 208 cycles. The first part of the
application would execute in 222 cycles with the proposed
scheme, therefore the actual performance penalty was only
to increase execution time by 6.7%.

The prototype has been implemented using an LFSR as
the function F . However the proposed scheme was designed
to be able to use different types of functions for F , several
candidates were described in Section 4.3. As described, the
performance impact of using the scheme in the prototype
was small. This was mainly due to exploiting features of
the PicoBlazeTM in order to prevent processor execution
being delayed. If the function required two cycles then the
performance impact of the scheme would be greater as any
JUMP instructions would also cause delays. Currently the
scheme has 2 cycles for computation available in the first
situation described in Section 5.3, 1 in the second and none
in the case of RETURN instructions. Therefore if the function
required 2 cycles to compute the mask value then there would
still be no added delay if the next instruction is the next in
memory. The delay from the PicoBlazeTM executing a JUMP

would be 1 cycle, and a RETURN would require the processor
to be paused for 2 cycles.

5.5 Security Analysis
The prototype was developed to demonstrate the viability

of the proposed scheme, however, it does not completely meet
the security requirements listed in Section 2.5.

Firstly, the prototype binds the software to the hardware
by using an LFSR for the function F . This use of an LFSR
meets neither the first or second requirements described
in Section 2.5. The first requirement demands that the
personalisation be secure, however the attacker is able to
emulate the operation of the LFSR and calculate the mask
values used because the prototype does not include any
information the attacker would not know.

Requirement 2 requires that the software personalisation
make use of a hardware fingerprinting technique. This has
not yet been implemented on the prototype and is a topic
for future work on the prototype implementation. Hardware
Intrinsic Security will likely be included by using a PUF as
described in Section 3.2, however an alternative technique
may also be suitable. Section 4.3 described how many differ-
ent functions might be appropriate for use with the proposed
binding technique.

The third requirement was that the solution must protect
all of the device data. This has been met because the only
data stored on the prototype is the application data that has
been bound to the implementation. The current version of the
Unmasking Unit does not have the ability to mask/unmask



data which is stored/loaded in the device memory. There-
fore, if any data were saved to or read from the memory
it would currently be unprotected. However, the prototype
has demonstrated that the proposed technique may be used
for protecting instructions stored in memory and so could
likely also be applied to storing data in memory. The current
Unmasking Unit is able to access areas of memory without
disrupting execution of the process (as is used for unmasking
instructions after a jump). It may be possible that the extra
loading from memory can be completed without significantly
affecting the execution of the PicoBlazeTM. However this is
a problem to be addressed in future work.

6. CONCLUSION
In this paper we have presented a novel technique that

binds applications to the platform they are installed onto.
The proposed technique can be used to prevent unauthorised
modification of device firmware by ensuring that applications
cannot be copied from legitimate platforms and then executed
on devices other than the device the firmware was provisioned
for. Hardware intrinsic properties of the device could be used
in the binding which personalise the software to only the
particular hardware instance on which it is installed. A proof-
of-concept implementation of the scheme has been presented
which includes the proposed scheme and demonstrates that
the scheme can be deployed with only a small performance
overhead.

The solution proposed securely binds software to a hard-
ware device and protects the data stored on the platform
wherever it is stored. The binding is secure against even a
powerful attacker who can read any device storage outside
of the CPU at any time.

Future work on the prototype would be to implement the
scheme for protecting data which is stored in the memory,
not just the application instructions. Another extension for
the prototype would be to include a hardware fingerprinting
technique as part of the generating of the instruction masks,
this would ensure that the masking is specific to the hardware
device. Further work on the scheme would be to consider
how regularly the initial C0 mask values would need to be
updated in order for the scheme to be secure. Another area
for study would be to consider how firmware updating could
be performed if this scheme were to be used. Provisioning a
different version of the firmware for every single legitimate
device might not be achievable and so a specific update
protocol may be needed.

7. ACKNOWLEDGEMENTS
Robert P. Lee is supported by the EPSRC and the UK

government as part of the Centre for Doctoral Training in
Cyber Security at Royal Holloway, University of London
(EP/K035584/1).

8. REFERENCES
[1] AGMA. AGMA Global - Elimination of Counterfeiting,

2015.

[2] B. Anckaert, M. Madou, B. D. Sutter, B. D. Bus, K. D.
Bosschere, and B. Preneel. Program obfuscation: a
quantitative approach. pages 15–20, 2007.

[3] A. Appel. Deobfuscation is in NP. Princeton
University, Aug, 21:2, 2002.

[4] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich,
A. Sahai, S. P. Vadhan, and K. Yang. On the
(Im)possibility of Obfuscating Programs. In J. Kilian,
editor, Advances in Cryptology - CRYPTO 2001, 21st
Annual International Cryptology Conference, Santa
Barbara, California, USA, August 19-23, 2001,
Proceedings, volume 2139 of Lecture Notes in Computer
Science, pages 1–18. Springer, 2001.

[5] C. S. Collberg and C. D. Thomborson. Watermarking,
Tamper-Proofing, and Obfuscation-Tools for Software
Protection. IEEE Trans. Software Eng., 28(8):735–746,
2002.

[6] P. F. Cortese, F. Gemmiti, B. Palazzi, M. Pizzonia,
and M. Rimondini. Efficient and Practical
Authentication of PUF-based RFID tags in Supply
Chains. In RFID-Technology and Applications
(RFID-TA), 2010 IEEE International Conference on,
pages 182–188, June 2010.

[7] K. B. Frikken, M. Blanton, and M. J. Atallah. Robust
Authentication Using Physically Unclonable Functions.
In P. Samarati, M. Yung, F. Martinelli, and C. A.
Ardagna, editors, Information Security, 12th
International Conference, ISC 2009, Pisa, Italy,
September 7-9, 2009. Proceedings, volume 5735 of
Lecture Notes in Computer Science, pages 262–277.
Springer, 2009.

[8] B. Gassend, D. E. Clarke, M. van Dijk, and S. Devadas.
Silicon Physical Random Functions. In V. Atluri,
editor, Proceedings of the 9th ACM Conference on
Computer and Communications Security, CCS 2002,
Washington, DC, USA, November 18-22, 2002, pages
148–160. ACM, 2002.

[9] M. A. Gora, A. Maiti, and P. Schaumont. A Flexible
Design Flow for Software IP Binding in Commodity
FPGA. In IEEE Fourth International Symposium on
Industrial Embedded Systems, SIES 2009, Ecole
Polytechnique Federale de Lausanne, Switzerland, July
8-10, 2009, pages 211–218. IEEE, 2009.

[10] J. Guajardo, S. S. Kumar, G. J. Schrijen, and P. Tuyls.
FPGA Intrinsic PUFs and Their Use for IP Protection.
4727:63–80, 2007.

[11] J. Guajardo, S. S. Kumar, G. J. Schrijen, and P. Tuyls.
Brand and IP protection with Physical Unclonable
Functions. In International Symposium on Circuits and
Systems (ISCAS 2008), 18-21 May 2008, Sheraton
Seattle Hotel, Seattle, Washington, USA, pages
3186–3189. IEEE, 2008.

[12] S. Katzenbeisser, Ü. Koçabas, V. Rozic, A. Sadeghi,
I. Verbauwhede, and C. Wachsmann. PUFs: Myth,
Fact or Busted? A Security Evaluation of Physically
Unclonable Functions (PUFs) Cast in Silicon.
7428:283–301, 2012.

[13] T. Kean. Cryptographic Rights Management of FPGA
Intellectual Property Cores. In FPGA, pages 113–118,
2002.

[14] S. Kleber, F. Unterstein, M. Matousek, F. Kargl,
F. Slomka, and M. Hiller. Secure Execution
Architecture based on PUF-driven Instruction Level
Code Encryption. IACR Cryptology ePrint Archive,
2015:651, 2015.

[15] P. Koopman. Embedded System Security. IEEE
Computer, 37(7):95–97, 2004.



[16] J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van Dijk,
and S. Devadas. A Technique to Build a Secret Key in
Integrated Circuits for Identification and
Authentication Applications. In VLSI Circuits, pages
176–179. Widerkehr and Associates, 2004.

[17] R. Maes. Physically Unclonable Functions -
Constructions, Properties and Applications. Springer,
2013.

[18] R. Maes, P. Tuyls, and I. Verbauwhede. Intrinsic PUFs
From Flip-Flops on Reconfigurable Devices. Benelux
Workshop on Information and System, (71369):1–17,
2008.

[19] P. Marwedel. Embedded System Design. Kluwer, 2003.

[20] T. Morris. Trusted Platform Module. In H. C. A. van
Tilborg and S. Jajodia, editors, Encyclopedia of
Cryptography and Security, 2nd Ed., pages 1332–1335.
Springer, 2011.

[21] I. Paul. New tool reawakens disabled hardware in
high-end AMD Radeon graphics cards, 2015.

[22] Postscapes Labs. Internet of Things Market Size, 2015.

[23] E. Simpson and P. Schaumont. Offline
Hardware/Software Authentication for Reconfigurable
Platforms. In L. Goubin and M. Matsui, editors,
Cryptographic Hardware and Embedded Systems -
CHES 2006, 8th International Workshop, Yokohama,
Japan, October 10-13, 2006, Proceedings, volume 4249
of Lecture Notes in Computer Science, pages 311–323.
Springer, 2006.

[24] G. E. Suh and S. Devadas. Physical Unclonable
Functions for Device Authentication and Secret Key
Generation. pages 9–14, 2007.

[25] T. Toyofuku, T. Tabata, and K. Sakurai. Program
Obfuscation Scheme Using Random Numbers to
Complicate Control Flow. In T. Enokido, L. Yan,
B. Xiao, D. Kim, Y. Dai, and L. T. Yang, editors,
Embedded and Ubiquitous Computing - EUC 2005
Workshops, EUC 2005 Workshops: UISW, NCUS,
SecUbiq, USN, and TAUES, Nagasaki, Japan,
December 6-9, 2005, Proceedings, volume 3823 of
Lecture Notes in Computer Science, pages 916–925.
Springer, 2005.

[26] Trusted Computing Group. Part 1 Design Principles.
In TPM Main Specification. TCG, 2011.

[27] V. van der Leest and P. Tuyls. Anti-Counterfeiting with
Hardware Intrinsic Security. pages 1137–1142, 2013.

[28] Xilinx, Inc. PicoBlaze 8-bit Microcontroller, 2011.


	Introduction
	Problem Description
	Notation
	Problem Scenarios
	Attacker Model
	Assumptions
	Design Requirements

	Related Work
	Anti-counterfeiting measures
	Hardware Intrinsic Security
	Physically Unclonable Functions


	Proposed Solution
	Design Overview
	Securing Mutable Data
	Choice of Function F
	Implementation Considerations
	Solution Analysis
	Security Evaluation

	Implementation
	Development Platform
	Demonstration Application
	Unmasking Unit
	Performance Analysis
	Security Analysis

	Conclusion
	Acknowledgements
	References

