16 research outputs found

    Using Portable EEG Devices to Evaluate Emotional Regulation Strategies during Virtual Reality Exposure

    Full text link
    [EN] As Virtual Reality (VR) is starting to be used to train emotional regulation strategies, it would be interesting to propose objective techniques to monitor the emotional reactions of participants during the virtual experience. In this work, the main goal is to analyze if portable EEG systems are adequate to monitor brain activity changes caused by the emotional regulation strategies applied by the participants. The EEG signals captured from subjects that navigate through a virtual environment designed to induce a negative mood will be compared between three experimental groups that will receive different instructions about the emotional regulation strategies to apply. The study will allow us to validate the possibilities of portable EEG devices to monitor emotional regulation strategies during VR exposure.This study was funded by Vicerrectorado de Investigación de la Universitat Politècnica de València, Spain, PAID-06-2011, R.N. 1984; by Ministerio de Educación y Ciencia, Spain, Project Game Teen (TIN2010-20187) and partially by projects Consolider-C (SEJ2006-14301/PSIC), “CIBER of Physiopathology of Obesity and Nutrition, an initiative of ISCIII” and Excellence Research Program PROMETEO (Generalitat Valenciana. Consellería de Educación, 2008-157). The work of A. Rodríguez was supported by the Spanish MEC under an FPI Grant BES-2011-043316.Rey, B.; Rodríguez Ortega, A.; Alcañiz Raya, ML. (2012). Using Portable EEG Devices to Evaluate Emotional Regulation Strategies during Virtual Reality Exposure. Studies in Health Technology and Informatics. 181:223-227. https://doi.org/10.3233/978-1-61499-121-2-223S22322718

    Change in brain activity through virtual reality-based brain-machine communication in a chronic tetraplegic subject with muscular dystrophy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For severely paralyzed people, a brain-computer interface (BCI) provides a way of re-establishing communication. Although subjects with muscular dystrophy (MD) appear to be potential BCI users, the actual long-term effects of BCI use on brain activities in MD subjects have yet to be clarified. To investigate these effects, we followed BCI use by a chronic tetraplegic subject with MD over 5 months. The topographic changes in an electroencephalogram (EEG) after long-term use of the virtual reality (VR)-based BCI were also assessed. Our originally developed BCI system was used to classify an EEG recorded over the sensorimotor cortex in real time and estimate the user's motor intention (MI) in 3 different limb movements: feet, left hand, and right hand. An avatar in the internet-based VR was controlled in accordance with the results of the EEG classification by the BCI. The subject was trained to control his avatar via the BCI by strolling in the VR for 1 hour a day and then continued the same training twice a month at his home.</p> <p>Results</p> <p>After the training, the error rate of the EEG classification decreased from 40% to 28%. The subject successfully walked around in the VR using only his MI and chatted with other users through a voice-chat function embedded in the internet-based VR. With this improvement in BCI control, event-related desynchronization (ERD) following MI was significantly enhanced (<it>p </it>< 0.01) for feet MI (from -29% to -55%), left-hand MI (from -23% to -42%), and right-hand MI (from -22% to -51%).</p> <p>Conclusions</p> <p>These results show that our subject with severe MD was able to learn to control his EEG signal and communicate with other users through use of VR navigation and suggest that an internet-based VR has the potential to provide paralyzed people with the opportunity for easy communication.</p

    An EEG-based perceptual function integration network for application to drowsy driving

    Full text link
    © 2015 Elsevier B.V. All rights reserved. Drowsy driving is among the most critical causes of fatal crashes. Thus, the development of an effective algorithm for detecting a driver's cognitive state demands immediate attention. For decades, studies have observed clear evidence using electroencephalography that the brain's rhythmic activities fluctuate from alertness to drowsiness. Recognition of this physiological signal is the major consideration of neural engineering for designing a feasible countermeasure. This study proposed a perceptual function integration system which used spectral features from multiple independent brain sources for application to recognize the driver's vigilance state. The analysis of brain spectral dynamics demonstrated physiological evidenced that the activities of the multiple cortical sources were highly related to the changes of the vigilance state. The system performances showed a robust and improved accuracy as much as 88% higher than any of results performed by a single-source approach

    A Driving Performance Forecasting System Based on Brain Dynamic State Analysis Using 4-D Convolutional Neural Networks.

    Full text link
    Vehicle accidents are the primary cause of fatalities worldwide. Most often, experiencing fatigue on the road leads to operator errors and behavioral lapses. Thus, there is a need to predict the cognitive state of drivers, particularly their fatigue level. Electroencephalography (EEG) has been demonstrated to be effective for monitoring changes in the human brain state and behavior. Thirty-seven subjects participated in this driving experiment and performed a perform lane-keeping task in a visual-reality environment. Three domains, namely, frequency, temporal, and 2-D spatial information, of the EEG channel location were comprehensively considered. A 4-D convolutional neural-network (4-D CNN) algorithm was then proposed to associate all information from the EEG signals and the changes in the human state and behavioral performance. A 4-D CNN achieves superior forecasting performance over 2-D CNN, 3-D CNN, and shallow networks. The results showed a 3.82% improvement in the root mean-square error, a 3.45% improvement in the error rate, and a 11.98% improvement in the correlation coefficient with 4-D CNN compared with 3-D CNN. The 4-D CNN algorithm extracts the significant θ and alpha activations in the frontal and posterior cingulate cortices under distinct fatigue levels. This work contributes to enhancing our understanding of deep learning methods in the analysis of EEG signals. We even envision that deep learning might serve as a bridge between translation neuroscience and further real-world applications

    Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors

    Get PDF
    A brain-computer interface (BCI) is a communication system that can help users interact with the outside environment by translating brain signals into machine commands. The use of electroencephalographic (EEG) signals has become the most common approach for a BCI because of their usability and strong reliability. Many EEG-based BCI devices have been developed with traditional wet- or micro-electro-mechanical-system (MEMS)-type EEG sensors. However, those traditional sensors have uncomfortable disadvantage and require conductive gel and skin preparation on the part of the user. Therefore, acquiring the EEG signals in a comfortable and convenient manner is an important factor that should be incorporated into a novel BCI device. In the present study, a wearable, wireless and portable EEG-based BCI device with dry foam-based EEG sensors was developed and was demonstrated using a gaming control application. The dry EEG sensors operated without conductive gel; however, they were able to provide good conductivity and were able to acquire EEG signals effectively by adapting to irregular skin surfaces and by maintaining proper skin-sensor impedance on the forehead site. We have also demonstrated a real-time cognitive stage detection application of gaming control using the proposed portable device. The results of the present study indicate that using this portable EEG-based BCI device to conveniently and effectively control the outside world provides an approach for researching rehabilitation engineering

    MÉTODOS DE MAPPING FEATURES APLICADOS AO PROCESSAMENTO DE SINAIS EEG

    Get PDF
    The electroencephalogram (EEG) is a medical examination that aims to record the individual's brain activity for further analysis. Several applications are currently emerging for the same, and a major factor for any application is finding patterns and groups in the signals and relating them to the actions. Currently, there are several classifiers used for this, and these classifiers are applied directly to EEG signals. However, another theme uses Mapping Features methods in signal processing and then performs the classification on the resulting signals for better results.O eletroencefalograma (EEG) é um exame médico que visa registrar a atividade cerebral do indivíduo para análise posterior. Diversas aplicações estão surgindo atualmente para o mesmo, e um fator de grande importância para qualquer aplicação é encontrar padrões e grupos nos sinais e relacioná-los às ações. Atualmente, existem vários classificadores usados ​​para isso, e esses classificadores são aplicados diretamente aos sinais do EEG. No entanto, outra temática utiliza métodos de Mapping Features no processamento dos sinais e posteriormente, realiza a classificação nos sinais resultantes visando obter resultados melhores

    Multi-stream 3D Convolution Neural Network with Parameter Sharing for Human State Estimation

    Full text link

    A Self-Adaptive Online Brain Machine Interface of a Humanoid Robot through a General Type-2 Fuzzy Inference System

    Get PDF
    This paper presents a self-adaptive general type-2 fuzzy inference system (GT2 FIS) for online motor imagery (MI) decoding to build a brain-machine interface (BMI) and navigate a bi-pedal humanoid robot in a real experiment, using EEG brain recordings only. GT2 FISs are applied to BMI for the first time in this study. We also account for several constraints commonly associated with BMI in real practice: 1) maximum number of electroencephalography (EEG) channels is limited and fixed, 2) no possibility of performing repeated user training sessions, and 3) desirable use of unsupervised and low complexity features extraction methods. The novel learning method presented in this paper consists of a self-adaptive GT2 FIS that can both incrementally update its parameters and evolve (a.k.a. self-adapt) its structure via creation, fusion and scaling of the fuzzy system rules in an online BMI experiment with a real robot. The structure identification is based on an online GT2 Gath-Geva algorithm where every MI decoding class can be represented by multiple fuzzy rules (models). The effectiveness of the proposed method is demonstrated in a detailed BMI experiment where 15 untrained users were able to accurately interface with a humanoid robot, in a single thirty-minute experiment, using signals from six EEG electrodes only
    corecore