6,172 research outputs found

    EEG-based driver fatigue detection using hybrid deep generic model

    Full text link
    © 2016 IEEE. Classification of electroencephalography (EEG)-based application is one of the important process for biomedical engineering. Driver fatigue is a major case of traffic accidents worldwide and considered as a significant problem in recent decades. In this paper, a hybrid deep generic model (DGM)-based support vector machine is proposed for accurate detection of driver fatigue. Traditionally, a probabilistic DGM with deep architecture is quite good at learning invariant features, but it is not always optimal for classification due to its trainable parameters are in the middle layer. Alternatively, Support Vector Machine (SVM) itself is unable to learn complicated invariance, but produces good decision surface when applied to well-behaved features. Consolidating unsupervised high-level feature extraction techniques, DGM and SVM classification makes the integrated framework stronger and enhance mutually in feature extraction and classification. The experimental results showed that the proposed DBN-based driver fatigue monitoring system achieves better testing accuracy of 73.29 % with 91.10 % sensitivity and 55.48 % specificity. In short, the proposed hybrid DGM-based SVM is an effective method for the detection of driver fatigue in EEG

    Random subspace K-NN based ensemble classifier for driver fatigue detection utilizing selected EEG channels

    Get PDF
    Nowadays, many studies have been conducted to assess driver fatigue, as it has become one of the leading causes of traffic crashes. However, with the use of advanced features and machine learning approaches, EEG signals may be processed in an effective way, allowing fatigue to be detected promptly and efficiently. An optimal channel selection approach and a competent classification algorithm might be viewed as a critical aspect of efficient fatigue detection by the driver. In the present framework, a new channel selection algorithm based on correlation coefficients and an ensemble classifier based on random subspace k-nearest neighbour (k-NN) has been presented to enhance the classification performance of EEG data for driver fatigue detection. Moreover, power spectral density (PSD) was used to extract the feature, confirming the presented method's robustness. Additionally, to make the fatigue detection system faster, we conducted the experiment in three different time windows, including 0.5s, 0.75s, and 1s. It was found that the proposed method attained classification accuracy of 99.99% in a 0.5 second time window to identify driver fatigue by means of EEG. The outstanding performance of the presented framework can be used effectively in EEG-based driver fatigue detection

    Instanceeasytl: an improved transfer-learning method for EEG-based cross-subject fatigue detection

    Get PDF
    Electroencephalogram (EEG) is an effective indicator for the detection of driver fatigue. Due to the significant differences in EEG signals across subjects, and difficulty in collecting sufficient EEG samples for analysis during driving, detecting fatigue across subjects through using EEG signals remains a challenge. EasyTL is a kind of transfer-learning model, which has demonstrated better performance in the field of image recognition, but not yet been applied in cross-subject EEG-based applications. In this paper, we propose an improved EasyTL-based classifier, the InstanceEasyTL, to perform EEG-based analysis for cross-subject fatigue mental-state detection. Experimental results show that InstanceEasyTL not only requires less EEG data, but also obtains better performance in accuracy and robustness than EasyTL, as well as existing machine-learning models such as Support Vector Machine (SVM), Transfer Component Analysis (TCA), Geodesic Flow Kernel (GFK), and Domain-adversarial Neural Networks (DANN), etc

    Single channel wireless EEG device for real-time fatigue level detection

    Full text link
    © 2015 IEEE. Driver fatigue problem is one of the important factors of traffic accidents. Recent years, many research had investigated that using EEG signals can effectively detect driver's drowsiness level. However, real-time monitoring system is required to apply these fatigue level detection techniques in the practical application, especially in the real-road driving. Therefore, it required less channels, portable and wireless, real-time monitoring and processing techniques for developing the real-time monitoring system. In this study, we develop a single channel wireless EEG device which can real-time detect driver's fatigue level on the mobile device such as smart phone or tablet. The developed device is investigated to obtain a better and precise understanding of brain activities of mental fatigue under driving, which is of great benefit for devolvement of detection of driving fatigue system. This system consists of a Bluetooth-enabled one channel EEG, a regression model, and smartphone, which was a platform recording and transforming the raw EEG data to useful driving status. In the experiment, this was a sustained-attention driving task to implement in a virtual-reality (VR) driving simulator. To training model and develop the system, we were performed for 15 subjects to study Electroencephalography (EEG) brain dynamics by using a mobile and wireless EEG device. Based on the outstanding training results, the leave-one-subject-out cross validation test obtained 90% fatigue detection accuracy. These results indicate that the combination of a smartphone and wireless EEG device constitutes an effective and easy wearable solution for detecting and preventing driver fatigue in real driving environments

    Assessing Ratio-Based Fatigue Indexes Using a Single Channel EEG

    Get PDF
    Driver fatigue is a state of reduced mental alertness which impairs the performance of a range of cognitive and psychomotor tasks, including driving. According to the National Highway Traffic Safety Administration, driver fatigue was responsible for 72,000 accidents that lead to more than 800 deaths in 2015. A reliable method of driver fatigue detection is needed to prevent such accidents. There has been a great deal of research into studying driver fatigue via electroencephalography (EEG) to analyze brain wave data. These research works have produced three competing EEG data-based ratios that have the potential to detect driver fatigue. Research has shown these three ratios trend downward as fatigue increases. However, no empirical research has been conducted to determine whether drivers begin to feel fatigue at a certain Percent Change from an alert state to a fatigue state in one or more of these ratios. If a Percent Change could be identified for which drivers begin to feel fatigue, then it could be used as a method of fatigue detection in real-time system. This research focuses on answering this question by collecting brain wave data via an EEG device over a 60-minute driving session for 10 University of North Florida (UNF) students. A frequency distribution and cluster analysis was done to identify a common Percent Change for the participants who experienced fatigue. The results of the analysis were compared to a subset of users who did not experience fatigue to validate the findings. The project was approved by the UNF IRB on Nov. 1, 2016 (reference number 475514-4)

    A LightGBM-Based EEG Analysis Method for Driver Mental States Classification

    Get PDF
    Fatigue driving can easily lead to road traffic accidents and bring great harm to individuals and families. Recently, electroencephalography- (EEG-) based physiological and brain activities for fatigue detection have been increasingly investigated. However, how to find an effective method or model to timely and efficiently detect the mental states of drivers still remains a challenge. In this paper, we combine common spatial pattern (CSP) and propose a light-weighted classifier, LightFD, which is based on gradient boosting framework for EEG mental states identification. ,e comparable results with traditional classifiers, such as support vector machine (SVM), convolutional neural network (CNN), gated recurrent unit (GRU), and large margin nearest neighbor (LMNN), show that the proposed model could achieve better classification performance, as well as the decision efficiency. Furthermore, we also test and validate that LightFD has better transfer learning performance in EEG classification of driver mental states. In summary, our proposed LightFD classifier has better performance in real-time EEG mental state prediction, and it is expected to have broad application prospects in practical brain-computer interaction (BCI)

    Automatic Detection of Driver Fatigue Based on EEG Signals Using a Developed Deep Neural Network

    Get PDF
    In recent years, detecting driver fatigue has been a significant practical necessity and issue. Even though several investigations have been undertaken to examine driver fatigue, there are relatively few standard datasets on identifying driver fatigue. For earlier investigations, conventional methods relying on manual characteristics were utilized to assess driver fatigue. In any case study, such approaches need previous information for feature extraction, which could raise computing complexity. The current work proposes a driver fatigue detection system, which is a fundamental necessity to minimize road accidents. Data from 11 people are gathered for this purpose, resulting in a comprehensive dataset. The dataset is prepared in accordance with previously published criteria. A deep convolutional neural network–long short-time memory (CNN–LSTM) network is conceived and evolved to extract characteristics from raw EEG data corresponding to the six active areas A, B, C, D, E (based on a single channel), and F. The study’s findings reveal that the suggested deep CNN–LSTM network could learn features hierarchically from raw EEG data and attain a greater precision rate than previous comparative approaches for two-stage driver fatigue categorization. The suggested approach may be utilized to construct automatic fatigue detection systems because of their precision and high speed

    Assessing Drivers’ Fatigue State Under Real Traffic Conditions Using EEG Alpha Spindles

    Full text link
    The effectiveness of EEG alpha spindles, defined by short narrowband bursts in the alpha band, as an objective measure for assessing driver fatigue under real driving conditions was examined using an algorithm for the identification of alpha spindles. The method is applied to data recorded under real traffic conditions and compared with the performance of the traditional EEG fatigue measure alpha band power. Statistical analysis revealed significant increases from the first to the last driving section of alpha band power; with larger effect sizes for the alpha spindle based measures. An increased level of fatigue for drop-outs, as compared to participants who did not abort the drive, was observed only by means of alpha spindle parameters. EEG alpha spindle parameters increase both fatigue detection sensitivity and specificity as compared to EEG alpha band power. It is demonstrated that alpha spindles are superior to EEG band power measures for assessing driver fatigue under real traffic conditions
    • …
    corecore