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ABSTRACT 

 
Driver fatigue is a state of reduced mental alertness which impairs the performance of a 

range of cognitive and psychomotor tasks, including driving.  According to the National 

Highway Traffic Safety Administration, driver fatigue was responsible for 72,000 

accidents that lead to more than 800 deaths in 2015.   A reliable method of driver fatigue 

detection is needed to prevent such accidents.   There has been a great deal of research 

into studying driver fatigue via electroencephalography (EEG) to analyze brain wave 

data. These research works have produced three competing EEG data-based ratios that 

have the potential to detect driver fatigue.  

 

Research has shown these three ratios trend downward as fatigue increases. However, no 

empirical research has been conducted to determine whether drivers begin to feel fatigue 

at a certain Percent Change from an alert state to a fatigue state in one or more of these 

ratios.  If a Percent Change could be identified for which drivers begin to feel fatigue, 

then it could be used as a method of fatigue detection in real-time system.  This research 

focuses on answering this question by collecting brain wave data via an EEG device over 

a 60-minute driving session for 10 University of North Florida (UNF) students.  A 

frequency distribution and cluster analysis was done to identify a common Percent 

Change for the participants who experienced fatigue.  The results of the analysis were 

compared to a subset of users who did not experience fatigue to validate the findings.   

The project was approved by the UNF IRB on Nov. 1, 2016 (reference number 475514-

4). 
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Chapter 1 

CHAPTER 1.  INTRODUCTION 

 

Driver fatigue is a state of reduced mental alertness which impairs the performance of a 

range of cognitive and psychomotor tasks, including driving (Lal & Craig, 2001).  Driver 

fatigue tends to manifest itself after periods of long driving, causing a significant problem 

for transportation employees that are forced to drive for extended periods of time.  

According to the National Highway Traffic Safety Administration, driver fatigue was 

responsible for 72,000 accidents that lead to more than 800 deaths in 2015 (National 

Highway Traffic Safety Adminstration, 2017).   A reliable detection method for sensing 

driver fatigue in real time could potentially save lives.     

 

A great deal of research into devising such a detection method has been conducted.  

Some of these techniques include eye movement tracking, heart rate analysis, video based 

facial recognition, and electroencephalography (EEG) (Lal & Craig, 2001).  The former 

methods have not proven to be reliable methods for driver fatigue detection thus far.  For 

example, eye movement and facial recognition rely on camera technology which can be 

subject to error when natural occurrences, such as sun glare, occur.  Much of the research 

surrounding heart rate technology relies on embedding sensors into a steering wheel 

(Minnesota Department of Transportation, 2015).  This results in a need for the driver to 

maintain constant contact with the wheel in order not to affect the detection algorithm.  
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These limitations present a significant problem for implementing a real-time driver 

fatigue detection system using such methods.   

 

EEG devices present a much more practical and reliable solution because they are not 

vulnerable to external influence, and they can be easily embedded in a wearable device.   

EEGs are devices that measure electrical potential from the scalp that is generated when 

neurons fire within the brain.  Research has proven that certain frequencies of this 

electrical potential are indicative of certain mental states (Lal & Craig, 2001).  EEG 

devices can also be paired with modern computing devices to create brain-computer 

interfaces.  Such an interface allows developers to interact with brain wave data 

programmatically, enabling the potential for creating a real-time fatigue detection system.   

 

However, before such a system could be designed, a method for detecting fatigue must be 

established.  During the research for this thesis three different EEG ratios were identified 

that show noticeable trends as fatigue increases.  However, these research works do not 

identify the point at which fatigue beings to occur. Before these ratios can be used for 

real time fatigue detection purposes, it is crucial that research is conducted to identify a 

reliable method of driver fatigue detection.  In this thesis, we examined Percent Change 

from an alert state to a fatigue state as a method for detecting driver fatigue by capturing 

and analyzing data from 10 participants who simulated driving.  By proving that a 

relationship exists between Percent Change and driver fatigue that is common across the 

participant base we may identify a potential method for detecting driver fatigue.  The 
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identification of such a method would help in determining when an alarm could be 

triggered by a real-time system using EEG data before the driver falls asleep.     

 

1.1 Problem Statement 

 

Fatigue is a problem that plagues many in the civilian and professional world.  Driver 

fatigue has been said to cause 20-30% of all roadway accidents, resulting in billions of 

dollars in road related injury costs (Lal & Craig, 2001).    This problem is exacerbated by 

long periods of monotonous driving, particularly at night (Lal & Craig, 2001).  In safety 

critical occupations, such as professional truck driving, this problem can potentially lead 

to major, life threating accidents that could potentially be prevented.  This begs the 

question of how we might prevent such accidents.    

 

Fatigue has been the subject of EEG studies for years.  This has led to a widely held 

understanding that certain brain frequencies are indicative of different mental states such 

as alertness, relaxation, sleep, and deep sleep (Lal & Craig, 2001).  Armed with this 

knowledge, developers can couple EEGs with modern computing devices to create a 

Brain-Computer Interface (BCI) that could potentially detect driver fatigue in real-time.    

 

Fatigue can be detected by tracing variations in the Alpha, Beta, and Theta brain wave 

spectrums provided by BCI devices.  Previous research has analyzed the relative power 

spectrum of these waves to detect mental fatigue, but has often resulted in situations 

where minor fatigue went undetected (Kar , Bhagat, & Routray, 2010).  To account for 
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this, many researchers have turned to a new method of evaluation where ratios of slow to 

fast moving waves were used to set a fatigue index (Kar , Bhagat, & Routray, 2010) (Jap, 

Lal, Fischer, & Bekiaris, 2009) (Ming-ai , Cheng , & Jin-Fu, 2010).   

 

While ratio-based approaches have shown promise, there has been no research to 

determine at which point fatigue begins to occur for a driver.  The purpose of this thesis 

is to identify the Percent Change from an alert state to a fatigue state for each of these 

ratios while driving, and to determine if this Percent Change is common to the majority 

of the participants in our study.  If such a trend were to be identified, it could be used as a 

detection mechanism for a real-time fatigue detection system in future work.    
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Chapter 2 

CHAPTER 2.  BACKGROUND AND LITERATURE REVIEW 

 

2.1 What is Fatigue? 

  

While there has been no globally accepted definition of fatigue, it has been described as 

“a transitory period between awake and sleep and if uninterrupted, can lead to sleep” (Lal 

& Craig, 2001).  Fatigue has been known to reduce attention, compromise judgment, and 

impact decision making skills  (Occupation Safety and Health Administration, 2015). 

Lamond and Dawson (2002) likened a driver that has gone without sleep for a 28-hour 

period to that of a person driving under the influence of the alcohol.  

     

Fatigue can be divided into physical and mental states.  Physical fatigue is associated 

with physiological symptoms such as muscle fatigue, while mental fatigue is considered 

to by psychological in nature.   Mental fatigue is typically gradual and can leave the 

person in a state of relaxation, which will ensure reduced attention and alertness.  

Boredom has also been linked to mental fatigue because it causes similar symptoms of 

reduced attention and weariness.  This happens when the mind perceives external stimuli 

to be low or identical.  This reduces sensory impulses that are fed to the central nervous 

system, inducing a bored state (Lal & Craig, 2001).  
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Driver fatigue can be thought of as an extension of mental fatigue where drivers feel 

similar feelings of weariness after prolonged periods of driving.  Factors that contribute 

to driver fatigue are monotonous periods of driving, length of journey, time of day, and 

irregular work schedules (Lal & Craig, 2000).  While driver fatigue can manifest itself in 

all drivers, it is a particular problem in the transportation industry.    

 

A need exists to measure the physiological features of driver fatigue so there can be an 

intervention before an accident occurs. EEG studies have been used to study such 

features in the past.  EEG devices allow the mental state of a person to be measured by 

detecting micro-volts of electricity that are generated by neural activity.   This activity 

can be broken down into a discrete set of frequencies, all of which are indicative of a 

certain mental state that can help in the development of a driver fatigue detection 

mechanism.   However, to interact with these data programmatically, so that a real-time 

fatigue detection system can be created, a brain-computer interface is needed.   

 

2.2 What are Brain Computer Interfaces? 

 

A Brain-Computer Interface (BCI) has been defined as “a method of communication 

based on neural activity generated by the brain and is independent of its normal pathways 

of peripheral nerves and muscles” (Vallabhaneni, Wang, & He, 2005).  To expand upon 

this, consider the process of human movement.  The initial process begins with the intent 

to move.  This intent prompts signals from the brain to the nervous system, which in turn 

activates the appropriate muscles (Graimann, Allison, & Pfurt, 2010).  A BCI can 
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circumvent this process by measuring the electrical signals in the brain, the signals 

created by the intent to move, and relay them to some computer application for 

processing (Graimann, Allison, & Pfurt, 2010).  This same process can be used to 

perform a multitude of activities such as playing a game, manipulating a mouse cursor, or 

controlling household objects.  Brain signals can be measured in one of two ways, 

invasively or non-invasively.   

 

2.2.1 Invasive 

 

Invasive methods typically require surgery so that electrodes can be placed on the surface 

of the brain.  These electrodes record a signal from the brain which is then documented in 

an intra-cortical recording where it can be used by an application (Graimann, Allison, & 

Pfurt, 2010).  This offers a better signal quality in comparison to the non-invasive 

approach, but also carries a much more significant risk to the subject due to the need for 

brain surgery (Lebedev & Nicolelis, 2006). 

 

2.2.2 Non-Invasive 

 

In contrast, a non-invasive approach does not require surgery.  Instead sensors are placed 

on top of the scalp to measure the fluctuations in brain activity by means of EEGs.  EEGs 

are the more commonly known BCI technique.  They often resemble helmets or caps that 

are capable of connecting to a computing device.  EEGs have proven to be a valuable 

research method for years, likely attributed to their inexpensive nature and high usability.   
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EEG history can be dated back to 1870 when Richard Canton first discovered electrical 

activity in animal brains followed by the invention of the actual first EEG device by Hans 

Burner in 1924 (Neurosky, 2015).  Burner’s invention lead to the classification of such 

brain activity into distinct rhythms or frequencies.  These frequencies have been proved 

to be indicative of certain mental states such as alertness, relaxedness, and sleep (Rubin, 

2009).  

 

It is important to note that while EEGs can provide a means for understanding brain 

activity, they do not have the capability to monitor thoughts or feelings.  EEGs provide a 

passive means of monitoring electric activity that is generated by neurons firing within 

the brain.  Like all electricity, this type of activity can be measured and classified.  In the 

case of EEGs, the data are usually classified into five different types of frequencies (see 

Sections 2.3.2-2.3.6).  

 

2.3 Brain Waves 

 

At the core of human thought are neurons.  Neurons exist to send and receive information 

to and from other neurons via synapses (Shier, Butler, & Lewis, 2009).  Think of neurons 

as a power source and a synapse as a wire that can transfer that power.  When neurons 

communicate with one another they generate tiny busts of electrical activity which can be 

measured by an EEG device (Rubin, 2009).  This activity can be classified according to 

frequency of electrical activity, ranging from 0-42 HZ (Rubin, 2009).  Currently, there 
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are five commonly recognized frequencies that the brain operates at: Alpha, Beta, Delta, 

Theta, and Gamma.    

 

2.3.1 Fast Fourier Transform (FFT)  

 

It is important to understand how EEG data are converted into the frequency spectrum 

from its original voltage.  To re-iterate how brainwave data are generated, when neurons 

communicate with one another they generate electrical potential within the brain.  The 

EEG electrodes capture this potential which is generally known as “raw data”. In signal 

processing terms, the raw data exists in the time domain.  To more easily classify and 

understand these data they must be transformed into the frequency domain.  This results 

in the classification of the five frequencies listed below.  This transformation is done via 

Fast Fourier Transform (FFT).   

 

Fast Fourier Transform (FFT) is a signal processing technique that converts a signal from 

its representation in the time domain (a measure of amplitude over time) to the frequency 

domain (a measure of amplitude over frequency for a given time-period) (Cochran, 

Cooley, Favin, & He, 1967).  “FFT decomposes the recorded EEG into a voltage by 

frequency spectral graph commonly called the “power spectrum, with power being the 

square of the EEG magnitude, and magnitude being the integral average of the amplitude 

of the EEG signal, measured from + peak to – peak, across the time sampled” (Rocha, 

Thomaz, Rocha, & Vieito, 2017).  This allows researchers to analyze the power of 
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different frequencies of a signal.  For EEG data purposes, the raw data are commonly 

converted into the five frequencies described below. 

 

2.3.2 Alpha (8-13 Hz) 

 

The Alpha spectrum ranges from 8-13 HZ (Hu, Guo, Liu, & Wang, 2017).  Alpha waves 

are associated with deep relaxation and are usually present when the eyes are closed 

(Rubin, 2009).  They typically attenuate when the eyes are opened and during periods of 

drowsiness and sleep (Baars & Gage, 2007).  They can be observed in the posterior and 

occipital sections of the brain with peak-peak amplitudes of around 50 micro-volts 

(Teplan, 2002). 

 

2.3.3 Beta (13-30 Hz) 

 

The Beta spectrum ranges from 13-30 HZ (Hu, Guo, Liu, & Wang, 2017).  Beta wave 

activity is present when we are focused and in a state of alertness (Lal & Craig, 2001). If 

you are solving a complex problem then your brain is likely operating in the Beta 

spectrum.  

 

2.3.4 Delta (1-4 Hz) 

 

Delta waves are the slowest waves in the spectrum ranging from 1-4 HZ (Hu, Guo, Liu, 

& Wang, 2017).  They occur during deep sleep and in rare physical conditions such as 
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coma and vegetative states (Baars & Gage, 2007).  Delta waves increase as we become 

more and more out of touch with the world (Baars & Gage, 2007).  

 

2.3.5 Theta (4-8 Hz) 

 

The Theta spectrum ranges from 4-8 HZ (Hu, Guo, Liu, & Wang, 2017).  Theta waves 

have an unknown origin within the brain (Baars & Gage, 2007).  They typically occur in 

states of deep relaxation such as meditation and during Rapid Eye Movement (REM) 

sleep (BrainWorks, 2011).  They have also been known to appear in some short-term 

memory tasks such as memory retrieval (Baars & Gage, 2007).   

 

2.3.6 Gamma (> 30 HZ) 

 

The Gamma spectrum ranges from all waves greater than 30 HZ (Hu, Guo, Liu, & Wang, 

2017).  Gamma waves are the newest spectrum to be discovered and represent the highest 

frequencies in the spectrum.  Gamma waves were once thought to be “spare brain noise”, 

but have been linked to moments of high information processing (BrainWorks, 2011).  It 

is thought that individuals with exceptional memory skills spend an exceptional amount 

of time in this spectrum (Transparent Coroporation, 2013).   

 

2.4 Measuring EEG Power Spectrum Data 

There are two means of measuring EEG frequency power spectrum data, absolute and 

relative power.  Absolute power is measured as (µV2 /Hz) for each frequency band 
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(Yuvaraj, et al., 2014).  Relative power is measured as the ratio of the absolute power of 

some frequency band (using the mean frequency) over the total absolute power for all 

given frequency bands in question (Yuvaraj, et al., 2014).  These distinctions are 

important when discussing EEG data.   

 
2.5 Related Work 

 
2.5.1 Eye Movement 

 
Numerous research methods and studies regarding fatigue detection were conducted in 

the past.  Electrooculography (EOG) was used as a research method for assessing the role 

of eye movement as it relates to fatigue.  An EOG is a device similar to an EEG that 

measures the voltage associated with eye movement by placing a set of electrodes around 

the eye (Siddiqui & Shaikh, 2013).  This has the possibility for effectiveness in fatigue 

detection because research has linked eye movements to fatigue.  The transition from fast 

eye movement and normal blinking to no eye movement and a fast blinking rate are an 

occurrence in the fatigue process (Lal & Craig, 2002).  Others have studied the duration 

of blinks and the number of blinks to determine their relationship to fatigue (Hsieh & Tai, 

2013).  However, eye movement based detection methods may not be ideal for fatigue 

detection because of the inconvenient placement of electrodes around the eye that can be 

aggravating and distracting to drivers.   Other efforts have been made to use camera 

technology to study eye movement, but this technique is not reliable because it can be 

affected by sun glare and general lighting conditions within the vehicle (Hsieh & Tai, 

2013).    
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2.5.2 Heart Rate 
 

Heart rate has also been discussed as an indicator of fatigue.  A decrease in heart rate 

usually occurs as driver fatigue begins to set in; however, research has also shown that 

there is a decrease in heart rate during prolonged driving (Lal & Craig, 2002).  This 

would require further research into this field to determine if heart beats per minute would 

be a good indicator of fatigue.  Other studies have shown a dramatic change in heart rate 

variability (time in between heart beats) accompany fatigue (Lal & Craig, 2002).  

However, more research must be done in this field to determine if it is a reliable indicator 

of fatigue.    

 

2.5.3 Video Detection/Facial Recognition 
 

Experiments into analyzing certain visual indicators of fatigue have been done.  Facial 

tone, blinking, eyelid closure, yawning, and nodding have been studied as fatigue 

indicators (Sigari, Pourshahabi, Soryani, & Fathy, 2014).  However, such systems can be 

impacted by features such as skin tone, eye color, and reflection (Veeraraghavan & 

Papanikolopoulos, 2001). Additionally, because these systems rely on camera technology 

they can be affected by vehicle lighting conditions.  Because of the issues stated above, 

video detection/facial recognition methods may not be suitable for fatigue detection.   
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2.5.4 EEG Based Methods 
  
 

Previous research has attempted to evaluate fatigue based on the relative power index of 

individual frequency bands.  A decrease in relative Alpha power was observed during 

fatigue conditions (Naqvia , Badruddin, Malik, Hazabbah, & Abdullah, 2014).  Another 

driver fatigue study supported this by showing an increase in Alpha and Theta waves and 

a decrease in Beta waves over a 90-minute driving session where 13 male students (aging 

from 22 to 27) were studied (Zhaoa , Zhaoa , Liua, & Zheng, 2012).  These researchers 

utilized a driving simulator that consisted of a car frame with a steering wheel, gas/brake 

pedals, manual gear shift, a horn, and a turn signal.  Students were screened based on a 

questionnaire that ensured they did not work night shifts, use prescription medications, 

have serious medical conditions that would affect the study such as concomitant disease, 

alcoholism, drug abuse, etc.  Prior to the study, students were asked to refrain from 

consuming alcohol, caffeine, tea, food, or smoking approximately 12 hours before the 

study.    Each session was conducted in a dimly lit, sound attenuated and temperature 

controlled laboratory between the hours of 9 a.m. and 11:30 a.m. or 3 p.m. and 5 p.m.  

Volunteers were provided necessary time to familiarize themselves with the simulator.  

Once a driver was able to drive for a 15-minute period without errors, they were 

permitted to begin the actual study. 

 

At the beginning of the driving session, participants were asked to report if they felt 

fatigued or not.  Afterward an ‘oddball’ task was given to the participant to ascertain their 

current alert level.  As an oddball task, participants were instructed to respond to a 
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stimulus that occurred randomly.  This task consisted of a red and green circular image 

that appeared on the screen at random times.  When either image was displayed, the 

participant was instructed to respond to the images using a mouse.  Oddball tasks were 

given at the beginning and end of the session to ascertain the differences in the 

participant’s reaction time.    The driving session lasted 90 minutes.  At the end of the 

session, the volunteers were asked to report their feelings of fatigue again so that it could 

be used in the data analysis.   

 

The EEG power spectrum data were averaged into 5 minute epochs at the beginning and 

end of each participant’s session, and were subjected to EEG Power Spectral Density 

analysis for the frontal, central, parietal, occipital, and temporal regions of the brain.   

Additionally, the relative power of the Alpha, Beta, Theta, and Delta spectrums were 

compared for the same epochs to look for statistically significant changes in the rhythms.  

They found that Alpha and Theta waves increased and Beta decreased when the epochs 

were compared. 

 

While the study by Zhaoa reaffirms that Alpha and Theta waves increase and Beta 

decreases as driver fatigue occurs, there has been evidence showing that only subtle 

changes may be observed during mild fatigue by utilizing absolute and relative power 

(Eoh, Chung , & Kim, 2005) (Kar , Bhagat, & Routray, 2010).   This presents a difficult 

problem when trying to implement a detection algorithm.  To counter this, researches 

have turned to analyzing different ratios of frequency spectrum data to enhance the 

contrast between different levels of fatigue (Kar , Bhagat, & Routray, 2010).  This may 
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give additional insight into the finer granularity of changes in brain waves that might be 

helpful in detecting fatigue.   

 

2.5.5 EEG Ratio Based Indexes  

 

There has been considerable research into analyzing the ratio between slow moving 

(Alpha and Theta) to fast moving waves (Beta) as an indicator of fatigue (Jap, Lal, 

Fischer, & Bekiaris, 2009). Jap , Lal, Fischer, & Bekiaris (2009) performed their study on 

52 non-professional drivers (36 males and 16 females) between the ages of 20-70.  A 

lifestyle appraisal questionnaire was used to screen participants to ensure they had no 

medical constraints such as severe concomitant disease, alcoholism, drug abuse, and 

psychological or intellectual problems.  Prior to the study, participants were instructed to 

refrain from consuming caffeine, tea, or food as well as smoking approximately 4 hours 

before the study, and to avoid consuming alcohol 24 hours before the study.  The study 

was conducted in a temperature controlled environment at approximately noon for each 

participant.  The video game “Grand Prix 2” in conjunction with a car frame, a built in 

steering wheel, brakes, gas pedal, and gears were used as the simulation method.  

 

Participants were asked to complete two driving sessions.  The first session, the “alert 

driving” session, lasted approximately 10-15 minutes.  This session was intended to 

provide a baseline for the ‘drowsy’ driving session.  During these sessions, participants 

were provided a track with multiple cars and multiple stimuli on the road.  Following 
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this, the participants were asked to drive at a continuous speed of 60-80 km/h for one 

hour with minimal stimuli.   

 

A 30 channel EEG was used to collect brain wave data.  A video camera was also used to 

record the participant’s face to identify physical signs of fatigue.  After the study, the 

EEG raw data were sectioned into one second epochs and then were subjected to fast 

Fourier transformation (FFT) to derive the raw EEG data into four frequency 

components; Delta, Theta, Alpha, and Beta.  Next, the frequency spectrum data were 

segmented into 3 consecutive time intervals for the alert driving session and Base Ratios 

1, 2, 3, and 4 (See Equations 1, 2, 3, and 4 below) were calculated for each interval and 

then averaged together to determine an alert baseline.  

 

Similarly, the monotonous driving session for each participant was divided into 10 

sections.  For each section, Base Ratios 1, 2, and 3 were calculated every 10 seconds and 

then averaged to obtain one value for each section.  The data from each of the 10 sections 

were then compared to the baseline for each subject.    

 

Analysis of variance (ANOVA) was performed to identify significant differences 

between the 10 time points during the monotonous driving session and the alert baseline 

for Base Ratios 1, 2, 3, and 4 listed below.  This was done for five brain sites (central, 

frontal, occipital, parietal, and temporal). Results were reported as mean ± standard 

deviation (SD).   Significant level was reported as p < 0.05. 
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𝐵𝑎𝑠𝑒 𝑅𝑎𝑡𝑖𝑜1 =  
𝐴𝑙𝑝ℎ𝑎  𝑊𝑎𝑣𝑒𝑠 +  𝑇ℎ𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠

𝐵𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠
 

Equation 1. Base Ratio 1 

 

𝐵𝑎𝑠𝑒 𝑅𝑎𝑡𝑖𝑜 2 =  
𝐴𝑙𝑝ℎ𝑎  𝑊𝑎𝑣𝑒𝑠 

𝐵𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠
 

Equation 2. Base Ratio 2 

 

𝐵𝑎𝑠𝑒 𝑅𝑎𝑡𝑖𝑜 3 =  
𝐴𝑙𝑝ℎ𝑎  𝑊𝑎𝑣𝑒𝑠 + 𝑇ℎ𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠

𝐴𝑙𝑝ℎ𝑎 𝑊𝑎𝑣𝑒𝑠 +  𝐵𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠
 

Equation 3. Base Ratio 3 

 

𝐵𝑎𝑠𝑒 𝑅𝑎𝑡𝑖𝑜 4 =  
𝑇ℎ𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠

𝐵𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠
 

Equation 4. Base Ratio 4 

 

The authors determined that Base Ratio 1 had the greatest range of change between 

sessions and thus may be a good indicator of fatigue.   This work was extended by 

(Punsawad, Aempedchr, Wongsawat, & Panichkun) where the authors assigned a weight 

to each frequency such as shown in Base Ratios 5, 6, and 7:  

 

𝐵𝑎𝑠𝑒 𝑅𝑎𝑡𝑖𝑜 5 =  
0.5𝐴𝑙𝑝ℎ𝑎 𝑊𝑎𝑣𝑒𝑠 + 0.5𝑇ℎ𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠 

0.5𝐵𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠
 

Equation 5. Base Ratio 5 
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𝐵𝑎𝑠𝑒 𝑅𝑎𝑡𝑖𝑜 6 =  
0.6 𝐴𝑙𝑝ℎ𝑎 𝑊𝑎𝑣𝑒𝑠 + 0.4𝑇ℎ𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠

0.5 𝐵𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠
 

Equation 6. Base Ratio 6 

 

𝐵𝑎𝑠𝑒 𝑅𝑎𝑡𝑖𝑜 7 =  
0.4𝐴𝑙𝑝ℎ𝑎 𝑊𝑎𝑣𝑒𝑠 + 0.6𝑇ℎ𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠 

0.5𝐵𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠
 

Equation 7. Base Ratio 7 

 

This system was tested on seven participants.  No screening criteria were applied for this 

study.  The simulation method used was a PlayStation 2 game called “Short Track 

Racing” in conjunction with a steering wheel, and gas and brake pedals.  The researchers 

used a threshold method to trigger alarms during this study.  The threshold was set by 

closing their eyes for 10 seconds prior to the session and calculating the ratios in question 

for this study. 50 percent of this value was used to set the threshold for each participant.  

If the participant fell below this level, they triggered an alarm.    

 

The actual driving session lasted one hour.  To reduce false positives, the researchers 

chose to not to start the detection system for the first half hour.  The remaining 30 

minutes were then subdivided into three 10 minute sections. Validation of the system was 

done by allowing the participants to self-report fatigue by pressing a button on the screen.  

After the study, the number of alarms for the given three sections were compared to the 

number of participant fatigue reports to determine if fatigue had been sensed for that 

given time period.    
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Base Ratio 7 proved to have the highest level of accuracy, but it also did not capture as 

many alarms as participant fatigue indications.  While on the bright side, this may mean 

there are less false positives, it could potentially be a problem in a safety critical system.  

It is noteworthy to mention that there is no known comparative study between the 

weighted ratios and the work performed by (Jap, Lal, Fischer, & Bekiaris, 2009).  

 

Other work was done by (Ming-ai , Cheng , & Jin-Fu, 2010) where Base Ratio 8 (see 

Equation 8) was studied over an approximately four hour session. 

 

𝐵𝑎𝑠𝑒 𝑅𝑎𝑡𝑖𝑜 8 =  
𝐷𝑒𝑙𝑡𝑎 𝑊𝑎𝑣𝑒𝑠 + 𝑇ℎ𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠 

𝐴𝑙𝑝ℎ𝑎 𝑊𝑎𝑣𝑒𝑠 + 𝐵𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠
 

Equation 8. Base Ratio 8 

 

This work proved to show a continual decline in the fatigue index as the ‘drowsy’ session 

continued.  The data in this study were recorded using a SYMTOP NT-9200 Dynamic 16 

channel EEG.  The exact method for driving simulation is not listed in the paper, but 

appears to be a computer game with a steering wheel.  No pre-study instructions were 

listed and the paper does not mention the exact number of participants.   

 

In that study, they calculated a baseline index by recording EEG data in one minute 

intervals during the sober driving session.  Afterward EEG data were collected for a four 

hour ‘drowsy’ driving session (again samples were collected in one minute epochs).  

During post-processing, the raw EEG data were subjected to Independent Component 

Analysis (ICA) to separate the different EEG channels.  Following this FFT was 
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performed to parse out the frequency spectrums.  Next, the authors calculated the Power 

Spectrum Density of each frequency spectrum.   Finally, the authors plugged these 

numbers into their fatigue index calculation.  In comparison to the baseline, the “drowsy 

session” indexes were significantly higher giving the authors reason to believe that this 

index method is a reliable method for fatigue detection.  

 

2.6 The need for a one channel EEG  

 

Many of the EEG research mentioned above has utilized multi-channel EEG devices.  

Multi-channel devices are often used in clinical research settings because of their superior 

data quality.  (Ratti, Waninger, Berka, Ruffini, & Verma, 2017) demonstrated that data 

quality was reduced when using single channel EEGs vs multi-channel EEGs.  That study 

attributed this due to the sensor placement of single-channel devices on the frontal lobe, 

which are prone to noise generated from eye blinks.  However, that same study noted that 

power metrics for the Neurosky Mindwave, a single channel device, were very similar to 

the multi-channel devices used for comparison in the study (Neurosky, 2015).  That 

research was supported by (Hal, Rhodes, & Dunne, 2014) who detected drowsiness 81% 

of the time using the Neurosky Mindwave device. 

 

It is also important to bring up the question of practicality and usability when considering 

EEG devices.  Even a perfect detection algorithm will fail if the user perceives the 

detection method to be intrusive or uncomfortable. While multi-channel EEGs may 

provide additional granularity and data quality over single-channel devices, they present 
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implementation problems in the real world.  Imagine the difficulty of trying to drive 

cross-country wearing a device with 16 sensors.  Additionally, if the algorithms are 

designed to consider all 16 channels, the loss of contact with one could give inaccurate 

results.  This would mean that the driver would need to maintain constant contact with all 

16 sensors.  Such a system does not seem feasible.  However, a sensor for a simple one 

channel EEG could easily be placed upon the forehead of a driver.   This could even 

potentially be embedded in a hardhat which many industry professionals are required to 

wear on the job already.   This is easier to implement than a multi-channel EEG that 

would require the user to keep in contact with multiple electrodes. In this sense, simpler 

is better and a one channel EEG would be more effective.  
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Chapter 3 

CHAPTER 3.    RESEARCH METHODS  

 

3.1 Research Statement  

 

BCI devices have been used to study variability in the absolute and relative power 

spectrums of Alpha, Beta, and Theta waves to determine the best way to detect mental 

fatigue.   Research has shown that ratio-based approaches are a good choice for detecting 

changes in fatigue due to their ability to detect minor levels of change in fatigue.  While 

ratio-based approaches have shown promise, a critical gap exist in the research. To our 

knowledge, there has been no empirical research conducted to identify at what point an 

alarm should be issued using any of the fatigue detection ratios listed in the Section 2.4.5.  

If these approaches are to ever be used in a real-time fatigue detection system, a fatigue 

detection method needs to be established to determine when an alarm should be issued.    

 

The purpose of this thesis is to identify if Percent Change from an alert state to a fatigue 

state is common across the participant base for any of the ratios stated in Section 2.4.5.  

For this purpose, data were be collected for a period of one hour, via an EEG, to capture 

the participant’s brainwaves while they simulate driving.  Every five minutes the 

participant were asked to state their level of fatigue based on the Stanford Sleepiness 

Scale (Stanford Sleepiness Scale, 2017) as shown in Table 1.  The Stanford Sleepiness 
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Scale has been used by various researchers and clinicians with adult population to gather 

self-reported data on sleepiness.  

 

After the data collection, an average of the first 15 minutes were taken to establish a 

baseline.  Following this a Percent Change analysis was performed between the baseline 

and the point at which the participant indicates they are fatigued for all ratios.  This 

percentage was compared across the participant population to determine if there is a trend 

between the baseline and the point of which participants identify themselves as fatigued.  

If a common Percent Change is discovered across the participant base, then it would 

indicate that Percent Change from a baseline alert state to a fatigue state could be a 

potential detection mechanism for which an alarm could be issued in a real-time fatigue 

detection system.   

 

3.2 Neurosky Mindwave Headset 

 

The EEG device used to collect data in the study is the Neurosky Mindwave Mobile 

(Neurosky, 2015).  The device uses one dry electrode that is placed on the center of the 

forehead.  The device utilizes a technology called Thinkgear.   Thinkgear is a microchip 

that pre-processes the EEG signal and transmits the data over Bluetooth (Neurosky, 08).   

The EEG raw data that is passed from the Neurosky Mindwave device is simply a 

measurement of the electrical potential that is occurring within the brain at a given time.  

The device samples this activity at a rate of 512 HZ (Neurosky, 2014).  
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Raw data is measured in the time domain.  To utilize this data in a way that is comparable 

to the other studies mentioned, the data must be transformed into the frequency domain.  

This is typically done using FFT.  From a computational standpoint, performing FFT in a 

real-time system could be considered expensive and would require a very efficient 

algorithm to accommodate such overhead.  Luckily, the Mindwave device is already 

optimized to do this via the Thinkgear technology that comes with the device.  This 

allows the frequency domain data to be accessed via an API. 

 

Frequency domain data is returned as a measure of power for each frequency band.  It is 

important to note that this measure of power is done via a proprietary algorithm.  

Therefore, the details of how it is calculated are not provided.  Additionally, these values 

have custom developed units instead of conventional units such as microvolts.  Therefore, 

they are only meaningful for comparison with other values of the same data type.  

Despite not generating conventional units, EEG data produced by Neurosky Mindwave is 

relevant and appropriate for performing Percent Change analysis between subjects. The 

frequencies represented through this API are; Delta (0.5 - 2.75Hz), Theta (3.5 - 6.75Hz), 

Low-Alpha (7.5 - 9.25Hz), High-Alpha (10 - 11.75Hz), Low-Beta (13 - 16.75Hz), High-

Beta (18 - 29.75Hz), Low-Gamma (31 - 39.75Hz), and Mid-Gamma (41 - 49.75Hz).  

 

3.3 Driving Simulation 

 

The purpose of this thesis is to identify if Percent Change from an alert state to a fatigue 

state is common across the participant base for any of the ratios stated in Section 2.4.5.  
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To do this, a realistic driving simulation must be setup to simulate driving conditions. We 

use STISIM driving simulator software build 2.06.00 (Systems Technology, Inc., 2016) 

to perform the simulation. This driving simulator was used to simulate night time driving 

with two-lanes. Periodically on-road obstacles such as another vehicle on the road and 

infrequent curvy roads were displayed. The simulator may show some off-road 

attractions such as a tree, shopping complex, and parked cars as a part of the driving 

simulation. Subjects were able to drive using steering wheel and gas & brake pedals. 

 

3.4 Participant Population  

 

The participant population consists of UNF students who are over the age of 18.  All 

interested student volunteers who are 18 years or older were accepted regardless of their 

gender, race, or other demographic aspects.  We contacted UNF professors via email and 

requested them to encourage students from their classes to participate voluntarily in the 

study.  See Appendix A for the sample email script. Professors were asked to give a link 

to any students interested in which they can sign up to participate in this study.  The link 

also contained instructions on where the study was held.  To facilitate the sign-up 

process, we used the website Slotted.co to allow participants to select a date and time 

convenient to their schedule.  See Appendix B for details of instructions that were 

provided to participants upon arrival to the lab where the experiment took place.  
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3.5 Factors Influencing Experiment  

 

Fatigue has the potential to be affected by multiple factors: caffeine, prior night’s sleep, 

time of day, hours worked among others.   To control some of these influences a list of 

instructions was sent to the participant prior to the study and a controlled laboratory was 

setup for the experiment.  Participants were asked to refrain from using caffeine 12 hours 

prior to the study and alcohol 24 hours prior to the study. The study took place in a UNF 

laboratory at approximately 6 p.m.  During the data collection, participants were asked to 

wear a Neurosky EEG headset.  While wearing the device, participants drove for 

approximately one hour via a driving simulator. 

 

3.6 Data Collection 

 

While the participant is driving, they were asked to wear the Neurosky Mindwave EEG 

device.  To facilitate our data collection, we developed a program using Java to read EEG 

data produced by Neurosky Mindwave device. This Java program that ran in the 

background synced with the Mindwave device and continuously read packets via the 

Mindwave API over Bluetooth.  Both EEG Power for each frequency were captured as 

well as the raw data.  Both data types were written to a log file for persistence purposes 

so that the data can be further analyzed post-simulation.   
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Degree of Sleepiness Scale Rating 
Feeling active, vital, alert, or wide awake 1 
Functioning at high levels, but not at peak; able to concentrate 2 
Awake, but relaxed; responsive but not fully alert 3 
Somewhat foggy, let down 4 
Foggy; losing interest in remaining awake; slowed down 5 
Sleepy, woozy, fighting sleep; prefer to lie down 6 
No longer fighting sleep, sleep onset soon; having dream-like thoughts 7 
Asleep X 

Table 1. Stanford Sleepiness Scale 

 

Additionally, to assess the participant’s level of fatigue, the driver was asked to state their 

current level of fatigue every five minutes based on the Stanford Sleepiness Scale.  This 

data were manually recorded via an Excel spreadsheet by the study administrator.  This 

self-reported data were used to determine the driver’s Percent Change from the alert 

baseline to their fatigue state during post-simulation analysis.     

 

3.7 Data Analysis 

 

The three ratios that were identified as being the most successful in Section 2.4.5 were 

Base Ratios 1,7, and 8.  It’s important to re-iterate that the Neurosky API provides a 

coarser classification of certain wave bands (noted in Section 3.2) than the studies 

identified in the research.  For example, the Alpha spectrum is sub-classified into Low 

Alpha and High Alpha.  This provides an opportunity to study these ratios at a very 

granular level.  To do such, the following ratios were identified from their original ratios. 

Base Ratio 1 was sub-divided into the following ratios: 
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𝑅𝑎𝑡𝑖𝑜 1 =  
𝐿𝑜𝑤 𝐴𝑙𝑝ℎ𝑎  𝑊𝑎𝑣𝑒𝑠 + 𝑇ℎ𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠

𝐿𝑜𝑤 𝐵𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠
 

Equation 9. Ratio 1 

 

𝑅𝑎𝑡𝑖𝑜 2 =  
𝐻𝑖𝑔ℎ 𝐴𝑙𝑝ℎ𝑎  𝑊𝑎𝑣𝑒𝑠 + 𝑇ℎ𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠

𝐻𝑖𝑔ℎ 𝐵𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠
 

Equation 10. Ratio 2 

 

𝑅𝑎𝑡𝑖𝑜 3 =  
𝐻𝑖𝑔ℎ 𝐴𝑙𝑝ℎ𝑎  𝑊𝑎𝑣𝑒𝑠 + 𝑇ℎ𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠

𝐿𝑜𝑤 𝐵𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠
 

Equation 11. Ratio 3 

 

𝑅𝑎𝑡𝑖𝑜 4 =  
𝐿𝑜𝑤 𝐴𝑙𝑝ℎ𝑎  𝑤𝑎𝑣𝑒𝑠 + 𝑇ℎ𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠

𝐻𝑖𝑔ℎ 𝐵𝑒𝑡𝑎 𝑤𝑎𝑣𝑒𝑠
 

Equation 12. Ratio 4 

 

𝑅𝑎𝑡𝑖𝑜 5 =  
(𝐿𝑜𝑤 𝐴𝑙𝑝ℎ𝑎  𝑊𝑎𝑣𝑒𝑠 + 𝐻𝑖𝑔ℎ 𝐴𝑙𝑝ℎ𝑎 𝑊𝑎𝑣𝑒𝑠) + 𝑇ℎ𝑒𝑡𝑎 𝑤𝑎𝑣𝑒𝑠

(𝐻𝑖𝑔ℎ 𝐵𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠 + 𝐿𝑜𝑤 𝐵𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠)
 

Equation 13. Ratio 5 

Base Ratio 7 (see Equation 7) was sub-divided into the following ratios: 

 

𝑅𝑎𝑡𝑖𝑜 6 =  
0.6𝑇ℎ𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠 + 0.4𝐿𝑜𝑤𝐴𝑙𝑝ℎ𝑎 𝑊𝑎𝑣𝑒𝑠

0.5𝐿𝑜𝑤 𝐵𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠
 

Equation 14. Ratio 6 
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𝑅𝑎𝑡𝑖𝑜 7 =  
0.6 𝑇ℎ𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠 + 0.4𝐻𝑖𝑔ℎ 𝐴𝑙𝑝ℎ𝑎 𝑊𝑎𝑣𝑒𝑠

0.5𝐻𝑖𝑔ℎ 𝐵𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠
 

Equation 15. Ratio 7 

 

𝑅𝑎𝑡𝑖𝑜 8 =  
0.6𝑇ℎ𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠 + 0.4𝐿𝑜𝑤 𝐴𝑙𝑝ℎ𝑎 𝑊𝑎𝑣𝑒𝑠

0.5𝐻𝑖𝑔ℎ 𝐵𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠
 

Equation 16. Ratio 8 

 

𝑅𝑎𝑡𝑖𝑜 9 =  
0.6𝑇ℎ𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠 + 0.4𝐻𝑖𝑔ℎ 𝐴𝑙𝑝ℎ𝑎 𝑊𝑎𝑣𝑒𝑠

0.5𝐿𝑜𝑤 𝐵𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠
 

Equation 17. Ratio 9 

 

𝑅𝑎𝑡𝑖𝑜 10 =  
0.6𝑇ℎ𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠 + (0.4𝐿𝑜𝑤 𝐴𝑙𝑝ℎ𝑎 𝑊𝑎𝑣𝑒𝑠 +  0.4𝐻𝑖𝑔ℎ 𝐴𝑙𝑝ℎ𝑎 𝑊𝑎𝑣𝑒𝑠)

(0.5𝐿𝑜𝑤 𝐵𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠 +  0.5𝐻𝑖𝑔ℎ 𝐵𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠)
 

Equation 18. Ratio 10 

Base Ratio 8 (see Equation 8) was sub-divided into the following ratios: 

 

𝑅𝑎𝑡𝑖𝑜 11 =  
𝐷𝑒𝑙𝑡𝑎 𝑊𝑎𝑣𝑒𝑠 + 𝑇ℎ𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠

𝐿𝑜𝑤 𝐴𝑙𝑝ℎ𝑎 𝑊𝑎𝑣𝑒𝑠 + 𝐿𝑜𝑤 𝐵𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠
 

Equation 19. Ratio 11 

 

𝑅𝑎𝑡𝑖𝑜 12 =  
𝐷𝑒𝑙𝑡𝑎 𝑊𝑎𝑣𝑒𝑠 + 𝑇ℎ𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠

𝐻𝑖𝑔ℎ 𝐴𝑙𝑝ℎ𝑎 𝑊𝑎𝑣𝑒𝑠 + 𝐻𝑖𝑔ℎ 𝐵𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠
 

Equation 20. Ratio 12 
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𝑅𝑎𝑡𝑖𝑜 13 =  
𝐷𝑒𝑙𝑡𝑎 𝑊𝑎𝑣𝑒𝑠 + 𝑇ℎ𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠

𝐻𝑖𝑔ℎ 𝐴𝑙𝑝ℎ𝑎 𝑊𝑎𝑣𝑒𝑠 + 𝐿𝑜𝑤 𝐵𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠
 

Equation 21. Ratio 13 

 

𝑅𝑎𝑡𝑖𝑜 14 =  
𝐷𝑒𝑙𝑡𝑎 𝑊𝑎𝑣𝑒𝑠 + 𝑇ℎ𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠

𝐿𝑜𝑤 𝐴𝑙𝑝ℎ𝑎 𝑊𝑎𝑣𝑒𝑠 + 𝐻𝑖𝑔ℎ 𝐵𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠
 

Equation 22. Ratio 14 

 

𝑅𝑎𝑡𝑖𝑜 15 =
𝐷𝑒𝑙𝑡𝑎 𝑊𝑎𝑣𝑒𝑠+𝑇ℎ𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠 

(𝐿𝑜𝑤 𝐴𝑙𝑝ℎ𝑎 𝑊𝑎𝑣𝑒𝑠+𝐻𝑖𝑔ℎ 𝐴𝑙𝑝ℎ𝑎 𝑊𝑎𝑣𝑒𝑠)+(𝐿𝑜𝑤 𝐵𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠+ 𝐻𝑖𝑔ℎ 𝐵𝑒𝑡𝑎 𝑊𝑎𝑣𝑒𝑠)
  

Equation 23. Ratio 15 

 

3.8 Institutional Review Board (IRB) Approval 

 
As this thesis study utilizes human subjects as a part of the experiment, Institutional 

Review Board (IRB) approval was necessary.  We submitted necessary research proposal 

and experimental materials to obtain UNF IRB approval.  The IRB project was approved 

on Nov. 1, 2016 and reference number is 475514-4.  See Appendix C for IRB approval 

letter and Appendix D for informed consent form that was provided to the participants. 
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Chapter 4 

CHAPTER 4.  SYSTEM DESIGN 

 
4.1 System Overview 

 
To perform our study, a method of data retrieval was needed from the Neurosky 

Mindwave device.  To do this a Java program was developed to interact with the 

Mindwave device by reading packets over Bluetooth.  This program was executed for 

each session while the participant drove for a period of one hour.  A persistence solution 

was also needed to store the data as packets are read.  Because the Java program is 

constantly reading packets from the device, a database storage solution was not 

appropriate due to latency issues.  Instead the data were written to a log file to reduce the 

overhead.   

 

This process worked well for retrieving and storing the data.  However, the data needed 

to be placed in a database so that queries could easily be run to perform analysis.  To do 

that a second Java program was written to parse the data from the log file, and store it in 

an Oracle database.   

 

Once the data were placed in the initial staging table, the actual data analysis (i.e., 

Percent Change analysis) could begin.  First the data were averaged into five-minute time 

intervals (accomplished by simply averaging every sample within each five minute 

period).  This approach was similar to the method used by (Jap, Lal, Fischer, & Bekiaris, 
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2009).  Next, a baseline was calculated by averaging the first 15 minutes (the first 3 five-

minute time intervals) of the data for each ratio of interest for the study.  This was done 

to establish a baseline during the period when the driver should have been most awake.  

Again, this is approach was similar to the method used by (Jap, Lal, Fischer, & Bekiaris, 

2009).  After that, we identified the point at which the drivers claimed that they began to 

feel fatigue (this is when the driver stated that they were at level 5 on the Stanford 

Sleepiness Scale).  At this point we analyzed what each ratio was at that moment in time.  

The Percent Change analysis was then performed for each ratio, where the Percent 

Change was measured from the baseline to the moment in which drivers began to feel 

fatigue.  Following this, the results were compared across the participant base to look for 

a trend that might be useful in establishing a threshold for which an alarm could be 

rendered in a real-time fatigue detection system.  This is explained in greater detail in 

Chapter 6.    

 

4.2 EEG Data Reader 

 
4.2.1 ThinkGear Communications Driver (TGCD) 

 

The Java program communicated with the Neurosky Mindwave via the ThinkGear 

Communications driver (TGCD).  This driver provides an API that allows for 

communications between the ThinkGear chip and the application (NeuroSky, 2014).  The 

TGCD API is accessed via a Dynamic-Link Library (DLL).  Because DLLs are typically 

used for C/C++/C#, a Java Native Interface (JNI) was used.  JNIs are programming 
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devices that allow code that is written in another language to be executed in Java (Oracle, 

2016).    

 

4.2.2 Pre-Study Validation 

 
A calibration procedure did not exist for the Neurosky device.  To ensure that accurate 

readings were being received, a series of tasks were given to the participants with 

expected outcomes from the EEG data being returned from the device.  The first task was 

for the participants to close their eyes for 10 seconds.  The expected result was to watch 

the power for Low-Alpha and High-Alpha waves to increase.  For the second task the 

students were asked to solve a series of mathematical equations for a period of one 

minute.  Because the participant was expected to transition to a state of concentration 

while doing this, the expected result was for Low-Beta and High-Beta power to increase 

while Low-Alpha and High-Alpha decreased.  This validation was conducted for all 10 of 

the study participants prior to the one hour driving session to determine if the device was 

functioning properly. 

 

4.2.3 Java Data Reader 

 

The Java program that reads data from the Neurosky device operated on Port COM21.  

Communication was established in the API by calling the ThinkGear.Connect method 

(see Figure 1).   After establishing a connection, the application requested to read packets 

from the device over Bluetooth at a rate of 57600 BAUD (this is the default setting).   
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1. private static int getConnection(String comPortName) {   
2.         int connectionId = ThinkGear.GetNewConnectionId();   
3.            
4.         if(connectionId < 0){   
5.             System.out.println("ERROR.");   
6.             System.exit(-1);   
7.         }   
8.            
9.         int errCode = -1;   
10.         do{   
11.              errCode = ThinkGear.Connect(connectionId, comPortName,  
12.                        ThinkGear.BAUD_57600, ThinkGear.STREAM_PACKETS);   
13.              if( errCode < 0 ) {   
14.                  System.out.println("Connecting...");      
15.              }   
16.                 
17.         }while(errCode < 0);   
18.            
19.         System.out.println("Connection established.  Connection id: " + connecti

onId);   
20.         return connectionId;   
21.     }    

Figure 1. Get Connection Method 
 

As the application began to read data, the packets were inspected for a specific type of 

value.  This was done by calling the ThinkGear.GetValueStatus method for each specific 

data type ex: Low Alpha, High Alpha, Beta etc.  If the program determined that the value 

was present, it then extracted the value by calling ThinkGear.GetValueStatus (see Figure 

2) for the data type.  

 

1. if(ThinkGear.GetValueStatus(connectionId, ThinkGear.DATA_RAW) != 0){   
2.     double power = ThinkGear.GetValue(connectionId, ThinkGear.DATA_RAW);   
3.     logInsert(userID,"Raw",power,currentTimestamp);   
4. }  

Figure 2. Get Value Status Method 
 

Once data were extracted the program wrote to a log file (see Figure 3 for an example).  

This process ensured that no packets were missed due to the latency associated with 
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writing to a database.  The program continued to read packets until the session was 

complete.  After the data were collected for the study, a second program ran to parse the 

data from the log file and place them in the database so that the data analysis could be 

performed.    

 

1. User: 27 Type: Raw Value: 229.0 Timestamp: 2016-12-11 17:32:19.921   
2. User: 27 Type: Low_Alpha Value: 4840.0 Timestamp: 2016-12-11 17:32:19.941   
3. User: 27 Type: High_Alpha Value: 5286.0 Timestamp: 2016-12-11 17:32:19.941   
4. User: 27 Type: Low_Beta Value: 6271.0 Timestamp: 2016-12-11 17:32:19.941   
5. User: 27 Type: High_Beta Value: 17842.0 Timestamp: 2016-12-11 17:32:19.941   
6. User: 27 Type: Delta Value: 54919.0 Timestamp: 2016-12-11 17:32:19.941   
7. User: 27 Type: Theta Value: 51932.0 Timestamp: 2016-12-11 17:32:19.941    

Figure 3. Log File Sample 
 

4.3 Parsing the EEG data from the Log File and inputting into database 

 

After the data were collected, a second program parsed out the data from the log file and 

placed them inside an Oracle database.  This program simply read the file line by line and 

tokenized the line using the Java split method (see Figure 4).  Once the data had been 

parsed, they were persisted in an Oracle database (Oracle 11g Express Edition) in a table 

called “EEG_OUTPUT” (see Table 2).  The table structure is listed below in Table 3.     
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Figure 4. Parse Driver 
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COLLUMN_NAME DATA_TYPE NULLALE DATA_DEFAULT COLLUMN_ID 

USER_ID NUMBER No  (NULL) 1 

DATA_TYPE VARCHAR(20 BYTE) No   (NULL) 2 

TIME TIMESTAMP(6) No   (NULL) 3 

VALUE NUMBER(20,9) No   (NULL) 4 

Table 2. EEG_OUTPUT Table Structure 
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CHAPTER 5 

CHAPTER 5.    POST STUDY ANALYSIS 

 
 
After the data were collected from each study, a secondary Java program ran to parse the 

data from the log files and place them into the database.  After this, both the EEG data 

and the participant fatigue reports needed to be appropriately transformed so that the data 

analysis could be conducted.  The participant fatigue reports were captured via an excel 

spreadsheet and were manually loaded into the database table FATIGUE_REPORT (see 

Table 3).   

 

However, the EEG data required additional extraction, loading, and transformation 

operations to arrive at the result set desired (the Percent Change for each ratio for each 

participant).  To accomplish this a set of Oracle stored procedures were created in the 

package EEG_LOAD (see Figure 5) to automate many of these tasks.  The flow of the 

Extraction Transform Load (ETL) process can be seen in Figure 5. 
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Figure 5. ETL Flow 

 

COLUMN_NAME DATA_TYPE NULLALE COLUMN_ID 

USER_ID NUMBER No 1 

TIME_INTERVAL NUMBER No 2 

FATIGUE_LEVEL NUMBER No 3 

Table 3. FATIGUE_REPORT Table Structure 
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Figure 6. EEG Body Package 
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5.1 Extraction, Loading, and Transformation of EEG Data 

 

The output of the Parser program placed the results in the EEG_OUTPUT table (see 

section 4.3).  The EEG_OUTPUT table was designed with flexibility in mind to store a 

variety of EEG data types provided by Neurosky.  In this case, a new value could be 

added to the DATA_TYPE column and, as long as the attribute value was a number, the 

table could easily consume the data.  This is known as a horizontal table or an Entity-

Attribute-Value (EAV) design (Dinu & Nadkarni, 2007).  Alternatively, a flat structure 

could have been created but would have potentially resulted in null columns which would 

have been an inefficient use of the table.   

 

That being stated, an EAV design does not lend itself well to data analysis because of the 

added complexity of searching for specific values in the DATA_TYPE column to 

perform the analysis on.  To accommodate that a flat table structure, 

EEG_FLAT_TABLE (see Table 4), was created from the EEG_OUTPUT table using 

only the EEG attributes of interest for this study.  To create the flattened out structure the 

data from EEG_OUTPUT was pivoted using the Oracle Pivot clause in the stored 

procedure named parseData in the EEG_LOAD package (see Figure 5).  The Pivot clause 

aggregates data and allows for the results to be rotated from rows into columns.  The 

result is one row per sample for all brainwave values at a given point in time per user (see 

Table 5). 
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COLUMN_NAME DATA_TYPE NULLALE COLUMN_ID 

USER_ID NUMBER No 1 

LOW_ALPHA NUMBER(20,9) Yes 2 

HIGH_ALPHA NUMBER(20,9) Yes 3 

LOW_BETA NUMBER(20,9) Yes 4 

HIGH_BETA NUMBER(20,9) Yes 5 

DELTA NUMBER(20,9) Yes 6 

THETA NUMBER(20,9) Yes 7 

DATE_TIME TIMESTAMP(6) Yes 8 

Table 4. EEG_FLAT_TABLE Structure 
 

 
USER_ID LOW_ALPHA HIGH_ALPHA LOW_BETA HIGH_BETA DELTA THETA DATE_TIME 

1 6520 3655 15406 6677 18541 23112 03-APR-17 
06.26.30 

PM 

Table 5. EEG_FLAT_TABLE EXAMPLE 

 

Once the data had been placed into EEG_FLAT_TABLE the ratio calculations needed to 

be performed for each of the 15 ratios.  This was done in the stored procedure 

createRatios (see Figure 5) and persisted in the EEG_RATIO table (see Table 6).  The 

result of this is one record for each ratio, per participant, per sample.      
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COLLUMN_NAME DATA_TYPE NULLALE COLLUMN_ID 

USER_ID NUMBER No 1 

RATIO_1 NUMBER(20,9) No 2 

RATIO_2 NUMBER(20,9) No 3 

RATIO_3 NUMBER(20,9) No 4 

RATIO_4 NUMBER(20,9) No 5 

RATIO_5 NUMBER(20,9) No 6 

RATIO_6 NUMBER(20,9) No 7 

RATIO_7 NUMBER(20,9) No 8 

RATIO_8 NUMBER(20,9) No 9 

RATIO_9 NUMBER(20,9) No 10 

RATIO_10 NUMBER(20,9) No 11 

RATIO_11 NUMBER(20,9) No 12 

RATIO_12 NUMBER(20,9) No 13 

RATIO_13 NUMBER(20,9) No 14 

RATIO_14 NUMBER(20,9) No 15 

RATIO_15 NUMBER(20,9) No 16 

DATE_TIME TIMESTAMP(6) No 17 

Table 6. EEG_RATIO 

 

Finally, the samples were averaged into 5 minute intervals in the createTimeIntervals 

stored procedure and placed in the EEG_5_MIN_INTERVAL table (see Table 7).  This 

approach was similar to the method used by (Jap, Lal, Fischer, & Bekiaris, 2009).  These 

5 minute intervals were used during the data analysis to determine how a user’s 

brainwaves change from the alert state (the baseline) to the fatigue state. The method 

used in the stored procedure to accomplish this requires additional explanation.  To 

perform the time math on this data, the timestamp for each sample was turned into the 

exact minute of the day via the following snippet of SQL: 

 

60 * extract (hour from DATE_TIME) + extract (minute from DATE_TIME) 
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Once the precise minute of the sample was calculated, it was then divided by 5 to group 

the data into 5 minute intervals.  Next, the time intervals were ordered ascendingly and a 

numeric time interval was assigned to each one use the ROWNUM() function.  This 

enabled an easy matchup to the participant fatigue reports which were also assigned a 

numeric value for each 5-minute time interval.   

 

COLLUMN_NAME DATA_TYPE NULLALE COLLUMN_ID 

USER_ID NUMBER No 1 

RATIO_1 NUMBER(20,9) No 2 

RATIO_2 NUMBER(20,9) No 3 

RATIO_3 NUMBER(20,9) No 4 

RATIO_4 NUMBER(20,9) No 5 

RATIO_5 NUMBER(20,9) No 6 

RATIO_6 NUMBER(20,9) No 7 

RATIO_7 NUMBER(20,9) No 8 

RATIO_8 NUMBER(20,9) No 9 

RATIO_9 NUMBER(20,9) No 10 

RATIO_10 NUMBER(20,9) No 11 

RATIO_11 NUMBER(20,9) No 12 

RATIO_12 NUMBER(20,9) No 13 

RATIO_13 NUMBER(20,9) No 14 

RATIO_14 NUMBER(20,9) No 15 

RATIO_15 NUMBER(20,9) No 16 

DATE_TIME TIMESTAMP(6) No 17 

Table 7. EEG_5_MIN_INTERVAL 
 

After the ratios were averaged into their 5 minute intervals the Percent Change from the 

participant’s baseline was calculated.  
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5.2 Percent Change Analysis 

 

After the data were transformed into the appropriate format, the Percent Change analysis 

was performed.  To identify the Percent Change from an alert state to a fatigue state, the 

baseline needed to be established.  To do so, an average for each of the first three 5 

minute intervals were calculated for each of 15 ratios mentioned in Section 3.7.  The 

result for each ratio served as the baseline for each Percent Change analysis to be 

calculated (one for each of the 15 ratios). 

 

Once the baseline was established the data taken from the participant’s fatigue reports 

were used to identify the point in time when the participant reported five (the point where 

a participant begins to lose interest in staying awake) on the Stanford Sleepiness scale.  

Because the participants reported their fatigue level in five minute increments, the data 

for the 5-minute time-period in question were averaged for each ratio.  Once this point 

was identified, the Percent Change could easily be calculated using the formula in 

Equation 24 (Kaplan, 2016).   

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐶ℎ𝑎𝑛𝑔𝑒 =  
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑜𝑟 𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑓𝑟𝑜𝑚 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 ∗  100 

Equation 24. Percent Change 
 

The SQL used to perform the Percent Change analysis was encapsulated in two views 

V_FATIGUE_CHANGE_ANALYSIS and V_FATIGUE_PERIOD.  The SQL used to 

create the views can be found in Figures 7 and 8. 
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Figure 7. V_FATIGUE_CHANGE_ANALYSIS View 
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Figure 8. V_FATIGUE_PERIOD View 
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CHAPTER 6 

CHAPTER 6.    RESULTS 

 

In this thesis, we utilized Percent Change analysis to determine whether any of the EEG 

ratios reported in the literature could reliably detect fatigue when a one channel EEG 

device was used.  To accomplish this, the EEG Ratio data were grouped into 5-minute 

time sections, as previous studies have done, and to coincide with participant fatigue 

reports.  To establish a baseline, the first 3 sections of the data were averaged similar to 

(Jap, Lal, Fischer, & Bekiaris, 2009).  Afterward, the point in time that a participant felt 

fatigue was identified by locating the time interval that the participant stated they felt a 5 

on the Stanford Sleepiness Scale.  The data were again averaged for this 5-minute time 

interval.  The Percent Change analysis was done by performing Equation 24 based on the 

baseline and the 5-minute time interval that the participant felt fatigued.   

 

6.1 Data Normalization 

 

Recall that every ratio was calculated for each data sample returned by the Neurosky 

device.  Because the EEG Ratio Data is widely distributed between the 15 ratios (see 

Table 8), the data analysis was conducted on a normalized version of the dataset.  

Normalization was done at the sample level for all ratios by performing Feature Scaling 

(see Equation 25).  This scaled the data to a fixed range between 0 and 1 for all ratios.   
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RATIO MIN MAX Standard 
Deviation 

Ratio 1 0.29 162.73 12.79473163 
Ratio 2 0.29 170.35 12.7824389 
Ratio 3 0.28 163.58 12.12017763 
Ratio 4 0.19 194.98 13.58932639 
Ratio 5 0.3 88.79 5.393878485 
Ratio 6 0.3 194.47 14.72352248 
Ratio 7 0.28 203.93 15.03395592 
Ratio 8 0.2 223.63 15.63656814 
Ratio 9 0.24 213.63 15.34259118 
Ratio 10 0.27 101.64 6.158363767 
Ratio 11 0.12 289.94 22.6935848 
Ratio 12 0.19 303.45 26.54314328 
Ratio 13 0.17 322.17 24.87672562 
Ratio 14 0.11 275.68 23.55482818 
Ratio 15 0.08 115.37 10.01159366 

Table 8. Un-Normalized Ratio Min and Max 

 

𝑋𝑛𝑜𝑟𝑚 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 

Equation 25. Feature Scaling Normalization 
 

6.2 Percent Change and Frequency Distribution   

 

Out of the 10 participants who participated in the study, only 6 stated that they felt a 

rating of 5 on the Stanford Sleepiness Scale, despite driving for one hour in the simulator.  

Therefore, the Percent Change analysis was only performed on those participants, for the 

purposes of identifying Percent Change from an alert state to a fatigue state. Tables 9, 10, 

and 11 demonstrate the Percent Change results of the study using the Normalized data 

set.    Table 9 shows the Percent Change for each ratio by participant.  Table 10 shows 
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the Percent Change Frequency Distribution in 10 % increments.  This was done to try and 

identify a Percent Change that is common across the participant base to establish if one or 

more of the ratios showed potential as a fatigue indicator.  For example, 3 out of 6 

participants (50%) felt a change within the range of 11-20% for Ratios 1 and 3.  

Similarly, 50% of the participants felt a change within the range of 31-40% for Ratio 5. 

Table 10 demonstrates that raw statistics for Percent Change per participant for each 

ratio.  Table 11 demonstrates the most common Percent Change for each ratio, the 

number of participants who felt a Percent Change in that range, and the percentage of 

participants for each ratio.  Based on this analysis, Ratios 1, 3, 5, and 6 appear to be the 

most likely candidates for fatigue detection based on the Un-Normalized data because 

50% of the participants felt a common Percent Change based on this approach.  

 

Participant 1 2 3 4 8 9 

RATIO_1_CHANGE 4.977% 15.854% 16.308% 19.637% 26.828% 29.170% 

RATIO_2_CHANGE 9.513% -28.918% 61.147% 40.652% 60.175% 5.896% 

RATIO_3_CHANGE 3.506% 17.737% 13.285% 13.762% 26.361% 37.711% 

RATIO_4_CHANGE 11.960% -26.880% 68.497% 48.205% 60.893% 1.234% 

RATIO_5_CHANGE 10.286% -13.387% 35.215% 32.644% 33.896% 16.350% 

RATIO_6_CHANGE 5.492% 16.584% 16.086% 21.343% 28.797% 30.247% 

RATIO_7_CHANGE 10.542% -28.531% 64.511% 43.737% 63.826% 3.163% 

RATIO_8_CHANGE 12.266% -27.091% 69.672% 49.150% 64.243% -0.045% 

RATIO_9_CHANGE -38.179% -14.705% 13.930% 31.741% -9.663% 4.827% 

RATIO_10_CHANGE 145.476% 34.548% 154.270% 107.527% 205.565% 84.960% 

RATIO_11_CHANGE -28.992% -12.749% -41.531% 60.593% -16.431% 36.888% 

RATIO_12_CHANGE 0.409% -51.161% -7.917% 93.606% 21.494% -25.064% 

RATIO_13_CHANGE -50.609% -69.268% -59.169% -5.749% -48.617% -53.152% 

RATIO_14_CHANGE -27.824% -11.944% -17.513% 136.615% -8.451% 39.051% 

RATIO_15_CHANGE 173.005% 37.859% 105.491% 326.177% 227.599% 133.669% 

Table 9. Ratio Percent Change from Alert State to Fatigue State by Participant 
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RANGE R
1 

R
2 

R
3 

R
4 

R
5 

R6 R
7 

R
8 

R
9 

R1
0 

R1
1 

R1
2 

R1
3 

R1
4 

R1
5 

(-70) –      
(-61)%   

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

(-60) –      
(-51)%   

0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 

(-50) –      
(-41) %  

0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 

(-40) –      
(-31)%   

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

(-30) –      
(-21) %  

0 1 0 1 0 0 1 1 0 0 1 1 0 1 0 

(-20) –      
(-11)%   

0 0 0 0 1 0 0 0 1 0 2 0 0 2 0 

(-10)  –      
(0) % 

0 0 0 0 0 0 0 1 1 0 0 2 1 1 0 

1-10%  1 2 1 1 1 1 2 0 1 0 0 0 0 0 0 

11-20% 3 0 3 1 1 2 0 1 1 0 0 0 0 0 0 

21-30% 2 0 1 0 0 3 0 0 0 0 0 1 0 0 0 

31-40% 0 1 1 0 3 0 0 0 1 1 1 0 0 1 1 

41-50% 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 

51-60% 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 

61-70% 0 1 0 2 0 0 2 2 0 0 0 0 0 0 0 

81-90% 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

91-100% 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

101-110% 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 

131-140% 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

141-150% 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

151-160% 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

171-180% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

201-210% 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

221-230% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

311-320% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Table 10. Percent Change Based on Frequency Distribution (Normalized) 
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  Percent of Change Number of Participants Percent of Participants 

R1 11-20% 3 50% 

R2 1-10% 2 33% 

R3 11-20% 3 50% 

R4 61-70% 2 33% 

R5 31-40% 3 50% 

R6 21 -30% 3 50% 

R7 
1-10, 

61-70% 
2 33% 

R8 61-70% 2 33% 

R9 

(-40) – (-31)%, 
(-20)– (-11)%, 
(-10) –( 0)%, 

1-10%, 
11-20%, 
31-40% 

1 17% 

R10 

31-40%, 
81-90%, 

101 -110%, 
141-150%, 
151-160%, 
201-210% 

1 17% 

R11 (-20) - (-11)% 2 33% 

R12 (-10) – (0)% 2 33% 

R13 
(-60) - (-51)%, 
(-50) - (-41)% 

2 33% 

R14 (-20)- (-11)% 2 33% 

R15 

31-40%, 
101-110%, 
131-140%, 
161-170%, 
221-230%, 
311-320% 

1 17% 

Table 11. Most Common Percent Change for Each Ratio (Normalized) 

 

Simply grouping the data into 10% ranges did not help us with identifying a common 

Percent Change across the participant base.  Fifty percent of the participant base does not 
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seem common enough to implement Percent Change for any of these ratios in a real-time 

system.  Frequency Distribution Analysis provides a skewed view of the data because 

even though 2 participants may have felt a Percent Change of 19% and 21% the two 

participants would have fallen into different frequency groups.  However, another view of 

the data may provide better insights.   

 

6.3 Cluster Analysis 

 

As an alternative to Frequency Distribution Analysis, we employed clustering analysis, 

which allowed us to overcome the boundary problem mentioned above.  Clustering is 

“the process of forming groups of items or entities such that entities within a group are 

similar to one another and different from those in other groups.  The similarity between 

entities is determined based on their characteristics of features.” (Maqbool & Babri, 

2007).  Hierarchical clustering is the recommended clustering approach for small datasets 

because it allows you to examine solutions with an increasing number of clusters (Camm, 

Cochran, Fry, Ohlmann, & Anderson, 2015).  Contrast this with a K-means approach 

where the number of desired cluster needs to be known beforehand (Camm, Cochran, 

Fry, Ohlmann, & Anderson, 2015).  Because the number of desired clusters is not 

necessarily known it is more advantageous to use Hierarchical Clustering in this case. 

 

Specifically, Agglomerative Hierarchical Clustering was used in this case.  

Agglomerative is a bottom-up approach where each data point starts out as 1 cluster.  

Clusters are then combined recursively by equating the distance between 2 clusters until 
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all clusters have been merged into 1 (Xu & Wunsch II, 2008).  RapidMiner Studio was 

utilized to execute this clustering algorithm.  RapidMiner Studio is a toolset used to 

perform a variety of data science and analytical functions (RapidMiner, 2017). 

 

For each ratio, the Agglomerative Hierarchical Clustering algorithm was executed to look 

for closely related Percent Change data points between the participant groups that felt 

fatigue.  To do this the data were brought into RapidMiner using the “Read Excel” 

module.  This module simply reads an excel file and imports the data for usage within the 

Rapid Miner tool (RapidMiner, 2017).  The output of the Read Excel module was fed 

into the “Agglomerative Clustering” module, which takes the data and runs the algorithm 

based on the parameters established for the module (RapidMiner, 2017).  The Measures 

Type parameter was set to Numerical Measures (appropriate because our data is 

numerical).  The module was ran using Single Link mode in conjunction with Euclidean 

distance.  Single Link was appropriate for this study because it simply merges the clusters 

recursively based on the smallest distance between members of the clusters with the 

smallest distance (Patra, & Nandi, 2015).  Euclidean distance type is simply the “straight 

line” approach to find the distance between 2 points (Monroe & Chapman McGrew Jr., 

2009).    

 

The output of the Agglomerative Clustering Module is a dendrogram.  A dendrogram is a 

tree structure that shows how the clusters merge from N number of objects into 1 cluster 

(Vahidipoura, Mirzaei, & Rahmati, 2014).  This works well for smaller datasets such as 

this one where the dendrogram can be visually inspected to identify relevant clusters and 
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outliers.  However, a tabular result is easier to read and analyze for our purposes (keep in 

mind that what we were interested in finding a small range of data for a higher percentage 

of the population).  To do that, a small number of clusters needed to be identified for each 

ratio. 

 

RapidMiner accommodated this by incorporating the Flat Hierarchy module.  The Flat 

Hierarchy module takes the number of desired clusters as an input and outputs a tabular 

view of what participant is assigned to which cluster.  This method was somewhat trial 

and error to establish a tight clustering of data.  Because there is no standard definition of 

what a tight clustering of data is, an arbitrary definition was established.  Only clusters 

with a range of 20 or less were considered of interest for our study. If there was no cluster 

with a data range of less than 20 for at least 50% of the participants, then that ratio was 

not considered as a potential fatigue indicator. Table 12 is a summary of the number of 

clusters and the range of data for each ratio that had a cluster with a data range of less 

than 20. A detailed result set can be found in Appendix D for each ratio.     

 

Ratio No. of 
Clusters 

Range Range 
Difference 

Number of 
Participants 

Percent of 
Participants 

Standard 
Deviation 

Ratio 
1 

2 
15.85 – 
29.17% 

13.32 5 83% 6.11 

Ratio 
6 

2 
16.08 – 
30.24% 

14.16 5 83% 6.65 

Ratio 
13 

2 
(-69.26)– 
(-48.61)% 

20.65 5 83% 8.33 

Ratio 
14 

3 
(-27.82) – 
(-8.45)% 

19.37 4 66% 8.46 

Table 12. Summary of Relevant Clusters (Normalized) 
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No clusters were identified where 100% of the participants fell into a range of 20 or less.  

However, four ratios had a cluster with a range of approximately 20 or less for at least 

four out of the six participants (66%).  Of these four ratios, Ratio 1 had the smallest range 

with the most participants which may suggest it as a good indicator of fatigue. However, 

Ratios 6, 13, and 14 also showed potential as fatigue indicators because their range was 

relatively small and they have a high percentage of participants. 

 

6.4 Fatigued vs Non-Fatigued 

 

As an additional check to validate the ratios identified in the cluster analysis, a 

comparison was made to the data from the users who stated that they did not feel fatigue 

(these users never stated that they felt a 5 on the Stanford Sleepiness Scale) to the users 

who stated they felt fatigue.  For participants who did not feel fatigue, there was no point 

in time they stated that they felt a 5 on the Stanford Sleepiness Scale, a relevant value for 

some time period needed to be identified so that Percent Change Analysis could be 

performed.  To identify such a value, the last 15 minutes of the study was averaged for 

these participants.  This was similar to the approach taken to calculate the participant’s 

baseline.  Our hope here was that because these participants never felt fatigue then the 

Percent Change Analysis on the last 15 minutes of the data would be significantly 

different to that of the participants who felt fatigue.  This analysis was conducted for each 

ratio of interest (listed in Table 12).  Essentially, we are looking for conflicts between 

Percent Change range measure for fatigue and non-fatigue participant groups. Conflict in 
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this context would be when the Percent Change value of a non-fatigue participant fell in 

the range reported in Table 15 for fatigue participant groups. 

  

For Ratio 1, two of four participants who did not feel fatigue had approximately 4% 

change (see Table 13).  However, 21.4 and 17.5% change were experienced by two 

participants which conflicts with the Ratio 1 Cluster range in Table 12. For Ratio 6, two 

of four participants who did not feel fatigue experienced a Percent Change of 20.5 and 

18.4, which conflicts with the Ratio 6’s cluster range (see Table 14). All participants who 

did not feel fatigue for Ratio 13 conflict with the Ratio 13 cluster range in Table 15.  

Finally, for Ratio 14 two of the four participants conflict with the cluster range in Table 

16.  

 
R1 Cluster Range 15.85 – 29.17% 
Participant Percent Change 

6 4.59 
5 21.43 
7 4.05 
10 17.56 

Table 13. R1 Last 15 Minutes of Participants who did not feel Fatigue (Normalized) 

 

R6 Cluster Range 16.58 – 30.24% 
Participant Percent Change 
6 4.87 
5 20.50 
7 4.52 
10 18.45 

Table 14. R6 Last 15 Minutes of Participants who did not feel Fatigue (Normalized) 
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R13 Cluster Range (-)69.26– 
(-)48.61% 

Participant Percent Change 
6 -49.22 
5 -60.89 
7 -59.93 
10 -66.77 

Table 15. Ratio 13 Non-Fatigued Last 15 Minutes  
 

R14 Cluster Range (-)27.82 – 
(-)8.45% 

Participant Percent Change 
6 15.01 
5 28.40 
7 -25.41 
10 -22.77 

Table 16. Ratio 14 Non-Fatigued Last 15 Minutes 
 

6.4.1 Non-Fatigued Anomalies 

 

 The Fatigued vs Non-Fatigued participant analysis appeared to discredit the ratios of 

interest that were identified in the cluster analysis by highlighting conflicts between the 

participants who stated they had not felt fatigue and those who did.  To better understand 

these conflicts a deeper dive into the sessions of these participants was necessary. 

Beginning with Ratio 1, Participants 5 and 10 experienced a Percent Change that 

conflicted with the range of the cluster identified in Table 12.  After considering the user 

fatigue reports of both Participant 5 and 10, a possible explanation for why this occurred 

became clear.  Both participants reported a 4 on the Stanford Sleepiness Scale for their 

last 3 user reports (the last 15 minutes of the study).  Participants 5 and 10 experienced a 
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percent change of approximately 21% and 17% respectively.  The lower bound for the 

Ratio 1 cluster range was approximately 15%.  Both Participants 5 and 10’s Percent 

Change crossed into the bottom half of Ratio 1’s cluster range indicating that the 

participants were both approaching a 5 on the scale for their last 15 minutes of driving. 

Similarly, for Ratio 6, both Participants 5 and 10 felt a conflicting Percent Change with 

Ratio 6’s cluster range.  The Percent Change for these participants were 20% and 18% for 

Participant 5 and 10.  Again these Percent Change levels are in the bottom half of Ratio 

6’s cluster range. These discrepancies could be result of participants misinterpreting the 

Stanford Sleepiness Scale or under estimating their level of fatigue. 

 

All non-fatigued participants conflicted with Ratio 13’s cluster range.  Because of this it 

is likely not a suitable candidate for fatigue detection.  For Ratio 14, Participants 7 and 10 

experienced a Percent Change of -25% and -22% respectively.  Again, the user fatigue 

reports were analyzed to determine if the participants were close to a fatigue state.  When 

contrasting these Percent Change levels with the participants who experienced fatigue 

inside of Ratio 14’s cluster range, both Participants 7 and 10 were on the bottom end of 

this range.  While Participant 10 stated their fatigue level at 4 for their last 3 fatigue 

reports, Participant 7 only recorded a 2 for their last 3 reports.  Therefore, it cannot be 

concluded that the Ratio 14 anomalies can be blamed on misinterpretation of the Stanford 

Sleepiness Scale.    

 

Participant 1 was the only person inside of the Ratio 14 cluster that had a lower Percent 

Change than Participants 7 and 10.  If Participant 1 could be considered an anomaly, and 
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was removed from the Ratio 14 cluster, than neither Participant 7 or 10 would conflict 

with the cluster at all.  However, if this were to be true, then only 3 out of 10 participants 

(50%) would fall into this cluster.  That is simply too low to be considered common for 

our study.  Therefore, Ratio 14 cannot be considered as a good indicator of fatigue.   

 

USER_ID RATIO_14_CHANGE 
1 -27.82 
3 -17.51 
2 -11.94 
8 -8.45 

Table 17. Ratio 14 Cluster for Fatigued Users 
 

6.5 Conclusions 

 

The Frequency Distribution Analysis did not yield any results that could help identify a 

commoner Percent Change.  This was likely attributed to the boundary problem 

mentioned in Section 6.2.  However, the cluster analysis did appear to present a useful 

result set.   Four ratios were identified that had a cluster with a range of approximately 20 

or less for at least for four out of the six (66%) of the participants.  Of these four ratios, 

Ratio 1 had the smallest range with the most participants which suggested it may be the 

best indicator of fatigue.  

 

While these ratios appeared to show promise, they were significantly discredited based 

on the analysis of the participants who did not feel fatigue.  Each of these ratios displayed 

at least two conflicts with the non-fatigued users.  Despite this, there are possible 
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explanation for these conflicts for each of the ratios except Ratio 13.  Because of the 

potential for errors in the participant fatigue reports it is very likely that Ratio 1, Ratio 6, 

and Ratio 14 are all good indicators of fatigue.  
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CHAPTER 7 

CHAPTER 7.  CONCLUDING REMARKS 
 

Prior to the study conducted in this thesis, there had been no empirical research 

conducted to determine at what point fatigue begins to occur for a driver.  This research 

has provided a novel method for identifying the point in time when a person begins to 

feel fatigue, and could potentially be used in a real-time system to prevent accidents 

caused by fatigue.  

 

By using a clustering approach, we observed that 83% of the participants experienced a 

similar Percent Change for Ratios 1, 6, and 14.  Further analysis revealed that Ratio 1 had 

the smallest range of data points as well (15.85 – 29.17).  With the majority of 

participants feeling fatigue between this range, it is conceivable that a threshold could be 

established that would trigger an alarm in a real-time system.  For example, the mean or 

the median of these data points could be used to set the threshold.  

  

However, there were several occasions where data from participants who did not feel 

fatigue conflicted with these results.  While at first glance this appeared to discredit these 

ratios, a deeper dive into the Non-Fatigued participants appeared to provide an 

explanation for why this occurred.  That being stated, Ratios 1, 6, and 14 all appeared to 

be good indicators of fatigue. 
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Additionally, the question of using a 1-Channel EEG to monitor fatigue was addressed in 

this thesis.  Due to a relatively high number of participants demonstrating a common 

Percent Change, it appears that a 1-Channel EEG is suitable for such a purpose.  This 

would likely increase usability as opposed to using a multi-channel EEG device in a real-

time system. 

 

Several factors and limitations could have potentially affected the outcomes of this study.  

One factor is that the analysis is entirely based on the participant self-reports of fatigue.  

There are many potential issues with this.  First, the participants may have inaccurately 

reported their level of fatigue based on their interpretation of the Stanford Sleepiness 

Scale.  For instance, a participant may have found the distinction between a 4 (somewhat 

foggy, let down) and a 5 (Foggy; losing interest in remaining awake; slowed down) 

somewhat arbitrary.  An inaccurate self-reporting here could have potentially affected the 

study.  Second, it is possible that the participant may have falsely reported their fatigue 

level as a means of trying to keep themselves awake.  Either of these may have caused 

the anomalies that were seen with the Fatigue vs. Non-Fatigued Analysis. 

 

Another potential limitation to this approach is that the study assumes that the participant 

is not already in a fatigue state when they begin driving.  This is because the baseline is a 

representation of the driver at optimal performance (in our case an awake state).  If the 

participant enters a vehicle nearly ready to fall asleep already, the baseline itself would 

not accurately represent the driver at an awake state, and furthermore, depending on the 

driver’s level of fatigue, they may not even be able to stay awake for the 15-minute 
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baseline period.  However, because of the equations that the participants were asked to 

perform during the pre-study validation period, it can be reasoned that the participants 

were in an alert state, which may have mitigated this risk.   

 

Additionally, the sample size of the data is too small to conclude that these results are 

irrefutable. Because of this we can only draw conclusions from the data that was captured 

from the 10 participants in this study.  Ideally, a larger sample size should be included in 

future work. Larger sample size could also be helpful in comparing ratios through 

statistical analysis and identifying Percent Change that may be of statistically significant. 

 

Despite the limitations of this study, the results observed were encouraging.  Based on the 

results of our experiment, it is recommended that future work investigates how the data 

collected in our study can be used to identify a threshold for when participants begin to 

experience fatigue.  Identifying this threshold will enable the development of a real-time 

fatigue detection system which could save lives.   

 

In order to develop a real time fatigue detection system, further research is required to 

identify the best way to embed a single channel EEG into wearable format that is suited 

for long term usage and not intrusive to drivers. Further research works are also needed 

for developing efficient software components for presenting fatigue alerts to the driver 

based on data received from EEG. 
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CHAPTER 8.  APPENDIX A  

Email Script to contact Professors 

 

Dear Professor, 

 

My name is Lucas Coffey and I am a graduate student at the University of North Florida. 

For my master’s thesis, I’m conducting research on fatigue detection using an EEG 

headset. We are looking for UNF students to take part in our study. We anticipate that 

study participation might consume 1 hour and15 minutes of their time. Participation in 

the study is completely voluntary and students will not be compensated for their 

participation. We do not foresee any risks for taking part in the study. However, we 

anticipate that study results will be beneficial in determining a method for detecting 

driver fatigue. 

 

With this email, we request your assistance in recruiting participants for our study. UNF 

Students are the ideal participants for this study. We would like you to post below 

provided study participation information in your Blackboard course pages. This study has 

been approved by UNF IRB.  

 

If you have any questions or concerns about this study, please contact me 

 or my professor, Dr. Umapathy 
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Thank you very much for your assistance. 

Sincerely, 

-Lucas Coffey 

 

Course Management System post message start ----- 

Hello, 

My name is Lucas Coffey and I am a graduate student at the University of North Florida. 

For my master’s thesis, I’m conducting research on fatigue detection using an EEG 

headset. To access the detection algorithms, we are requesting that you simulate driving 

via a driving simulator while wearing an EEG headset. This should only take 

approximately 1 hour and 15 minutes of your time, and it would greatly help us with our 

research.  As a part of the study, you will simply be required to drive for approximately 1 

hour via the simulator.  Periodically during the study, we will ask you to report your level 

of fatigue. 

 

Please note that your participation is completely voluntary and your response will be 

anonymous. In order to participate in the study, you must also be 18 years or above. This 

study is approved by UNF IRB (IRB # 475514-4) 

 

Although there are no direct benefits or compensation for taking part in this study, others 

may benefit from the information we find from the results of this study. Additionally, 

there are no foreseeable risks for taking part in this project. There are no penalties for not 
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responding to a question or ceasing participation. If you choose to withdraw from this 

study, there will be no penalty or loss of benefits to which you would otherwise receive. 

 

If you have any questions or concerns about this study, please contact me 

) or my professor, Dr. Umapathy 

 

 

If you would like to participate, then visit below website and follow the instructions 

presented to you: 

[URL HERE] 

 

Your participation is an immense help to us, and we greatly appreciate your help. 

 

Sincerely, 

-Lucas Coffey 

Course Management System post message end --- 
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CHAPTER 9.  APPENDIX B  

Instructions Provided to Participants 

 

Upon the participant’s arrival: “Good Evening.  My name is Lucas Coffey I will be 

administering the study today. Before we get started I would like to explain to you the 

purpose of the study.  We are attempting to test three different algorithms as potential 

fatigue predictors.  We will do this by collecting brain waves via an 

electroencephalograph.  During this process, I will ask you to wear this device while you 

simulate driving.  The simulator will be controlled by a steering wheel, a gas pedal, and a 

brake pedal. Before this session begins I will ask you to report your level of fatigue based 

on the following scale: 

 

1- Feeling active, vital, alert, or wide awake 

2- Functioning at high levels, but not at peak; able to concentrate 

3- Awake, but relaxed; responsive but not fully alert 

4- Somewhat foggy, let down 

5- Foggy; losing interest in remaining awake; slowed down 

6- Sleepy, woozy, fighting sleep; prefer to lie down 

7- No longer fighting sleep, sleep onset soon; having dream-like thoughts 
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8- Asleep 

Afterward I will inform you that the session is beginning and will last 60 minutes.  After 

every 5 minutes I will ask you to verbally report your level of fatigue according to the 

same scale.  This will continue until the session is complete.  After 60 minutes have 

elapsed I will inform you that the session is complete, you may remove the EEG headset.   

While driving please attempt to maintain a speed of 50mph and refrain from talking 

during the simulation other than when you are indicating your level of fatigue.  Please put 

the headset on, centering the electrode on your forehead.” 

 

Once the participant has placed the EEG on their head and the program headset sinks 

with the program the participant will be asked to verbally report their fatigue level and 

begin driving.   

 

Load configuration file cloudy sky and boring run lane 1.  Turn off second screen when 

running. 
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CHAPTER 10.  APPENDIX C 

IRB Approval Letter 
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CHAPTER 11.  APPENDIX D 

Informed Consent Form 

 

This research is being conducted by faculty and students at the University of North 

Florida (UNF) to study driver fatigue. We will do this by collecting brain wave data via 

an EEG headset. You, as a participant, will be asked to drive via a driving simulator and 

verbally report your level of fatigue every 5 minutes. However, we will not attempt to 

individually identify you and you will not be identified in any reports or publications that 

comes from this research.  We expect that participation in this study will take about 1 

hour and 15 minutes of your time. 

 

Participation is voluntary and there are no penalties for deciding not to participate. You 

may choose not to participate in this research without negatively impacting your 

relationship with UNF or your instructor. You may, at any time, decline to participate in 

this study. This study involves a driving simulator. If you have a history of photosensitive 

epilepsy or some other condition that may be aggravated by using a video game-like 

interface for an extended time, you are advised not to participate in this study. Please 

inform the experimenter(s) if you have such a condition. 

 

Although simulated crashes (i.e. approaching an object, crashing noises being heard, and 

the screen showing a shattered windshield) are not a necessary part of this study, they 

may be involved in any one participant’s experience. As such, if you feel that this may be 
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traumatic for you (e.g., you or a loved one have been involved in an automobile 

accident), you are advised not to participate in this study. No other potential risks other 

than loss of time are anticipated. 

 

No specific personal benefits other than the possible novelty and entertainment of using a 

driving simulator and/or wearing an EEG headset are anticipated. If you have any 

questions or concerns about this study, please contact Lucas Coffey at 

or Dr. Umapathy at .  

Any questions or concerns about a research-related injury may also be directed to the 

chair of the UNF Institutional Review Board (IRB) at 904-620-2498 or by e-mailing 

IRB@unf.edu. 

 

You must be at least 18, either licensed to drive a vehicle or licensable. 

I, __________________________________, understand and agree to the above. 

 _______________________Date 

 

  

mailto:IRB@unf.edu
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CHAPTER 12.  APPENDIX E 

Agglomerative Hierarchical Clustering 

 

12.1 Ratio 1 with 2 Clusters 

 
 

Ratio  Percent Change User Cluster 
R1 15.85 2 cluster_0 
R1 19.63 3 cluster_0 
R1 26.82 4 cluster_0 
R1 16.30 5 cluster_0 
R1 29.17 6 cluster_0 
R1 4.97 1 cluster_1 

Table 18. Normalized Ratio 1 with 2 Clusters Results 

 
 
12.2 Ratio 1 with 3 Clusters  

 

Ratio  Percent Change User Cluster 
R1 15.85 2 cluster_0 
R1 19.63 3 cluster_0 
R1 16.30 5 cluster_0 
R1 4.97 1 cluster_1 
R1 26.82 4 cluster_2 
R1 29.17 6 cluster_2 

Table 19. Normalized Ratio 1 with 3 Clusters Results 
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12.3 Ratio 2 with 2 Clusters Results 

 

Ratio  Percent Change User Cluster 
R2 9.51 1 cluster_0 
R2 40.65 3 cluster_0 
R2 60.17 4 cluster_0 
R2 61.14 5 cluster_0 
R2 5.89 6 cluster_0 
R2 -28.91 2 cluster_1 

Table 20. Normalized Ratio 2 with 2 Clusters Results 

 
12.4 Ratio 2 with 3 Clusters Results 

 

Ratio  Percent Change User Cluster 
R2 40.65 3 cluster_0 
R2 60.17 4 cluster_0 
R2 61.14 5 cluster_0 
R2 -28.91 2 cluster_1 
R2 9.51 1 cluster_2 
R2 5.89 6 cluster_2 

Table 21. Normalized Ratio 2 with 3 Clusters Results 

 

12.5 Ratio 3 with 2 Clusters Results 

 
Ratio  Percent Change User Cluster 
R3 3.50 1 cluster_0 
R3 13.28 5 cluster_0 
R3 13.76 3 cluster_0 
R3 17.73 2 cluster_0 
R3 26.36 4 cluster_0 
R3 37.71 6 cluster_1 

Table 22. Normalized Ratio 3 with 2 Cluster Results 
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12.6 Ratio 3 with 3 Clusters Results 

 
Ratio  Percent Change User Cluster 
R3 17.73 2 cluster_0 
R3 13.76 3 cluster_0 
R3 26.36 4 cluster_0 
R3 13.28 5 cluster_0 
R3 3.50 1 cluster_1 
R3 37.71 6 cluster_2 

Table 23. Normalized Ratio 3 with 3 Clusters Results 

 

12.7 Ratio 4 with 2 Clusters Results 

 
Ratio  Percent Change User Cluster 
R4 11.96 1 cluster_0 
R4 -26.87 2 cluster_0 
R4 48.20 3 cluster_1 
R4 60.89 4 cluster_1 
R4 68.49 5 cluster_1 
R4 1.23 6 cluster_0 

 Table 24. Normalized Ratio 4 with 2 Clusters Results  

 
12.8 Ratio 4 with 3 Clusters Results 

 
Ratio  Percent Change User Cluster 
R4 -26.87 2 cluster_2 
R4 1.23 6 cluster_1 
R4 11.96 1 cluster_1 
R4 48.20 3 cluster_0 
R4 60.89 4 cluster_0 
R4 68.49 5 cluster_0 

Table 25. Normalized Ratio 4 with 3 Clusters Results 
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12.9 Ratio 5 with 2 Clusters Results 

 
Ratio  Percent Change User Cluster 
R5 -13.38 2 cluster_1 
R5 10.28 1 cluster_0 
R5 16.35 6 cluster_0 
R5 32.64 3 cluster_0 
R5 33.89 4 cluster_0 
R5 35.21 5 cluster_0 

Table 26. Normalized Ratio 5 with 2 Clusters Results 

 
12.10 Ratio 5 with 3 Clusters Results 

 
Ratio  Percent Change User Cluster 
R5 -13.38 2 cluster_1 
R5 10.28 1 cluster_0 
R5 16.35 6 cluster_0 
R5 32.64 3 cluster_2 
R5 33.89 4 cluster_2 
R5 35.21 5 cluster_2 

Table 27. Normalized Ratio 5 with 3 Clusters Results 
 
12.11 Ratio 6 with 2 Clusters Results 

 
Ratio  Percent Change User Cluster 
R6 16.58 2 cluster_0 
R6 21.34 3 cluster_0 
R6 28.79 4 cluster_0 
R6 16.08 5 cluster_0 
R6 30.24 6 cluster_0 
R6 5.49 1 cluster_1 

Table 28. Normalized Ratio 6 with 2 Clusters Results 
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12.12 Ratio 6 with 3 Clusters Results 

 

Ratio  Percent Change User Cluster 
R6 5.49 1 cluster_1 
R6 16.08 5 cluster_0 
R6 16.58 2 cluster_0 
R6 21.34 3 cluster_0 
R6 28.79 4 cluster_2 
R6 30.24 6 cluster_2 

Table 29. Normalized Ratio 6 with 3 Clusters Results 

 
 
12.13 Ratio 7 with 2 Clusters Results 

 
Ratio  Percent Change User Cluster 
R7 -28.53 2 cluster_0 
R7 3.16 6 cluster_0 
R7 10.54 1 cluster_0 
R7 43.73 3 cluster_1 
R7 63.82 4 cluster_1 
R7 64.51 5 cluster_1 

Table 30. Normalized Ratio 7 with 2 Clusters Results 

 

12.14 Ratio 7 with 3 Clusters Results 

 
Ratio  Percent Change User Cluster 
R7 43.73 3 cluster_0 
R7 63.82 4 cluster_0 
R7 64.51 5 cluster_0 
R7 10.54 1 cluster_1 
R7 3.16 6 cluster_1 
R7 -28.53 2 cluster_2 

Table 31. Normalized Ratio 7 with 3 Clusters Results 
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12.15 Ratio 8 with 2 Clusters Results 

 
Ratio  Percent Change User Cluster 
R8 12.26 1 cluster_0 
R8 -27.09 2 cluster_0 
R8 -0.04 6 cluster_0 
R8 49.14 3 cluster_0 
R8 64.24 4 cluster_0 
R8 69.67 5 cluster_0 

Table 32. Normalized Ratio 8 with 2 Clusters Results 
 

12.16 Ratio 8 with 3 Clusters Results 

 
Ratio  Percent Change User Cluster 
R8 -27.09 2 cluster_2 
R8 -0.04 6 cluster_1 
R8 12.26 1 cluster_1 
R8 49.14 3 cluster_0 
R8 64.24 4 cluster_0 
R8 69.67 5 cluster_0 

Table 33. Normalized Ratio 8 with 3 Clusters Results 
 

12.17 Ratio 9 with 2 Clusters Results 

 
Ratio  Percent Change User Cluster 
R9 -38.17 1 cluster_1 
R9 -14.70 2 cluster_0 
R9 -9.66 4 cluster_0 
R9 4.82 6 cluster_0 
R9 13.92 5 cluster_0 
R9 31.74 3 cluster_0 

Table 34. Normalized Ratio 9 with 2 Clusters Results 
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12.18 Ratio 9 with 3 Clusters Results 

 
Ratio  Percent Change User Cluster 
R9 -38.17 cluster_1 cluster_1 
R9 -14.70 cluster_0 cluster_0 
R9 -9.66 cluster_0 cluster_0 
R9 4.82 cluster_0 cluster_0 
R9 13.92 cluster_0 cluster_0 
R9 31.74 cluster_2 cluster_2 

Table 35. Normalized Ratio 9 with 3 Clusters Results 
 

12.19 Ratio 10 with 2 Clusters Results 

 
Ratio  Percent Change User Cluster 
R10 34.54 2 cluster_0 
R10 84.95 6 cluster_0 
R10 107.52 3 cluster_0 
R10 145.47 1 cluster_0 
R10 154.27 5 cluster_0 
R10 205.56 4 cluster_1 

Table 36. Normalized Ratio 10 with 2 Clusters Results 
 

 

12.20 Ratio 10 with 3 Clusters Results 

 
Ratio  Percent Change User Cluster 
R10 34.54 2 cluster_2 
R10 84.95 6 cluster_0 
R10 107.52 3 cluster_0 
R10 145.47 1 cluster_0 
R10 154.27 5 cluster_0 
R10 205.56 4 cluster_1 

Table 37. Normalized Ratio 10 with 3 Clusters Results 
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12.21 Ratio 11 with 2 Clusters Results 

 
Ratio  Percent Change User Cluster 
R11 -41.53 5 cluster_1 
R11 -28.99 1 cluster_1 
R11 -16.43 4 cluster_1 
R11 -12.74 2 cluster_1 
R11 36.88 6 cluster_0 
R11 60.59 3 cluster_0 

Table 38. Normalized Ratio 11 with 2 Clusters Results 
 

12.22 Ratio 11 with 3 Clusters Results 

 

Ratio  Percent Change User Cluster 
R11 -41.53 5 cluster_0 
R11 -28.99 1 cluster_0 
R11 -16.43 4 cluster_0 
R11 -12.74 2 cluster_0 
R11 36.88 6 cluster_2 
R11 60.59 3 cluster_1 

Table 39. Normalized Ratio 11 with 3 Clusters Results 
 

12.23 Ratio 12 with 2 Clusters Results 

 
Ratio  Percent Change User Cluster 
R12 -51.16 2 cluster_0 
R12 -25.06 6 cluster_0 
R12 -7.916 5 cluster_0 
R12 0.40 1 cluster_0 
R12 21.49 4 cluster_0 
R12 93.60 3 cluster_1 

Table 40. Normalized Ratio 12 with 2 Clusters Results 
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12.24 Ratio 12 with 3 Clusters Results 

 
Ratio  Percent Change User Cluster 
R12 -51.16 2 cluster_2 
R12 -25.06 6 cluster_0 
R12 -7.916 5 cluster_0 
R12 0.40 1 cluster_0 
R12 21.49 4 cluster_0 
R12 93.60 3 cluster_1 

Table 41. Normalized Ratio 12 with 3 Clusters Results 
 

12.25 Ratio 13 with 2 Clusters Results 

 
Ratio  Percent Change User Cluster 
R13 -69.26 1 cluster_0 
R13 -59.16 2 cluster_0 
R13 -53.15 4 cluster_0 
R13 -50.60 3 cluster_0 
R13 -48.61 8 cluster_1 
R13 -5.74 9 cluster_1 

Table 42. Normalized Ratio 13 with 2 Clusters Results 

 

12.26 Ratio 13 with 3 Clusters Results 

 
Ratio  Percent Change User Cluster 
R13 -69.26 2 cluster_2 
R13 -59.16 5 cluster_0 
R13 -53.15 6 cluster_0 
R13 -50.60 1 cluster_0 
R13 -48.61 4 cluster_0 
R13 -5.74 3 cluster_1 

Table 43. Normalized Ratio 13 with 3 Clusters Results 
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12.27 Ratio 14 with 2 Clusters Results 

 
Ratio  Percent Change User Cluster 
R14 -27.82 1 cluster_0 
R14 -17.51 5 cluster_0 
R14 -11.94 2 cluster_0 
R14 -8.45 4 cluster_0 
R14 39.05 6 cluster_0 
R14 136.61 3 cluster_1 

Table 44. Normalized Ratio 14 with 2 Clusters Results 

 

12.28 Ratio 14 with 3 Clusters Results 

 

Ratio  Percent Change User Cluster 
R14 -27.82 1 cluster_0 
R14 -17.51 5 cluster_0 
R14 -11.94 2 cluster_0 
R14 -8.45 4 cluster_0 
R14 39.05 6 cluster_2 
R14 136.61 3 cluster_1 

Table 45. Normalized Ratio 14 with 3 Clusters Results 
 

12.29 Ratio 15 with 2 Clusters Results 

 

Ratio  Percent Change User Cluster 
R15 37.85 2 cluster_0 
R15 105.49 5 cluster_0 
R15 133.66 6 cluster_0 
R15 173.00 1 cluster_0 
R15 227.59 4 cluster_0 
R15 326.17 3 cluster_1 

Table 46. Normalized Ratio 15 with 2 Clusters Results 
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12.30 Ratio 15 with 3 Clusters Results 

 
Ratio  Percent Change User Cluster 
R15 37.85 2 cluster_2 
R15 105.49 5 cluster_0 
R15 133.66 6 cluster_0 
R15 173.00 1 cluster_0 
R15 227.59 4 cluster_0 
R15 326.17 3 cluster_1 

Table 47. Normalized Ratio 15 with 3 Clusters Results 
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CHAPTER 13.  VITA 
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