1,091 research outputs found

    Feature Analysis for Classification of Physical Actions using surface EMG Data

    Full text link
    Based on recent health statistics, there are several thousands of people with limb disability and gait disorders that require a medical assistance. A robot assisted rehabilitation therapy can help them recover and return to a normal life. In this scenario, a successful methodology is to use the EMG signal based information to control the support robotics. For this mechanism to function properly, the EMG signal from the muscles has to be sensed and then the biological motor intention has to be decoded and finally the resulting information has to be communicated to the controller of the robot. An accurate detection of the motor intention requires a pattern recognition based categorical identification. Hence in this paper, we propose an improved classification framework by identification of the relevant features that drive the pattern recognition algorithm. Major contributions include a set of modified spectral moment based features and another relevant inter-channel correlation feature that contribute to an improved classification performance. Next, we conducted a sensitivity analysis of the classification algorithm to different EMG channels. Finally, the classifier performance is compared to that of the other state-of the art algorithm

    State of the Art Lower Limb Robotic Exoskeletons for Elderly Assistance

    Get PDF
    https://ieeexplore.ieee.org/document/8759880/keywords#keywordsThe number of elderly populations is rapidly increasing. Majority of elderly people face difficulties while walking because the muscular activity or other gait-related parameters start to deteriorate with aging. Therefore, the quality of life among them can be suffered. To make their life more comfortable, service providing robotic solutions in terms of wearable powered exoskeletons should be realized. Assistive powered exoskeletons are capable of providing additional torque to support various activities, such as walking, sit to stand, and stand to sit motions to subjects with mobility impairments. Specifically, the powered exoskeletons try to maintain and keep subjects' limbs on the specified motion trajectory. The state of the art of currently available lower limb assistive exoskeletons for weak and elderly people is presented in this paper. The technology employed in the assistive devices, such as actuation and power supply types, control strategies, their functional abilities, and the mechanism design, is thoroughly described. The outcome of studied literature reveals that there is still much work to be done in the improvement of assistive exoskeletons in terms of their technological aspects, such as choosing proper and effective control methods, developing user friendly interfaces, and decreasing the costs of device to make it more affordable, meanwhile ensuring safe interaction for the end-users

    A review on design of upper limb exoskeletons

    Get PDF

    Proposal for a Modular-Type Knee-Assistive Wearable Unit and Verification of Its Feasibility

    Get PDF
    To study human locomotor adaptation and feasibility, we used a lower limb robotic exoskeleton controlled by the wearer's muscle activity. A healthy and normal subject walked while wearing an electrically powered knee exoskeleton on two knees, which effectively increased the plantar flexor strength of the knees and their neighboring muscles. We examined the capabilities and feasibility of knee assistive system (KAS) by testing the adapted motor pattern and the EMG signal variance for exoskeleton walking. It is designed for specific tasks such as level walking and step walking while the user is carrying heavy materials. Using the KAS; custom-made muscle stiffness sensors (MSS), we analyzed the muscle activity pattern which was implemented on the operating algorithm of KAS while he was walking, and examined its feasibility. The results demonstrate that robotic exoskeletons controlled by muscle activity could be useful way of assisting with human walking.This work is financially supported by the Ministry of Education and Human Resources Development (MOE), the Ministry of Cmmerce, Industry, and Energy (MOCIE), and te Ministry of Labor (MOLAB) through the fostering project of the Lab of Excellency

    Active exoskeleton control systems: State of the art

    Get PDF
    To get a compliant active exoskeleton controller, the force interaction controllers are mostly used in form of either the impedance or admittance controllers. The impedance or admittance controllers can only work if they are followed by either the force or the position controller respectively. These combinations place the impedance or admittance controller as high-level controller while the force or position controller as low-level controller. From the application point of view, the exoskeleton controllers are equipped by task controllers that can be formed in several ways depend on the aims. This paper presents the review of the control systems in the existing active exoskeleton in the last decade. The exoskeleton control system can be categorized according to the model system, the physical parameters, the hierarchy and the usage. These considerations give different control schemes. The main consideration of exoskeleton control design is how to achieve the best control performances. However, stability and safety are other important issues that have to be considered. © 2012 The Authors
    corecore