5 research outputs found

    High speed event-based visual processing in the presence of noise

    Get PDF
    Standard machine vision approaches are challenged in applications where large amounts of noisy temporal data must be processed in real-time. This work aims to develop neuromorphic event-based processing systems for such challenging, high-noise environments. The novel event-based application-focused algorithms developed are primarily designed for implementation in digital neuromorphic hardware with a focus on noise robustness, ease of implementation, operationally useful ancillary signals and processing speed in embedded systems

    Multimodal Signal Processing for Diagnosis of Cardiorespiratory Disorders

    Get PDF
    This thesis addresses the use of multimodal signal processing to develop algorithms for the automated processing of two cardiorespiratory disorders. The aim of the first application of this thesis was to reduce false alarm rate in an intensive care unit. The goal was to detect five critical arrhythmias using processing of multimodal signals including photoplethysmography, arterial blood pressure, Lead II and augmented right arm electrocardiogram (ECG). A hierarchical approach was used to process the signals as well as a custom signal processing technique for each arrhythmia type. Sleep disorders are a prevalent health issue, currently costly and inconvenient to diagnose, as they normally require an overnight hospital stay by the patient. In the second application of this project, we designed automated signal processing algorithms for the diagnosis of sleep apnoea with a main focus on the ECG signal processing. We estimated the ECG-derived respiratory (EDR) signal using different methods: QRS-complex area, principal component analysis (PCA) and kernel PCA. We proposed two algorithms (segmented PCA and approximated PCA) for EDR estimation to enable applying the PCA method to overnight recordings and rectify the computational issues and memory requirement. We compared the EDR information against the chest respiratory effort signals. The performance was evaluated using three automated machine learning algorithms of linear discriminant analysis (LDA), extreme learning machine (ELM) and support vector machine (SVM) on two databases: the MIT PhysioNet database and the St. Vincent’s database. The results showed that the QRS area method for EDR estimation combined with the LDA classifier was the highest performing method and the EDR signals contain respiratory information useful for discriminating sleep apnoea. As a final step, heart rate variability (HRV) and cardiopulmonary coupling (CPC) features were extracted and combined with the EDR features and temporal optimisation techniques were applied. The cross-validation results of the minute-by-minute apnoea classification achieved an accuracy of 89%, a sensitivity of 90%, a specificity of 88%, and an AUC of 0.95 which is comparable to the best results reported in the literature

    ELM solutions for event-based systems

    No full text
    Whilst most engineered systems use signals that are continuous in time, there is a domain of systems in which signals consist of events. Events, like Dirac delta functions, have no meaningful time duration. Many important real-world systems are intrinsically event-based, including the mammalian brain, in which the primary packets of data are spike events, or action potentials. In this domain, signal processing requires responses to spatia-temporal patterns of events. We show that some straightforward modifications to the standard ELM topology produce networks that are able to perform spatiatemporal event processing online with a high degree of accuracy. The modifications involve the re-definition of hidden layer units as synaptic kernels, in which the input delta functions are transformed into continuous-valued signals using a variety of impulse-response functions. This permits the use of linear solution methods in the output layer, which can produce events as output. if modeled as a classifier - the output classes are "event" or "'no event". We illustrate the method in application to a spike-processing problem

    ELM solutions for event-based systems

    No full text
    Whilst most engineered systems use signals that are continuous in time, there is a domain of systems in which signals consist of events. Events, like Dirac delta functions, have no meaningful time duration. Many important real-world systems are intrinsically event-based, including the mammalian brain, in which the primary packets of data are spike events, or action potentials. In this domain, signal processing requires responses to spatia-temporal patterns of events. We show that some straightforward modifications to the standard ELM topology produce networks that are able to perform spatiatemporal event processing online with a high degree of accuracy. The modifications involve the re-definition of hidden layer units as synaptic kernels, in which the input delta functions are transformed into continuous-valued signals using a variety of impulse-response functions. This permits the use of linear solution methods in the output layer, which can produce events as output. if modeled as a classifier - the output classes are "event" or "'no event". We illustrate the method in application to a spike-processing problem
    corecore