1,202 research outputs found

    Wind Power Forecasting Methods Based on Deep Learning: A Survey

    Get PDF
    Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of the atmosphere that encompasses nearby atmospheric pressure, temperature, roughness, and obstacles. As an effective method of high-dimensional feature extraction, deep neural network can theoretically deal with arbitrary nonlinear transformation through proper structural design, such as adding noise to outputs, evolutionary learning used to optimize hidden layer weights, optimize the objective function so as to save information that can improve the output accuracy while filter out the irrelevant or less affected information for forecasting. The establishment of high-precision wind speed and wind power forecasting models is always a challenge due to the randomness, instantaneity and seasonal characteristics

    Week Ahead Electricity Price Forecasting Using Artificial Bee Colony Optimized Extreme Learning Machine with Wavelet Decomposition

    Get PDF
    Electricity price forecasting is one of the more complex processes, due to its non-linearity and highly varying nature. However, in today\u27s deregulated market and smart grid environment, the forecasted price is one of the important data sources used by producers in the bidding process. It also helps the consumer know the hourly price in order to manage the monthly electricity price. In this paper, a novel electricity price forecasting method is presented, based on the Artificial Bee Colony optimized Extreme Learning Machine (ABC-ELM) with wavelet decomposition technique. This has been attempted with two different input data formats. Each data format is decomposed using wavelet decomposition, Daubechies Db4 at level 6; all the decomposed data are forecasted using the proposed method and aggregate is formed for the final prediction. This prediction has been attempted in three different electricity markets, in Finland, Switzerland and India. The forecasted values of the three different countries, using the proposed method are compared with various other methods, using graph plots and error metrics and the proposed method is found to provide better accuracy

    Forecasting Models for Integration of Large-Scale Renewable Energy Generation to Electric Power Systems

    Get PDF
    Amid growing concerns about climate change and non-renewable energy sources deple¬tion, vari¬able renewable energy sources (VRESs) are considered as a feasible substitute for conventional environment-polluting fossil fuel-based power plants. Furthermore, the transition towards clean power systems requires additional transmission capacity. Dynamic thermal line rating (DTLR) is being considered as a potential solution to enhance the current transmission line capacity and omit/postpone transmission system expansion planning, while DTLR is highly dependent on weather variations. With increasing the accommodation of VRESs and application of DTLR, fluctuations and variations thereof impose severe and unprecedented challenges on power systems operation. Therefore, short-term forecasting of large-scale VERSs and DTLR play a crucial role in the electric power system op¬eration problems. To this end, this thesis devotes on developing forecasting models for two large-scale VRESs types (i.e., wind and tidal) and DTLR. Deterministic prediction can be employed for a variety of power system operation problems solved by deterministic optimization. Also, the outcomes of deterministic prediction can be employed for conditional probabilistic prediction, which can be used for modeling uncertainty, used in power system operation problems with robust optimization, chance-constrained optimization, etc. By virtue of the importance of deterministic prediction, deterministic prediction models are developed. Prevalently, time-frequency decomposition approaches are adapted to decompose the wind power time series (TS) into several less non-stationary and non-linear components, which can be predicted more precisely. However, in addition to non-stationarity and nonlinearity, wind power TS demonstrates chaotic characteristics, which reduces the predictability of the wind power TS. In this regard, a wind power generation prediction model based on considering the chaosity of the wind power generation TS is addressed. The model consists of a novel TS decomposition approach, named multi-scale singular spectrum analysis (MSSSA), and least squares support vector machines (LSSVMs). Furthermore, deterministic tidal TS prediction model is developed. In the proposed prediction model, a variant of empirical mode decomposition (EMD), which alleviates the issues associated with EMD. To further improve the prediction accuracy, the impact of different components of wind power TS with different frequencies (scales) in the spatiotemporal modeling of the wind farm is assessed. Consequently, a multiscale spatiotemporal wind power prediction is developed, using information theory-based feature selection, wavelet decomposition, and LSSVM. Power system operation problems with robust optimization and interval optimization require prediction intervals (PIs) to model the uncertainty of renewables. The advanced PI models are mainly based on non-differentiable and non-convex cost functions, which make the use of heuristic optimization for tuning a large number of unknown parameters of the prediction models inevitable. However, heuristic optimization suffers from several issues (e.g., being trapped in local optima, irreproducibility, etc.). To this end, a new wind power PI (WPPI) model, based on a bi-level optimization structure, is put forward. In the proposed WPPI, the main unknown parameters of the prediction model are globally tuned based on optimizing a convex and differentiable cost function. In line with solving the non-differentiability and non-convexity of PI formulation, an asymmetrically adaptive quantile regression (AAQR) which benefits from a linear formulation is proposed for tidal uncertainty modeling. In the prevalent QR-based PI models, for a specified reliability level, the probabilities of the quantiles are selected symmetrically with respect the median probability. However, it is found that asymmetrical and adaptive selection of quantiles with respect to median can provide more efficient PIs. To make the formulation of AAQR linear, extreme learning machine (ELM) is adapted as the prediction engine. Prevalently, the parameters of activation functions in ELM are selected randomly; while different sets of random values might result in dissimilar prediction accuracy. To this end, a heuristic optimization is devised to tune the parameters of the activation functions. Also, to enhance the accuracy of probabilistic DTLR, consideration of latent variables in DTLR prediction is assessed. It is observed that convective cooling rate can provide informative features for DTLR prediction. Also, to address the high dimensional feature space in DTLR, a DTR prediction based on deep learning and consideration of latent variables is put forward. Numerical results of this thesis are provided based on realistic data. The simulations confirm the superiority of the proposed models in comparison to traditional benchmark models, as well as the state-of-the-art models

    Harvesting-aware energy management for environmental monitoring WSN

    Get PDF
    Wireless sensor networks can be used to collect data in remote locations, especially when energy harvesting is used to extend the lifetime of individual nodes. However, in order to use the collected energy most effectively, its consumption must be managed. In this work, forecasts of diurnal solar energies were made based on measurements of atmospheric pressure. These forecasts were used as part of an adaptive duty cycling scheme for node level energy management. This management was realized with a fuzzy logic controller that has been tuned using differential evolution. Controllers were created using one and two days of energy forecasts, then simulated in software. These controllers outperformed a human-created reference controller by taking more measurements while using less reserve energy during the simulated period. The energy forecasts were comparable to other available methods, while the method of tuning the fuzzy controller improved overall node performance. The combination of the two is a promising method of energy management.Web of Science105art. no. 60

    Adaptive Grey Wolf Optimization Technique for Stock Index Price Prediction on Recurring Neural Network Variants

    Get PDF
    In this paper, we propose a Long short-term memory (LSTM) and Adaptive Grey Wolf Optimization (GWO)--based hybrid model for predicting the stock prices of the Major Indian stock indices, i.e., Sensex. The LSTM is an advanced neural network that handles uncertain, nonlinear, and sequential data. The challenges are its weight and bias optimization. The classical backpropagation has issues of dangling on local minima or overfitting the dataset. Thus, we propose a GWO-based hybrid approach to evolve the weights and biases of the LSTM and the dense layers. We have made the GWO more robust by introducing an approach to improve the best possible solution by using the optimal ranking of the wolves. The proposed model combines the GWO with Adam Optimizer to train the LSTM. Apart from the LSTM, we have also implemented the Adaptive GWO on other variants of Recurring Neural Networks (RNN) like LSTM, Bi-Directional LSTM, Gated Recurrent Units (GRU), and Bi-Directional GRU and computed the corresponding results. The Adaptive GWO here evolves the initial weights and biases of the above-discussed neural networks. In this research, we have also compared the forecasting efficiency of our proposed work with a particle-warm optimization (PSO) based hybrid LSTM model, simple Grey-wolf Optimization (GWO), and Adaptive PSO. According to the experimental findings, the suggested model has effectively used the best initial weights, and its results are the best overall
    corecore