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Abstract: Electroencephalogram (EEG) is an effective indicator for the detection of driver fatigue.
Due to the significant differences in EEG signals across subjects, and difficulty in collecting sufficient
EEG samples for analysis during driving, detecting fatigue across subjects through using EEG signals
remains a challenge. EasyTL is a kind of transfer-learning model, which has demonstrated better
performance in the field of image recognition, but not yet been applied in cross-subject EEG-based
applications. In this paper, we propose an improved EasyTL-based classifier, the InstanceEasyTL,
to perform EEG-based analysis for cross-subject fatigue mental-state detection. Experimental results
show that InstanceEasyTL not only requires less EEG data, but also obtains better performance
in accuracy and robustness than EasyTL, as well as existing machine-learning models such as
Support Vector Machine (SVM), Transfer Component Analysis (TCA), Geodesic Flow Kernel (GFK),
and Domain-adversarial Neural Networks (DANN), etc.

Keywords: Electroencephalogram (EEG); InstanceEasyTL; fatigue driving; cross-subject; transfer
learning

1. Introduction

In recent years, there has been rapid increase in the number of traffic accidents, yielded to huge
losses to people’s lives and their properties. A lot of evidence shows that driving under the condition
of fatigue state (fatigue driving) is one of the main causes of traffic accidents. Statistical results
also indicate that fatigue driving leads to 35–45% of road traffic accidents [1–3], and directly causes
1550 deaths, 71,000 injuries, and $12.5 billion in economic losses each year according to the reports
of American National Highway Traffic Safety Administration (NHTSA) [4]. Therefore, it is of
vital importance to design an efficient and accurate analysis model for detecting fatigue over time
during driving.

Generally, there are three ways to detect fatigue mental states. The first is video-based detections.
Computer vision techniques are used for detecting fatigue by analyzing the facial expressions such as
blinking, eye closure duration, yawning, and so on [5]. In this way, the blink frequency is one of the key
factors for detecting fatigue. However, changes in illumination or wearing sunglasses will reduce the
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detection effect, because such methods adopt the vertical and horizontal projection intensities of the
image to detect whether blinking or not. The second is psychology-based surveys. The subjects evaluate
their mental states by filling in some psychological questionnaires [6,7]. Such questionnaires rely
heavily on the subjective factors of the subjects that maybe lack objective judgment for verification [8,9].
The third is the measurements based on physiological signals. Usually, EEG, electrooculogram
(EOG), electrocardiogram (ECG) or their mixtures are employed for measuring or detecting brain
activity, eye movements [10–12], etc. Thus, fatigue states could be correspondingly identified as well.
EEG-based methods are considered to be one of the most efficient methods since EEG could directly
reflect the activities of the brain’s nerve cells to reveal the changes of the drivers’ mental states during
driving [13,14].

Recent studies have shown that EEG-based methods could achieve better reliability and accuracy
compared with other methods [15]. So far, many classical machine-learning algorithms such as
SVM [16,17], linear discriminant analysis (LDA) [18], K Nearest Neighbor (KNN) [19], etc., as well
as some typical deep-learning models such as Long Short-Term Memory Network (LSTM) [20],
Convolutional Neural Network (CNN) [21], are adopted to analyze and uncover those important
patterns of EEG signals. Despite the great success of these methods, regarding the significant differences
of EEG signals, many manually labeled EEG data is still required to perform the prediction and
classification tasks of mental states, especially for cross-subject prediction, and a large amount of
training is needed as well to identify those EEG patterns between different subjects. In other words,
the existing analysis is to a certain extent not only time-consuming, but also subject-dependent,
which will not be quite fit for cross-subject EEG analysis, and will decrease the classification
performance for across subjects.

Transfer-learning models are efficient methodologies that aim at transferring the previously
extracted features from a labeled domain to a similar but different domain with limited or no labels to
perform some specific decision tasks on the different domain [22–24]. Transfer-learning methods have
achieved good performance in areas of image recognition and classification. Easy Transfer Learning
(EasyTL) [24] was proposed by Wang et al. in 2019 for image recognition, which is divided into two
phases: the first one aligns both the source and target domains to reduce the differences between both
domains, and the second one makes use of a kind of probability annotation matrix for classification [24].
Since EasyTL does not require model selection and hyper-parameter tuning, it could achieve better
competitive performance.

Although EasyTL is easy, accurate, efficient, and extensible, due to the significant differences of
EEG signals across subjects which will cause different distributions between EEG feature patterns
for different subjects, it is still difficult for EasyTL to address the issue of EEG-based cross-subject
fatigue mental state detection. Please note that cross-subject fatigue detection is to train a model by
extracting EEG features of some subjects and using them in the analysis of mental states of other
subjects. To overcome the above shortcoming of EasyTL in dealing with cross-subject EEG signals,
in this paper, we propose an improved EasyTL-based method, InstanceEasyTL, to perform cross-subject
EEG-based fatigue detection. To verify our proposed model, we also conduct the comparative analysis
between InstanceEasyTL, SVM, and some other existing transfer-learning methods such as Transfer
Component Analysis (TCA) [25], Geodesic Flow Kernel (GFK) [26], and Domain-adversarial Neural
Networks (DANN) [27].

The paper is organized as follows: Section 2 introduces the setup of the fatigue driving experiment,
including subjects, EEG recording and preprocessing, as well as EEG feature extraction. Section 3
presents the existing EasyTL method and states in detail our proposed InstanceEasyTL model. Section 4
shows the related experimental results. Section 5 compares and discusses these results with other
existing models, and demonstrates the efficiency of the proposed method. Finally, Section 6 concludes
our works.
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2. Materials

2.1. Subjects

This experiment is performed under the approval of the local ethical committee of University of
Rome “La Sapienza” (Rome, Italy). 15 subjects (ages range [24–30] years, mean± std = 26.8± 3.2 years)
are selected to participate in the driving experiment. All the subjects have qualified driving licenses.
Before the experiment, all the subjects are informed and interpreted of the experimental intention, and
sign the written consents. In addition, all of them are not allowed to drink alcohol the day before the
experiment, and no caffeine is taken 5 h before the experiment, respectively. Finally, the experiment is
conducted in accordance with the principles outlined in the Helsinki Declaration of 1975, which was
revised in 2013.

2.2. Experimental Protocol

To eliminate the possible effects of circadian rhythms and meals, the experiment is performed
between 2 and 5 pm. In addition, the Driving track is the Spa Francorchamps (Belgium) track,
and the Vehicle type is an Alfa Romeo Giulietta QV (1750 TBi, 4 cylinders, 235 HP) on our driving
simulation platform.

Figure 1 is the driving experimental setting. The experiment is started in a quiet environment
without any noise, the subjects are asked to sit on a comfortable sofa to drive a car by controlling a
steering wheel according to the stimulation track 1m in front of them.

There are 8 tasks during the experiment, as shown in Table 1. To obtain a reference, we define
warm-up (WUP) as the baseline of the experiment that is at the beginning of the experiment. In WUP,
the subject is asked to drive a car for 2 laps without any stimuli and any errors. Next stage performance
(PERFO) is similar to WUP, but the total time of driving is 2% less than WUP. Then the task of “alert“
with video and “vigilance” with audio (TAV) is designed and appeared randomly during the process
of the experiment to make the subjects feel tired more easily, which are follow after PERFO with
a pseudo-random order, TAV3, TAV1, TAV5, TAV2, TAV4. Please note that they will receive visual
or sound stimuli with different frequencies in TAVs stages. Different stimulus frequencies of “alert”
or “vigilance” represent the different degree of stimulation, defined as TAV1, TAV2, TAV3, TAV4,
and TAV5 with different stimulus intervals [28–31]. The TAVs duration will be set up depending on
the total time spent in WUP. From TAV1 to TAV5, the stimuli intervals are 9800–10,200, 7700–8100,
5900–6300, 4100–4500, and 2300–2700 ms, respectively. The last stage is drowsiness (DROW) with a
slow speed just like driving in a crowded city center, without any video or audio stimuli alongside the
track for 2 laps. The subject should press “Button#1” with his left finger when ‘X’ appears, which is an
“alert” task, and press “Button#2” with his right finger when two consecutive “beep”’s come, which is
a “vigilance” task [32–34]. “Alert” stimuli is used to mimic the actual road conditions, such as traffic
lights, pedestrians crossing the road, other vehicles, etc. (as shown in Figure 2) [35], while “vigilance”
stimuli is used to stimulate the car radio, engine noise or a phone call (as shown in Figure 3). Usually,
the whole experiment will last 2 h. WUP, PERFO, 5 TAVs, and DROW will need about 10 min, 2% less
than that of WUP, 1 h, and 20 min, respectively. There is a break of about 5 min between each stage.

Table 1. Description of different tasks.

WUP WUP is as a baseline, which requires the driver to drive the car throughout the whole track without
any speed requirements and any extra stimuli, but always kept the car in the path.

PERFO In PERFO, the subject is asked to improve his previous performance of 2%. (total time = baseline − 2%)

TAVs
Five TAVs (TAV1 to TAV5) are presented in a pseudo-random order, TAV3,TAV5,TAV1,TAV2,TAV4,
where TAV1 is in the situation with the longest stimulus interval, TAV5 is in the situation with the
shortest stimulus interval.

DROW DROW is the stage that the subject is required to drive slowly without any requirements on the speed.
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All subjects are required to take a half-hour training session to familiarize themselves with the
simulator’s commands and interfaces before starting the experiment, the experimental flow is shown
in Figure 4.

After finishing every stage, the subjects are required to fill in the NASA-TLX questionnaire to
provide subjective workload perception during the task. Moreover, a run sheet is used to take note of
the subjects’ drive performance (“off-road”) during the experiment. “off-road” means that the subject
has driven out of the track at least with one wheel.

Driving 
simulation

Speaker

Button#1 Button#2

Speaker

Steering wheel

Figure 1. Experimental settings.

Figure 2. Alert stimuli response process in TAV.

Left Right Left Right

Figure 3. Vigilance stimuli response process in TAV.
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Figure 4. The experimental flow.

2.3. EEG Recording and Preprocessing

EEG is recorded by using a digital monitoring system (Brain Products GmbH, Germany), in which
all 61 EEG channels are referenced to the earlobe, grounded to FCz, their impedances are kept below
10 KΩ, and the sampling frequency F_s is 200 Hz. We use eeglab toolbox in Matlab to pre-process and
process EEG data. A band-pass filter is employed to keep EEG signals with a frequency range between
1 and 30 Hz for fatigue driving analysis [36], independent component analysis (ICA) [28,37] is used for
removing EOG artifacts.

2.4. EEG Feature Extraction

Before feeding the EEG data of each subject into the classifier for training, we extract the power
spectrum density (PSD) features from EEG data of each subject [38,39], which is usually used for feature
extraction in EEG analysis. The detailed PSD feature exaction procedure is listed as the following steps:

1. For the recorded EEG of each channel, a 0.5 s hamming window without overlapping between two
successive windows is used for dividing EEG into multiple samples. We extract 1400 hamming
windows of sample points and each window have 0.5 s × F_s = 0.5 × 200 = 100 sample points
(as shown in Figure 5a). Thus, the number of hamming windows (HW) is 1400 and the sample
points in each hamming window are 100 × 61 channels = 6100.

2. For each channel in each window, we apply the one-sided PSD-estimate of EEG signals with the
frequency of 200 Hz that represent the strength in terms of the logarithm of power content of the
signal at integral frequencies between 0 and 100 Hz. This produces 101 feature-length vectors.
Therefore, 100 sample points in each channel become 101 features as well (as shown in Figure 5b).

3. From the acquired 101 features in step 2, we can then extract 27 features at the frequency bands of θ

band (4–7 Hz), α band (8–13 Hz), and β band (14–30 Hz), respectively [40] (as shown in Figure 5c).
4. Then, the extracted features will be appended together to form D = (61 × 27) = 1647 dimension of

feature vectors (as shown in Figure 5d).
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5. Consequently, for those HW =1400 windows/samples, we now have a feature space FS with
HW × D =1400 × 1647 of order that will be fed into our proposed model for training (as shown
in Figure 5e).
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Figure 5. EEG feature vectors generation process.

3. Methods

3.1. The Existing EasyTL Method

EasyTL [24] is a kind of transfer-learning method that has been applied in the field of image
applications and achieved better performance. It consists of two parts: intra-domain alignment and
intra-domain programming, as shown in Figure 6. For intra-domain alignment, it aligns ns samples to
form the sample set Ωs in the source domain s as

{
xs

i
}ns

i=1, and nt samples to form the sample set Ωt in

the target domain t as
{

xt
j

}nt

j=1
through intra-domain alignment [41], aiming at making the difference

between s and t as small as possible. Please note that the source domain is
{
(xs

i , ys
i )
}ns

i=1 and the target

domain is
{

xt
j

}nt

j=1
.

Intra-domain programming builds the classifier model by proposing a new Probability Annotation
Matrix W, the rows of W denote the class label c ∈ {1, 2, ..., C}, and the column xt

j represents the target
samples. The element Wcj indicates the annotation probability of xt

j belonging to class c. Based on the
matrix W, EasyTL can predict the target samples. Please note that the class labels of the target sample xt

j
that we choose are the corresponding ones with the maximum of {Wcj}, j ∈ {1, 2, ..., nt}. For instance,
as shown in Figure 7, the class label of xt

1 will belong to class C3 since it has the maximum probability
of 0.4 among all elements {W11, W21, W31, W41} with the probabilities of {0.2, 0.3, 0.4, 0.1}, respectively.
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Figure 6. The procedure of EasyTL. The colored diamonds and circles denote samples from the source
and target domain, respectively. The red line denotes the classifier.
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Figure 7. An example of the probability annotation matrix. The rows denote the class labels, and
the columns denote the target samples. The entry value Wij indicates the annotation probability of
xt

j belonging to class Ci; i = 1, 2, 3, 4 and j = 1, 2, ..., nt. The class labels of xt
j belonging to class Ci are

marked in bold .

3.2. InstanceEasyTL

The main reason EasyTL has a better performance in the field of image recognition is that there is
basically not much difference on pixel features between the images in the target domain and those in
the source domain, which makes it be relatively easy to adopt the intra-domain alignment to align the
target domain with the source domain. However, for cross-subject EEG analysis, due to the significant
differences of EEG among different subjects, which will lead to the large difference in the distribution
of EEG features. The existing intra-domain alignment method in EasyTL is difficult to align the features
between the source domain and target domain, hence it is difficult to obtain an ideal cross-subject
analysis effect.

Therefore, in this paper, an improved EasyTL-based method, InstanceEasyTL, is proposed for
overcoming such shortcoming of EasyTL for cross-subject EEG analysis. The main idea of the proposed
InstanceEasyTL lies in the aspect that to match the different distribution of EEG signals from different
subjects, we adopt a strategy of alignment with certain weights to align EEG samples collected from
both source and target domains. To achieve this goal, InstanceEasyTL will “borrow” some EEG
samples from the target domain Ωt, together with the original source domain Ωs (also called Tsd) to
form a new sample set of source domain for training, which will get more EEG data and reduce the
cost of EEG collection. As shown in Figure 8, the initial target domain Ωt is divided into two parts:
S and Ttd, in which Ttd is employed as part of the new source domain Ω

′
s, thus Ω

′
s consists of the
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initial source domain Tsd and Ttd in Ωt, and accordingly, the new target domain Ω
′
t only includes the

part of S.

s


t


(T )sd

S
Ttd


s
'


t
'

Figure 8. New training sample set in InstanceEasyTL.

Mathematically, InstanceEasyTL can be depicted as follows.
First, we can determine Tsd and Ttd according to the coefficient λ as Equations (1) and (2), respectively:

Tsd = {(Ωs, ys)} =
{(

xsd
i , ysd

i

)}ns

i=1
(1)

and

Ttd = {λ (Ωt, yt)} =
{(

xtd
i , ytd

i

)}m

i=1
(2)

where ys and yt are the sets of class labels corresponding to Ωs and Ωt. (xsd
i , ysd

i ) and (xtd
i , ytd

i ) are
the i-th sample and its corresponding class label in the source domain Ωs and target domain Ωt,
respectively. ns and m are the number of samples in Tsd and Ttd.

Accordingly, we can then form the new source domain Ω
′
s by Equation (3), and the new target

domain Ω
′
t by Equation (4), respectively:

T = {Tsd ∪ Ttd} (3)

and

S = (1− λ)Ωt =
{

xt
j

}l

j=1
(4)

here, T and S denote the sample sets of Ω
′
s and Ω

′
t, respectively, l is the number of samples in Ω

′
t.

Algorithm 1 illustrates the proposed InstanceEasyTL method in detail.
First, initial weights are assigned to both training source domain Tsd and training target domain

Ttd by using Equation (5). We should note that compared with the EasyTL method, Tsd = Ωs, Ttd ⊂ Ωt,
m < nt, and m + l = nt, respectively (can also refer to Figure 8).

Secondly, the assigned weights for both Tsd and Ttd are divided by the summation of all weights
and stored as pt (as shown in Equation (6)). Based on the intra-domain programming method
(also called EasyTL(c) in Algorithm 1), we take the training sample set T in Ω

′
s (please see Equation (3)),

pt, and the new testing set S in Ω
′
t (please see Equation (4)) as the input of InstanceEasyTL algorithm,
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then we can calculate the output ht of EasyTL(c). Here, S is not for the update of the weights, but for
the testing after the end of iterations.

Thirdly, we will calculate the error εt between ht and real class labels y(x). The weights of Ttd and
Tsd are updated by βt-based function (please see steps 6 and 7 in Algorithm 1).

Finally, if the number of iteration reaches N, the expected output in S will be calculated by
Equation (10).

Algorithm 1. InstanceEasyTL

Require: the labeled sample set T in Ω
′
s (Equation (3)), the unlabeled test set S in Ω

′
t (Equation (4)),

the intra-domain programming method EasyTL(c) and the maximum number of iterations N.
1: Initialize: the initial weights, calculated by Equation (5) and the initial number of iterations t = 1.

Where wi
sd and wi

td are the weights of the i-th samples in Ω
′
s and Ω

′
t. W1

sd, W1
td and W1 are the sets

of weights in Ω
′
s, Ω

′
t and both of source and target domains after one iteration, respectively.

W1
sd =

⋃ns
i=1 wi

sd
W1

td =
⋃ns+m

i=ns+1 wi
td

W1 = W1
sd ∪W1

td

(5)

2: Set
sumt = ∑w∈Wt w
pt =

{
w

sumt ; w ∈Wt
} (6)

3: After t ∈ {1, 2, ..., N} iterations, w, Wt and sumt represent the weight of one sample, the set of
weights of all samples, and the sum of w in Ω

′
s , respectively, and pt means the set of the weight w

of each sample in Ω
′
s in proportion of sumt.

4: After t iterations, take T, pt and S as the input of EasyTL(c) to calculate the expected class label
ht{x} of sample x in T and S.

5: After t iterations, calculate the error εt of sample x between ht(x) and y(x) in Ttd, here, y(x) returns
the real label of sample x in Ttd.

εt =
1

Wt ∗ ∑
x∈Ttd

wx∈Wt
td

wx|ht(x)− y(x)| (7)

6: Define functions βt and β to update Wtd and Wsd, respectively. As shown in Equation (8) [42].

βt = εt/ (1− εt)

β = 1/(1 + (2 ln ns/N)1/2)
(8)

7: The new weight set after t iterations can be obtained by Equation (9).

Wt+1 =
⋃

x∈Tsd
wx∈Wt

sd

wxβ|ht(x)−y(x)| ∪
⋃

x∈Ttd
wx∈Wt

td

wxβ
−|ht(x)−y(x)|
t (9)

8: t = t + 1, Go back to step 2 util t = N
Ensure: the final expected class labels h f (x) in S according to Equation (10). herein, ht[x] is the

expected class label of sample x in S for each step of the loop, which can be got from step 4:

h f (x) =

{
1, ∏N

t=dN/2e β
−ht [x]
t ≥ ∏N

t=dN/2e β
− 1

2
t

0, otherwise
(10)
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4. Results

The experiment is performed on a GPU with a memory of 64 GB, Titan Xp graphic memory with
12 GB. Additionally, Intel i5-4570 CPU with a frequency of 3.2 G Hz, 1 TB of storage capacity, and 8 GB
of memory are also employed to run these algorithms. InstanceEasyTL and other comparable models
except for DANN are tested on MATLAB R2016b software and DANN on pycharm_2018.3.3 software.
Codes are available at https://github.com/13etterrnan/InstanceEasyTL.

We compare InstanceEasyTL with the traditional machine-learning and transfer-learning methods,
including SVM with linear kernel and intra-domain alignment [41], Transfer Component Analysis (TCA),
Geodesic Flow Kernel (GFK), Domain-adversarial Neural Networks (DANN), and the existing EasyTL.

4.1. Selection of Experimental Conditions

To distinguish experimental conditions used to train models, we make use of the subjective
(i.e., NASA_TLX) and subjects’ drive performance (i.e., “off-road”). With the change of the workload
in different experimental conditions, it shows TAV3 and DROW have the highest and lowest workload,
respectively. In addition, due to TAV3 is the first stage with audio and video stimuli in each experiment,
subjects will be most sober. Correspondingly, when entering into the stage of DROW, the subjects are
very likely to feel tired. Therefore, TAV3 and DROW are used as the typical mental states for analysis.

There are a total of 1400 samples for each subject, including 700 samples for TAV3 and 700 samples
for DROW, respectively.

4.2. Parameter Configurations of Models

For SVM, The kernel type = linear. For TCA, the used parameters are λ = 1, dim = 30, γ = 1,
and kernel type = primal. For GFK, the used parameter is dim = 20. For DANN, the used parameters
are epoch = 100, batch_size = 64, learning rate = 0.0005, and optimizer = adam. In InstanceEayTL,
λ in Equation (2) is set to be 0.3.

In this paper, we set the number of loops N = 30 for InstanceEasyTL, since we find that the
performances reach convergence after 30 loops. We perform 15 times of experiments to test the
performances of InstanceEasyTL, in each experiment, 14 of 15 subjects are used as training samples,
and the remaining as the testing samples. Thus, after 15 experiments, each subject is employed as
the target domain to be tested at least one time, and the Ωt in each experiment belongs to a different
subject to ensure we can acquire more objective performances of InstanceEasyTL.

4.3. Classification Accuracy of InstanceEasyTL

Figure 9 shows the classification performance of different models. We can find that in these
15 experiments, InstanceEasyTL has almost the highest classification accuracy in cross-subject EEG
analysis among these classifiers, which is more obvious in the three experiments of Sub_1-others,
Sub_3-others, and Sub_15-others. Regarding the average performance, the average accuracy of
InstanceEasyTL is 88.33%, which is significantly higher than that of SVM (61.65%), TCA (58.01%),
GFK (56.32%), DANN (70.75%), and EasyTL (70.91%). Please note that it is 15% higher than that of the
second-ranked classifier.

https://github.com/13etterrnan/InstanceEasyTL
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40%
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60%

70%

80%

90%

100%

SVM TCA GFK DANN EasyTL InstanceEasyTL

Figure 9. Classification accuracy comparison. X axis is represented as Sub_i-others (i = 1, 2, ..., 15),
where Sub_i is the samples of target domain, others are the samples of source domain. For example,
the samples of “Sub_1” are used as the target domain, and those of the other 14 subjects are represented
as “others” as the source domain. Y axis shows classification accuracy of InstanceEasyTL and other
methods used for comparison.

4.4. Statistical Analysis Results

To further analyze the performance of InstanceEasyTL on fatigue driving detection, we calculate
the indicators of Recall, Precision, and F1score for each classifier, the results are shown in Table 2.
These three indicators can be calculated as follows:

Precision = TP/(TP + FP)
Recall = TP/(TP + FN)

F1score = 2× Precision×Recall
(Precision+Recall)

(11)

where TP is the number of samples correctly predicted as DROW, FP is the number of samples
incorrectly predicted as DROW, FN is the number of samples incorrectly predicted as TAV3.

Therefore, Recall means the ratio of the samples correctly predicted as DROW to total samples in
DROW state, and Precision means the samples correctly predicted as DROW to the samples predicted
as DROW, respectively, F1score is the harmonic mean of the precision and recall.

We can find in 15 experiments InstanceEasyTL outperforms all other methods. The average
Recall, Precision, and F1score achieved by InstanceEasyTL on our dataset are 89.08, 88.02, and 88.46,
respectively, which significantly outperforms DANN by 18%, 16%, and 17%, respectively.

4.5. The Impact of Different Ttd : Ωt on InstanceEasyTL

In this section, we count the impact of different ratio of Ttd : Ωt on InstanceEasyTL. Here, we set
the ratio of Ttd : Ωt to be 0.1, 0.2, 0.3, 0.4, and 0.5, respectively. We can find that different ratio of Ttd : Ωt

results in different classification accuracy on InstanceEasyTL, as shown in Figure 10. From Figure 10,
the cross-subject recognition accuracy of InstanceEasyTL is above 80% and shows an increasing trend
as the ratio of Ttd : Ωt increases, except for very few exceptions. Similar results can also be observed
from Figure 10p by calculating the average accuracy of InstanceEasyTL. We can then conclude that the
higher the ratio of Ttd : Ωt, the higher the accuracy of InstanceEasyTL.
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Table 2. Recall, Precision and F1score(%) performance.

Target Domain SVM TCA DANN EasyTL InstanceEasyTL

(Source Domain) Recall Precision F1score Recall Precision F1score Recall Precision F1score Recall Precision F1score Recall Precision F1score

S1 (S2–S15) 50.85 50.79 48.85 61.14 53.77 57.22 57.97 61.86 59.85 54.43 62.87 58.35 83.34 86.37 84.77

S2 (S1,S3–S15) 53.25 52.86 49.85 66.00 59.54 62.60 67.44 74.29 70.70 73.71 83.09 78.12 90.71 84.80 87.64

S3 (S1,S2,S4–S15) 59.22 58.07 55.29 48.43 48.57 48.50 53.65 56.71 55.14 53.57 54.51 54.03 88.86 89.45 89.14

S4 (S1–S3,S5–S15) 71.26 70.93 70.70 69.14 66.94 68.03 84.81 90.14 87.40 85.86 92.04 88.84 96.61 97.82 97.20

S5 (S1–S4,S6–S15) 62.23 62.07 61.83 60.43 58.83 59.62 79.28 78.71 79.00 80.71 83.83 82.24 86.97 84.77 85.84

S6 (S1–S5,S7–S15) 51.11 51.00 48.34 54.43 52.84 53.62 55.47 59.43 57.38 55.86 60.71 58.18 78.67 80.33 79.46

S7 (S1–S6,S8–S15) 76.83 75.64 75.09 60.86 56.65 58.68 88.42 87.29 87.85 63.29 65.05 64.16 86.55 88.26 87.37

S8 (S1–S7,S9–S15) 47.24 47.00 49.25 66.00 63.64 64.80 60.00 61.29 60.64 84.86 85.84 85.34 93.53 91.73 92.61

S9 (S1–S8,S10–S15) 77.25 73.79 72.01 67.14 65.83 66.48 88.43 83.00 85.63 92.14 92.94 92.54 97.58 92.21 94.05

S10 (S1–S9,S11–S15) 63.23 61.00 57.41 58.14 52.31 55.07 66.18 64.29 65.22 58.86 61.04 59.93 85.52 83.24 84.30

S11 (S1–S10,S12–S15) 63.42 61.43 58.33 66.57 63.84 65.17 84.60 80.86 82.69 79.57 85.30 82.34 94.20 90.76 92.40

S12 (S1–S11,S13–S15) 64.45 63.64 62.60 66.57 58.84 62.47 68.22 71.14 69.65 62.57 68.98 65.62 85.39 85.22 85.20

S13 (S1–S12,S14–S15) 76.78 74.21 72.92 63.86 64.41 64.13 80.45 76.43 78.39 68.14 76.44 72.05 89.99 87.81 88.80

S14 (S1–S13,S15) 67.54 66.21 64.88 51.57 50.92 51.24 75.87 77.71 76.78 67.71 63.88 65.74 90.20 89.62 89.90

S15 (S1–S14) 56.43 56.07 54.81 48.71 47.63 48.16 50.37 48.43 49.38 44.00 45.29 44.64 88.15 87.94 88.00

Average 62.74 61.65 60.14 60.60 57.64 59.05 70.74 71.44 71.05 68.35 72.12 70.14 89.08 88.02 88.46
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Figure 10. The accuracy of InstanceEasyTL with different Ttd : Ωt, where Sub_i-others (i = 1, 2, ..., 15)
has the same meaning as in Figure 9. We also calculate the average accuracy of InstanceEasyTL.
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5. Discussion

Compared to other traditional methods, InstanceEasyTL could acquire better classification
accuracy performance for cross-subject EEG analysis. There are mainly two reasons. First, from the
perspective of data analysis, InstanceEasyTL “borrows” some samples and labels from the
target domain Ωt, which will be regarded as a part of the new generated source domain Ω

′
s,

thus, InstanceEasyTL can acquire more information of Ωt to make classification accuracy much
higher. However, for other traditional methods, although the samples in the target domain can also
be used for classification, they usually have no corresponding labels for these samples. Secondly,
from the perspective of model training, InstanceEasyTL adjusts the weights of samples during multiple
iterations, and can adaptively choose the samples that are similar to those in the target domain Ωt,
which is more helpful for the subsequent training process. Because InstanceEasyTL adopts the samples
and labels from Ωt for training, which comes from different subjects, much better performance across
subjects will then be acquired. Although other methods, such as TCK and EasyTL, have proven to be
effective in image recognition applications, because they make the feature distributions between the
source and target domains much similar, due to the significant differences of EEG signals over time
and across subjects, it is very difficult to train those models to acquire similar features between the
source and target domains for EEG analysis across subjects.

Then, we employ Recall, Precision, and F1score for statistical comparison analysis. It can be known
from Equation (11) that the greater the Recall/Precision/F1score are, the easier it can distinguish
DROW from TAV3. From Table 2, we can find InstanceEasyTL has the highest values of Recall,
Precision, and F1score statistical analysis results, which illustrates better classification performance
that InstanceEasyTL has in the cross-subject analysis.

Moreover, the impact of different ratios of Ttd : Ωt on InstanceEasyTL is counted as well, as shown
in Figure 10. Here, S and Ttd are used to form the new target domain Ω′t and new source domain Ω′s,
respectively. Accordingly, samples in Ω′s and Ω′t are used by InstanceEasyTL for training and testing.
In general, the different ratios of samples in these two domains will also affect the performance of
InstanceEasyTL. Obviously, as the ratio of Ttd : Ωt increases, on the one hand, the samples used for
training in Ω′s get larger accordingly, the better the performance of InstanceEasyTL as well. On the
other hand, in this way, InstanceEasyTL can extract more characteristics from the original target
domain Ωt, which is more suitable for EEG analysis across subjects. Additionally, we can find more
information from Ωt when Ttd : Ωt equals to 0.7 since the number of samples in Ω′s is getting larger,
which is more helpful to InstanceEasyTL for extracting the characteristics in Ωt, and helps improve
the performance of InstanceEasyTL as well. However, few abnormal results exist. For instance, as
shown in Figure 10a when the ratio of Ttd : Ωt increases from 0.3 to 0.4, the accuracy of InstanceEasyTL
decreases. The main possible reason is that we do not completely remove the artifact components in
EEG signals during preprocessing stage, which will result in the inclusion of some artifact components
in the new source domain Ω′s or the new target domain Ω′t, thereby reducing the classification accuracy
of InstanceEasyTL.

6. Conclusions

In this paper, we propose an EasyTL-based model, named InstanceEasyTL, that focuses on
performing fatigue detection across subjects based on EEG. InstanceEasyTL can extract important
characteristic information from some subjects and then transfer it to the other new subjects by assigning
weights to the samples and “borrowing” a part of data from the new subject as training samples.
To verify the performance of InstanceEasyTL, we compare it with the traditional methods, such as SVM,
TCA, GFK, DANN, and EasyTL. The results show that InstanceEasyTL can obtain better cross-subject
classification performance. Moreover, the statistical analysis shows that InstanceEasyTL can better
distinguish the mental state of DROW from TAV3, hence we can then make a further conclusion that
InstanceEasyTL has a more comprehensive classification performance. In addition, by adjusting the
ratio of Ttd : Ωt, we can find the performance of InstanceEasyTL will be improved as the ratio increases.



Sensors 2020, 20, 7251 15 of 17

In our future work, we will continue to focus on the research on partial transfer learning where the
target domain label space is a subspace of the source domain label space.
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