5 research outputs found

    ECMR’13 Special Issue

    Get PDF
    This special issue contains extended versions of the best papers from the 6th European Conference on Mobile Robots (ECMR). ECMR is a biennial European forum, internationally open, that allows roboticists throughout Europe to become acquainted with the latest research accomplishments and innovations in mobile robotics and mobile human–robot systems. ECMR covers most aspects of mobile robotics research and machine intelligence, including (but not limited to) the following topics: multi-sensor fusion, localization, map building, navigation, active perception, behavior-based robotics, path and task planning, learning and adaptation, robot vision, human–robot interaction, cognitive robotics, experimental evaluation and benchmarking, 3D sensing, and applications of mobile robotics in land, water, air, underground, and space.Peer ReviewedPostprint (author's final draft

    Creating Simplified 3D Models with High Quality Textures

    Get PDF
    This paper presents an extension to the KinectFusion algorithm which allows creating simplified 3D models with high quality RGB textures. This is achieved through (i) creating model textures using images from an HD RGB camera that is calibrated with Kinect depth camera, (ii) using a modified scheme to update model textures in an asymmetrical colour volume that contains a higher number of voxels than that of the geometry volume, (iii) simplifying dense polygon mesh model using quadric-based mesh decimation algorithm, and (iv) creating and mapping 2D textures to every polygon in the output 3D model. The proposed method is implemented in real-time by means of GPU parallel processing. Visualization via ray casting of both geometry and colour volumes provides users with a real-time feedback of the currently scanned 3D model. Experimental results show that the proposed method is capable of keeping the model texture quality even for a heavily decimated model and that, when reconstructing small objects, photorealistic RGB textures can still be reconstructed.Comment: 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Page 1 -

    Efficient Surfel Fusion Using Normalised Information Distance

    Get PDF
    We present a new technique that achieves a significant reduction in the quantity of measurements required for a fusion based dense 3D mapping system to converge to an accurate, de-noised surface reconstruction. This is achieved through the use of a Normalised Information Distance metric, that computes the novelty of the information contained in each incoming frame with respect to the reconstruction, and avoids fusing those frames that exceed a redundancy threshold. This provides a principled approach for opitmising the trade-off between surface reconstruction accuracy and the computational cost of processing frames. The technique builds upon the ElasticFusion (EF) algorithm where we report results of the technique’s scalability and the accuracy of the resultant maps by applying it to both the ICL-NUIM [3] and TUM RGB-D [8] datasets. These results demonstrate the capabilities of the approach in performing accurate surface reconstructions whilst utilising a fraction of the frames when compared to the original EF algorithm

    Dense Visual Simultaneous Localisation and Mapping in Collaborative and Outdoor Scenarios

    Get PDF
    Dense visual simultaneous localisation and mapping (SLAM) systems can produce 3D reconstructions that are digital facsimiles of the physical space they describe. Systems that can produce dense maps with this level of fidelity in real time provide foundational spatial reasoning capabilities for many downstream tasks in autonomous robotics. Over the past 15 years, mapping small scale, indoor environments, such as desks and buildings, with a single slow moving, hand-held sensor has been one of the central focuses of dense visual SLAM research. However, most dense visual SLAM systems exhibit a number of limitations which mean they cannot be directly applied in collaborative or outdoors settings. The contribution of this thesis is to address these limitations with the development of new systems and algorithms for collaborative dense mapping, efficient dense alternation and outdoors operation with fast camera motion and wide field of view (FOV) cameras. We use ElasticFusion, a state-of-the-art dense SLAM system, as our starting point where each of these contributions is implemented as a novel extension to the system. We first present a collaborative dense SLAM system that allows a number of cameras starting with unknown initial relative positions to maintain local maps with the original ElasticFusion algorithm. Visual place recognition across local maps results in constraints that allow maps to be aligned into a common global reference frame, facilitating collaborative mapping and tracking of multiple cameras within a shared map. Within dense alternation based SLAM systems, the standard approach is to fuse every frame into the dense model without considering whether the information contained within the frame is already captured by the dense map and therefore redundant. As the number of cameras or the scale of the map increases, this approach becomes inefficient. In our second contribution, we address this inefficiency by introducing a novel information theoretic approach to keyframe selection that allows the system to avoid processing redundant information. We implement the procedure within ElasticFusion, demonstrating a marked reduction in the number of frames required by the system to estimate an accurate, denoised surface reconstruction. Before dense SLAM techniques can be applied in outdoor scenarios we must first address their reliance on active depth cameras, and their lack of suitability to fast camera motion. In our third contribution we present an outdoor dense SLAM system. The system overcomes the need for an active sensor by employing neural network-based depth inference to predict the geometry of the scene as it appears in each image. To address the issue of camera tracking during fast motion we employ a hybrid architecture, combining elements of both dense and sparse SLAM systems to perform camera tracking and to achieve globally consistent dense mapping. Automotive applications present a particularly important setting for dense visual SLAM systems. Such applications are characterised by their use of wide FOV cameras and are therefore not accurately modelled by the standard pinhole camera model. The fourth contribution of this thesis is to extend the above hybrid sparse-dense monocular SLAM system to cater for large FOV fisheye imagery. This is achieved by reformulating the mapping pipeline in terms of the Kannala-Brandt fisheye camera model. To estimate depth, we introduce a new version of the PackNet depth estimation neural network (Guizilini et al., 2020) adapted for fisheye inputs. To demonstrate the effectiveness of our contributions, we present experimental results, computed by processing the synthetic ICL-NUIM dataset of Handa et al. (2014) as well as the real-world TUM-RGBD dataset of Sturm et al. (2012). For outdoor SLAM we show the results of our system processing the autonomous driving KITTI and KITTI-360 datasets of Geiger et al. (2012a) and Liao et al. (2021) respectively

    ECMR’13 Special Issue

    No full text
    This special issue contains extended versions of the best papers from the 6th European Conference on Mobile Robots (ECMR). ECMR is a biennial European forum, internationally open, that allows roboticists throughout Europe to become acquainted with the latest research accomplishments and innovations in mobile robotics and mobile human–robot systems. ECMR covers most aspects of mobile robotics research and machine intelligence, including (but not limited to) the following topics: multi-sensor fusion, localization, map building, navigation, active perception, behavior-based robotics, path and task planning, learning and adaptation, robot vision, human–robot interaction, cognitive robotics, experimental evaluation and benchmarking, 3D sensing, and applications of mobile robotics in land, water, air, underground, and space.Peer Reviewe
    corecore