134 research outputs found

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    TIME AND LOCATION FORENSICS FOR MULTIMEDIA

    Get PDF
    In the modern era, a vast quantities of digital information is available in the form of audio, image, video, and other sensor recordings. These recordings may contain metadata describing important information such as the time and the location of recording. As the stored information can be easily modified using readily available digital editing software, determining the authenticity of a recording has utmost importance, especially for critical applications such as law enforcement, journalism, and national and business intelligence. In this dissertation, we study novel environmental signatures induced by power networks, which are known as Electrical Network Frequency (ENF) signals and become embedded in multimedia data at the time of recording. ENF fluctuates slightly over time from its nominal value of 50 Hz/60 Hz. The major trend of fluctuations in the ENF remains consistent across the entire power grid, including when measured at physically distant geographical locations. We investigate the use of ENF signals for a variety of applications such as estimation/verification of time and location of a recording's creation, and develop a theoretical foundation to support ENF based forensic analysis. In the first part of the dissertation, the presence of ENF signals in visual recordings captured in electric powered lighting environments is demonstrated. The source of ENF signals in visual recordings is shown to be the invisible flickering of indoor lighting sources such as fluorescent and incandescent lamps. The techniques to extract ENF signals from recordings demonstrate that a high correlation is observed between the ENF fluctuations obtained from indoor lighting and that from the power mains supply recorded at the same time. Applications of the ENF signal analysis to tampering detection of surveillance video recordings, and forensic binding of the audio and visual track of a video are also discussed. In the following part, an analytical model is developed to gain an understanding of the behavior of ENF signals. It is demonstrated that ENF signals can be modeled using a time-varying autoregressive process. The performance of the proposed model is evaluated for a timestamp verification application. Based on this model, an improved algorithm for ENF matching between a reference signal and a query signal is provided. It is shown that the proposed approach provides an improved matching performance as compared to the case when matching is performed directly on ENF signals. Another application of the proposed model in learning the power grid characteristics is also explicated. These characteristics are learnt by using the modeling parameters as features to train a classifier to determine the creation location of a recording among candidate grid-regions. The last part of the dissertation demonstrates that differences exist between ENF signals recorded in the same grid-region at the same time. These differences can be extracted using a suitable filter mechanism and follow a relationship with the distance between different locations. Based on this observation, two localization protocols are developed to identify the location of a recording within the same grid-region, using ENF signals captured at anchor locations. Localization accuracy of the proposed protocols are then compared. Challenges in using the proposed technique to estimate the creation location of multimedia recordings within the same grid, along with efficient and resilient trilateration strategies in the presence of outliers and malicious anchors, are also discussed

    Resiliency Assessment and Enhancement of Intrinsic Fingerprinting

    Get PDF
    Intrinsic fingerprinting is a class of digital forensic technology that can detect traces left in digital multimedia data in order to reveal data processing history and determine data integrity. Many existing intrinsic fingerprinting schemes have implicitly assumed favorable operating conditions whose validity may become uncertain in reality. In order to establish intrinsic fingerprinting as a credible approach to digital multimedia authentication, it is important to understand and enhance its resiliency under unfavorable scenarios. This dissertation addresses various resiliency aspects that can appear in a broad range of intrinsic fingerprints. The first aspect concerns intrinsic fingerprints that are designed to identify a particular component in the processing chain. Such fingerprints are potentially subject to changes due to input content variations and/or post-processing, and it is desirable to ensure their identifiability in such situations. Taking an image-based intrinsic fingerprinting technique for source camera model identification as a representative example, our investigations reveal that the fingerprints have a substantial dependency on image content. Such dependency limits the achievable identification accuracy, which is penalized by a mismatch between training and testing image content. To mitigate such a mismatch, we propose schemes to incorporate image content into training image selection and significantly improve the identification performance. We also consider the effect of post-processing against intrinsic fingerprinting, and study source camera identification based on imaging noise extracted from low-bit-rate compressed videos. While such compression reduces the fingerprint quality, we exploit different compression levels within the same video to achieve more efficient and accurate identification. The second aspect of resiliency addresses anti-forensics, namely, adversarial actions that intentionally manipulate intrinsic fingerprints. We investigate the cost-effectiveness of anti-forensic operations that counteract color interpolation identification. Our analysis pinpoints the inherent vulnerabilities of color interpolation identification, and motivates countermeasures and refined anti-forensic strategies. We also study the anti-forensics of an emerging space-time localization technique for digital recordings based on electrical network frequency analysis. Detection schemes against anti-forensic operations are devised under a mathematical framework. For both problems, game-theoretic approaches are employed to characterize the interplay between forensic analysts and adversaries and to derive optimal strategies. The third aspect regards the resilient and robust representation of intrinsic fingerprints for multiple forensic identification tasks. We propose to use the empirical frequency response as a generic type of intrinsic fingerprint that can facilitate the identification of various linear and shift-invariant (LSI) and non-LSI operations

    Image and Video Forensics

    Get PDF
    Nowadays, images and videos have become the main modalities of information being exchanged in everyday life, and their pervasiveness has led the image forensics community to question their reliability, integrity, confidentiality, and security. Multimedia contents are generated in many different ways through the use of consumer electronics and high-quality digital imaging devices, such as smartphones, digital cameras, tablets, and wearable and IoT devices. The ever-increasing convenience of image acquisition has facilitated instant distribution and sharing of digital images on digital social platforms, determining a great amount of exchange data. Moreover, the pervasiveness of powerful image editing tools has allowed the manipulation of digital images for malicious or criminal ends, up to the creation of synthesized images and videos with the use of deep learning techniques. In response to these threats, the multimedia forensics community has produced major research efforts regarding the identification of the source and the detection of manipulation. In all cases (e.g., forensic investigations, fake news debunking, information warfare, and cyberattacks) where images and videos serve as critical evidence, forensic technologies that help to determine the origin, authenticity, and integrity of multimedia content can become essential tools. This book aims to collect a diverse and complementary set of articles that demonstrate new developments and applications in image and video forensics to tackle new and serious challenges to ensure media authenticity

    An Automatic Digital Audio Authentication/Forensics System

    Get PDF
    With the continuous rise in ingenious forgery, a wide range of digital audio authentication applications are emerging as a preventive and detective control in real-world circumstances, such as forged evidence, breach of copyright protection, and unauthorized data access. To investigate and verify, this paper presents a novel automatic authentication system that differentiates between the forged and original audio. The design philosophy of the proposed system is primarily based on three psychoacoustic principles of hearing, which are implemented to simulate the human sound perception system. Moreover, the proposed system is able to classify between the audio of different environments recorded with the same microphone. To authenticate the audio and environment classification, the computed features based on the psychoacoustic principles of hearing are dangled to the Gaussian mixture model to make automatic decisions. It is worth mentioning that the proposed system authenticates an unknown speaker irrespective of the audio content i.e., independent of narrator and text. To evaluate the performance of the proposed system, audios in multi-environments are forged in such a way that a human cannot recognize them. Subjective evaluation by three human evaluators is performed to verify the quality of the generated forged audio. The proposed system provides a classification accuracy of 99.2% ± 2.6. Furthermore, the obtained accuracy for the other scenarios, such as text-dependent and text-independent audio authentication, is 100% by using the proposed system

    Intrinsically Embedded Signatures for Multimedia Forensics

    Get PDF
    This dissertation examines the use of signatures that are intrinsically embedded in media recordings for studies and applications in multimedia forensics. These near-invisible signatures are fingerprints that are captured unintentionally in a recording due to influences from the environment in which it was made and the recording device that was used to make it. We focus on two types of such signatures: the Electric Network Frequency (ENF) signal and the flicker signal. The ENF is the frequency of power distribution networks and has a nominal value of 50Hz or 60Hz. The ENF fluctuates around its nominal value due to load changes in the grid. It is particularly relevant to multimedia forensics because ENF variations captured intrinsically in a media recording reflect the time and location related properties of the respective area in which it was made. This has led to a number of applications in information forensics and security, such as time-of-recording authentication/estimation and ENF-based detection of tampering in a recording. The first part of this dissertation considers the extraction and detection of the ENF signal. We discuss our proposed spectrum combining approach for ENF estimation that exploits the presence of ENF traces at several harmonics within the same recording to produce more accurate and robust ENF signal estimates. We also explore possible factors that can promote or hinder the capture of ENF traces in recordings, which is important for a better understanding of the real-world applicability of ENF signals. Next, we discuss novel real-world ENF-based applications proposed through this dissertation research. We discuss using the embedded ENF signal to identify the region-of-recording of a media signal through a pattern analysis and learning framework that distinguishes between ENF signals coming from different power grids. We also discuss the use of the ENF traces embedded in a video to characterize the video camera that had originally produced the video, an application that was inspired by our work on flicker forensics. The last part of the dissertation considers the flicker signal and its use in forensics. We address problems in the entertainment industry pertaining to movie piracy related investigations, where a pirated movie is formed by camcording media content shown on an LCD screen. The flicker signature can be inherently created in such a scenario due to the interplay between the back-light of an LCD screen and the recording mechanism of the video camera. We build an analytic model of the flicker, relating it to inner parameters of the video camera and the screen producing the video. We then demonstrate that solely analyzing such a pirated video can lead to the identification of the video camera and the screen that produced the video, which can be used as corroborating evidence in piracy investigations

    Instantaneous frequency estimation and localization for ENF signals

    Get PDF
    ABSTRACT Forensic analysis based on Electric Network Frequency (ENF) fluctuations is an emerging technology for authenticating multimedia recordings. This class of techniques requires extracting frequency fluctuations from multimedia recordings and comparing them with the ground truth frequencies, obtained from the power mains, at the corresponding time. Most current guidelines for frequency estimation from the ENF signal use non-parametric approaches. Such approaches have limited temporal-frequency resolution due to the tradeoffs of the time-frequency resolutions as well as computational power. To facilitate robust high-resolution matching, it is important to estimate instantaneous frequency using as few samples as possible. The use of subspace-based methods for high resolution frequency estimation is fairly new for ENF analysis. In this paper, a systematic study of several high resolution low-complexity frequency estimation algorithms is conducted, focusing on estimating the frequencies in short time-frames. After establishing the performance of several frequency estimation algorithms, a study towards using the ENF signal for estimating the location-of-recording is carried out. Experiments conducted on ENF data collected in several cities indicate the presence of location-specific signatures that can be exploited for future forensic applications

    Evolution of Attacks on Intelligent Surveillance Systems and Effective Detection Techniques

    Get PDF
    Intelligent surveillance systems play an essential role in modern smart cities to enable situational awareness. As part of the critical infrastructure, surveillance systems are often targeted by attackers aiming to compromise the security and safety of smart cities. Manipulating the audio or video channels could create a false perception of captured events and bypass detection. This chapter presents an overview of the attack vectors designed to compromise intelligent surveillance systems and discusses existing detection techniques. With advanced machine learning (ML) models and computing resources, both attack vectors and detection techniques have evolved to use ML-based techniques more effectively, resulting in non-equilibrium dynamics. The current detection techniques vary from training a neural network to detect forgery artifacts to use the intrinsic and extrinsic environmental fingerprints for any manipulations. Therefore, studying the effectiveness of different detection techniques and their reliability against the defined attack vectors is a priority to secure the system and create a plan of action against potential threats
    • …
    corecore