258 research outputs found

    Wavelet Transform and Machine Learning-Based Biometric Authentication Using EEG Evoked by Invisible Visual Stimuli

    Get PDF
    In this study, we propose the authentication of individuals using electroencephalograms (EEGs) evoked by the application of invisible visual stimuli. In our previous study, we introduced a wavelet transform, which is a time-frequency analysis method, and applied it to extract features, including time information, to enable more accurate discrimination between individuals. An equal error rate (EER) of 9.4 % was achieved using Euclidean distance matching. In this paper, we introduce a machine learning-based approach in order to further improve the verification performance. An EER of 8.1 % is achieved by the proposed method after training the constituent neural networks using ensemble learning with 30 networks

    Influencing brain waves by evoked potentials as biometric approach: taking stock of the last six years of research

    Get PDF
    The scientific advances of recent years have made available to anyone affordable hardware devices capable of doing something unthinkable until a few years ago, the reading of brain waves. It means that through small wearable devices it is possible to perform an electroencephalography (EEG), albeit with less potential than those offered by high-cost professional devices. Such devices make it possible for researchers a huge number of experiments that were once impossible in many areas due to the high costs of the necessary hardware. Many studies in the literature explore the use of EEG data as a biometric approach for people identification, but, unfortunately, it presents problems mainly related to the difficulty of extracting unique and stable patterns from users, despite the adoption of sophisticated techniques. An approach to face this problem is based on the evoked potentials (EPs), external stimuli applied during the EEG reading, a noninvasive technique used for many years in clinical routine, in combination with other diagnostic tests, to evaluate the electrical activity related to some areas of the brain and spinal cord to diagnose neurological disorders. In consideration of the growing number of works in the literature that combine the EEG and EP approaches for biometric purposes, this work aims to evaluate the practical feasibility of such approaches as reliable biometric instruments for user identification by surveying the state of the art of the last 6 years, also providing an overview of the elements and concepts related to this research area

    Introduction of Fractal Dimension Feature and Reduction of Calculation Amount in Person Authentication Using Evoked EEG by Ultrasound

    Get PDF
    The aim of this study is to authenticate individuals using an electroencephalogram (EEG) evoked by a stimulus. EEGs are highly confidential and enable continuous authentication during the use of or access to the given information or service. However, perceivable stimulation distracts the users from the activity they are carrying out while using the service. Therefore, ultrasound stimuli were chosen for EEG evocation. In our previous study, an Equal Error Rate (EER) of 0 % was achieved; however, there were some features which had not been evaluated. In this paper, we introduce a new type of feature, namely fractal dimension, as a nonlinear feature, and evaluate its verification performance on its own and in combination with other conventional features. As a result, an EER of 0 % was achieved when using five features and 14 electrodes, which accounted for 70 support vector machine (SVM) models. However, the construction of the 70 SVM models required extensive calculations. Thus, we reduced the number of SVM models to 24 while maintaining an EER = 0 %

    Recent Developments in Smart Healthcare

    Get PDF
    Medicine is undergoing a sector-wide transformation thanks to the advances in computing and networking technologies. Healthcare is changing from reactive and hospital-centered to preventive and personalized, from disease focused to well-being centered. In essence, the healthcare systems, as well as fundamental medicine research, are becoming smarter. We anticipate significant improvements in areas ranging from molecular genomics and proteomics to decision support for healthcare professionals through big data analytics, to support behavior changes through technology-enabled self-management, and social and motivational support. Furthermore, with smart technologies, healthcare delivery could also be made more efficient, higher quality, and lower cost. In this special issue, we received a total 45 submissions and accepted 19 outstanding papers that roughly span across several interesting topics on smart healthcare, including public health, health information technology (Health IT), and smart medicine

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Multimodal Biometric Systems for Personal Identification and Authentication using Machine and Deep Learning Classifiers

    Get PDF
    Multimodal biometrics, using machine and deep learning, has recently gained interest over single biometric modalities. This interest stems from the fact that this technique improves recognition and, thus, provides more security. In fact, by combining the abilities of single biometrics, the fusion of two or more biometric modalities creates a robust recognition system that is resistant to the flaws of individual modalities. However, the excellent recognition of multimodal systems depends on multiple factors, such as the fusion scheme, fusion technique, feature extraction techniques, and classification method. In machine learning, existing works generally use different algorithms for feature extraction of modalities, which makes the system more complex. On the other hand, deep learning, with its ability to extract features automatically, has made recognition more efficient and accurate. Studies deploying deep learning algorithms in multimodal biometric systems tried to find a good compromise between the false acceptance and the false rejection rates (FAR and FRR) to choose the threshold in the matching step. This manual choice is not optimal and depends on the expertise of the solution designer, hence the need to automatize this step. From this perspective, the second part of this thesis details an end-to-end CNN algorithm with an automatic matching mechanism. This thesis has conducted two studies on face and iris multimodal biometric recognition. The first study proposes a new feature extraction technique for biometric systems based on machine learning. The iris and facial features extraction is performed using the Discrete Wavelet Transform (DWT) combined with the Singular Value Decomposition (SVD). Merging the relevant characteristics of the two modalities is used to create a pattern for an individual in the dataset. The experimental results show the robustness of our proposed technique and the efficiency when using the same feature extraction technique for both modalities. The proposed method outperformed the state-of-the-art and gave an accuracy of 98.90%. The second study proposes a deep learning approach using DensNet121 and FaceNet for iris and faces multimodal recognition using feature-level fusion and a new automatic matching technique. The proposed automatic matching approach does not use the threshold to ensure a better compromise between performance and FAR and FRR errors. However, it uses a trained multilayer perceptron (MLP) model that allows people’s automatic classification into two classes: recognized and unrecognized. This platform ensures an accurate and fully automatic process of multimodal recognition. The results obtained by the DenseNet121-FaceNet model by adopting feature-level fusion and automatic matching are very satisfactory. The proposed deep learning models give 99.78% of accuracy, and 99.56% of precision, with 0.22% of FRR and without FAR errors. The proposed and developed platform solutions in this thesis were tested and vali- dated in two different case studies, the central pharmacy of Al-Asria Eye Clinic in Dubai and the Abu Dhabi Police General Headquarters (Police GHQ). The solution allows fast identification of the persons authorized to access the different rooms. It thus protects the pharmacy against any medication abuse and the red zone in the military zone against the unauthorized use of weapons

    Predicting Humans’ Identity and Mental Load from EEG: Performed by AI

    Full text link
    EEG-based brain machine/computer interfaces (BMIs/BCIs) have a wide range of clinical and non-clinical applications. Mental workload (MW) classification, emotion recognition, motor imagery, seizure detection, and sleep stage scoring are among the active BCI research areas. One of the relatively new BCI area is EEG-based human subject recognition (i.e., EEG biometric). There still exist several challenges that need to be addressed to design a successful EEG-based biometric model applicable for real-world environments. First, there is a need for a protocol that can elicit the individual dependent EEG responses in a short period of time. A classification algorithm with high generalization power is also required to deal with the EEG signals classification task. The latter is a common challenge for all EEG-based BCI paradigms; given the non-stationary nature of the EEG signals and the small size of the EEG datasets. In addition, to building a stable EEG biometric model, the effects of human mental states (e.g., emotion, mental load) on the model performance needs to be carefully examined. In this thesis, a new protocol for the area of the EEG biometric has been proposed. The proposed protocol called “(the) N-back task” is based on the human working memory and the experimental results obtained in this thesis prove that the EEG signals elicited by the N-back task contain subject specific features, even for very short time intervals. It has also been shown that three load levels of the typical N-back task are all capable of evoking subject specific EEG features. As a result, the N-back task can be used as a protocol having more than one mode (i.e, cancelable protocol) that comes with added security benefits. The EEG signals evoked by the N-back task have been used to train a compact convolutional neural network called the EEGNet. A configuration of the EEGNet having 16 temporal and 2 spatial filters has reached an identification accuracy of approximately 97% using data instances as short as 1.1s for a pool of 26 subjects. To further improve the accuracy, a novel ensemble classifier has been designed in this thesis. The principle underlying the proposed ensemble is the “division and exclusion” of the EEG channels guided by scalp locations. The ensemble classifier has (statistically significantly) improved the subject recognition rate from 97% to 99%. Performance of the proposed ensemble model has also been assessed in the EEG-based MW classification paradigm. The ensemble classifier outperformed the single EEGNet as well as a state-of-the-art classifier called WLnet in the challenging scenario of the subject-independent (cross-subject) MW classification. The results suggest that the ensemble structure proposed in this thesis can generalize to different BCI paradigms. Finally, effects of the mental workload on the performance of the EEG-based subject authentication models have been thoroughly explored in this thesis. The obtained results affirm that MW of the genuine and impostor subjects at the train and test phases have significant effects on both false negative rate (FNR) and false positive rate (FPR) of an authentication system. Different subjects have also shown different clusters of authentication behaviors when affected by the MW changes. This finding establishes the importance of the human’s mental load in the design of real-world EEG authentication systems and introduces a new investigation line for the EEG biometric community
    • 

    corecore