3,204 research outputs found

    High frequency oscillations as a correlate of visual perception

    Get PDF
    “NOTICE: this is the author’s version of a work that was accepted for publication in International journal of psychophysiology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International journal of psychophysiology , 79, 1, (2011) DOI 10.1016/j.ijpsycho.2010.07.004Peer reviewedPostprin

    Electrophysiological correlates of high-level perception during spatial navigation

    Get PDF
    We studied the electrophysiological basis of object recognition by recording scalp\ud electroencephalograms while participants played a virtual-reality taxi driver game.\ud Participants searched for passengers and stores during virtual navigation in simulated\ud towns. We compared oscillatory brain activity in response to store views that were targets or\ud nontargets (during store search) or neutral (during passenger search). Even though store\ud category was solely defined by task context (rather than by sensory cues), frontal ...\ud \u

    The oscillatory mechanisms of working memory maintenance

    Get PDF
    Working memory (WM) is a cognitive process which allows for maintenance of information that is no longer perceived. Although theoretical models have recognized that working memory involves interactions across cell assemblies in multiple brain areas, the exact neural mechanisms which support this process remain unknown. In this thesis I investigate the neural dynamics in the human hippocampus, the ventral, dorsal and frontal cortex as well as the long-range network connectivity across these brain areas to understand how such a distributed network allows for maintenance of various information pieces in WM. The results described here support a model in which working memory relies on dynamic interactions across frequencies (the cross-frequency coupling, CFC) in a distributed network of cortical areas coordinated by the prefrontal cortex. In particular, maintenance of information during a delay period selectively involves the hippocampus, dorsal and ventral visual stream as well as the prefrontal cortex each of which represents different features. The hippocampus contributes to this large network specifically by representing multiple items in working memory. In two independent experiments I observed that the low-frequency activity (a marker of neural inhibition) was linearly reduced across memory loads. Importantly, the hippocampus showed very prominent low-frequency power during maintenance of a single item suggesting that during this condition the neural processing was strongly inhibited. In turn, the broadband gamma activity was linearly increasing as a function of memory load. This pattern of results may be interpreted as reflecting an increased involvement of the hippocampus in representing longer sequences. Importantly, the low-frequency decrease was not static but fluctuated periodically between two different modes. One of the modes was characterized by the load-dependent power decreases and reduced cross-frequency coupling (memory activation mode) whereas the other mode was reflected by the load-independent high levels of power and increased coupling strength (load-independent mode). Crucially, these modes were temporally organized by the phase of an endogenous delta rhythm forming a “hierarchy of oscillations”. This periodicity was essential for the successful performance. Finally, during the memory activation mode the WM capacity limit was inter-individually correlated with the peak frequency change as predicted by the multiplexing model of WM. All these effects were subsequently replicated in an independent dataset. These results suggest that the hippocampus is involved in WM maintenance showing periodic fluctuations between two different oscillatory modes. Parameters of the hippocampal iEEG signal correlate with individual WM capacity, specifically during the memory activation mode. The ventral and dorsal visual stream each contributes to the distributed WM network by representing configuration and spatial information, respectively. Specifically, the alpha power in the ventral visual stream was decreased during maintenance of face identities. In turn, the alpha power was desynchronized in the dorsal visual stream while participants were maintaining face orientations. This shows that the alpha power double dissociates between the feature specific networks in the ventral and dorsal visual stream. These effects are further interpreted as reflecting selective involvement of the dorsal and ventral visual pathway depending on the maintained features. Importantly, each of the visual streams was selectively synchronized with the prefrontal cortex depending on the memory condition and the alpha power. This corroborates a central prediction from the gating by inhibition model which assumes that the increased alpha power serves as the mechanism for gating of information by inhibiting task redundant pathways. Moreover, during maintenance of information the phase of alpha modulated the amplitude of high-frequency activity both in the dorsal and ventral visual stream. Additionally,the low-frequency phase in the prefrontal cortex modulated high-frequency activity both in the dorsal and ventral visual stream. These results suggest that both the dorsal and ventral visual streams are selectively involved during maintenance of distinct features (i.e. face orientation and identity, respectively). They also indicate that the prefrontal cortex selectively gets synchronized with the visual regions depending on the alpha power in that region and the maintained feature. Finally, the activity in the prefrontal cortex influences processing across long distance as evident from changes in the phase synchrony with the visual cortical areas and by modulating gamma power in the visual cortical regions. It is also noted that the ventrolateral prefrontal cortex (vlPFC) contains information regarding abstract rules (i.e. response mapping). In particular, using a multivariate decoding approach I found that the local field potentials recorded from the vlPFC dissociate between different types of responses. At the same time I observed no evidence for the load-dependent or stimulus-specific changes in that brain region. The null effect should be treated with caution. Nevertheless, the current results suggest that the vlPFC may contribute to working memory by processing of abstract rules such as a mapping between the stimulus and the response. Furthermore, I found that the alpha power dependent duty cycle in the vlPFC constrains the duration of the gamma burst which has been suggested as a mechanism for neural inhibition. This finding is important because such a property of the alpha activity has never been observed in a brain region other than the primary sensory cortex. Together, the results presented in this thesis support a model according to which the working memory is a complex and highly dynamic process engaging hierarchies of oscillations across multiple cortical regions. In particular, the hippocampus is important for the multi-item WM. The dorsal and ventral visual streams are relevant for distinct visual features. Finally, the prefrontal cortex represents abstract rules and influences processing in other cortical regions likely providing a top down control over these regions

    Fostering advances to neuropsychological assessment based on the Research Domain Criteria: The bridge between cognitive functioning and physiology

    Get PDF
    Objectives: The current review aimed to explore the advances in neuropsychological assessment in light of a recent research framework designed to improve our knowledge on mental health – the Research Domain Criteria (RDoC). Methods: RDoC proposals on neuropsychological tests were reviewed across the RDoC cognitive systems domain. The focus is on the physiological unit of analysis and the potential applications are illustrated given the functional relevance of RDoC constructs to psychopathological and neurological conditions. Results: The advances in neuropsychology anchored in RDoC are not observable in terms of innovative paradigms, but rather in the neurobiological correlates that may be obtained from the classical neuropsychological tasks. The behavior unit of analysis may be integrated with physiological outcomes while mapping distinct cognitive constructs simultaneously. Conclusions: Under the aegis of RDoC, the integration of multiple levels of analysis allows to obtain a more detailed and complete neuropsychological characterization with high potential to be translated into better intervention strategies.info:eu-repo/semantics/publishedVersio

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Alpha Oscillations and Early Stages of Visual Encoding

    Get PDF
    For a long time alpha oscillations have been functionally linked to the processing of visual information. Here we propose an new theory about the functional meaning of alpha. The central idea is that synchronized alpha reflects a basic processing mode that controls access to information stored in a complex long-term memory system, which we term knowledge system in order to emphasize that it comprises not only declarative memories but any kind of knowledge comprising also procedural information. Based on this theoretical background, we assume that during early stages of perception, alpha “directs the flow of information” to those neural structures which represent information that is relevant for encoding. The physiological function of alpha is interpreted in terms of inhibition. We assume that alpha enables access to stored information by inhibiting task-irrelevant neuronal structures and by timing cortical activity in task relevant neuronal structures. We discuss a variety findings showing that evoked alpha and phase locking reflect successful encoding of global stimulus features in an early post-stimulus interval of about 0–150 ms

    Psychologie und Gehirn 2007

    Get PDF
    Die Fachtagung "Psychologie und Gehirn" ist eine traditionelle Tagung aus dem Bereich psychophysiologischer Grundlagenforschung. 2007 fand diese Veranstaltung, die 33. Jahrestagung der „Deutschen Gesellschaft für Psychophysiologie und ihre Anwendungen (DGPA)“, in Dortmund unter der Schirmherrschaft des Instituts für Arbeitsphysiologie (IfADo) statt. Neben der Grundlagenforschung ist auch die Umsetzung in die Anwendung erklärtes Ziel der DGPA und dieser Tradition folgend wurden Beiträge aus vielen Bereichen moderner Neurowissenschaft (Elektrophysiologie, bildgebende Verfahren, Peripherphysiologie, Neuroendokrinologie, Verhaltensgenetik, u.a.) präsentiert und liegen hier in Kurzform vor
    corecore