2,909 research outputs found

    Belle II Technical Design Report

    Full text link
    The Belle detector at the KEKB electron-positron collider has collected almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an upgrade of KEKB is under construction, to increase the luminosity by two orders of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2 /s luminosity. To exploit the increased luminosity, an upgrade of the Belle detector has been proposed. A new international collaboration Belle-II, is being formed. The Technical Design Report presents physics motivation, basic methods of the accelerator upgrade, as well as key improvements of the detector.Comment: Edited by: Z. Dole\v{z}al and S. Un

    Numerical aerodynamic simulation facility feasibility study, executive summary

    Get PDF
    There were three major issues examined in the feasibility study. First, the ability of the proposed system architecture to support the anticipated workload was evaluated. Second, the throughput of the computational engine (the flow model processor) was studied using real application programs. Third, the availability, reliability, and maintainability of the system were modeled. The evaluations were based on the baseline systems. The results show that the implementation of the Numerical Aerodynamic Simulation Facility, in the form considered, would indeed be a feasible project with an acceptable level of risk. The technology required (both hardware and software) either already exists or, in the case of a few parts, is expected to be announced this year

    Graph Pattern Matching on Symmetric Multiprocessor Systems

    Get PDF
    Graph-structured data can be found in nearly every aspect of today's world, be it road networks, social networks or the internet itself. From a processing perspective, finding comprehensive patterns in graph-structured data is a core processing primitive in a variety of applications, such as fraud detection, biological engineering or social graph analytics. On the hardware side, multiprocessor systems, that consist of multiple processors in a single scale-up server, are the next important wave on top of multi-core systems. In particular, symmetric multiprocessor systems (SMP) are characterized by the fact, that each processor has the same architecture, e.g. every processor is a multi-core and all multiprocessors share a common and huge main memory space. Moreover, large SMPs will feature a non-uniform memory access (NUMA), whose impact on the design of efficient data processing concepts should not be neglected. The efficient usage of SMP systems, that still increase in size, is an interesting and ongoing research topic. Current state-of-the-art architectural design principles provide different and in parts disjunct suggestions on which data should be partitioned and or how intra-process communication should be realized. In this thesis, we propose a new synthesis of four of the most well-known principles Shared Everything, Partition Serial Execution, Data Oriented Architecture and Delegation, to create the NORAD architecture, which stands for NUMA-aware DORA with Delegation. We built our research prototype called NeMeSys on top of the NORAD architecture to fully exploit the provided hardware capacities of SMPs for graph pattern matching. Being an in-memory engine, NeMeSys allows for online data ingestion as well as online query generation and processing through a terminal based user interface. Storing a graph on a NUMA system inherently requires data partitioning to cope with the mentioned NUMA effect. Hence, we need to dissect the graph into a disjunct set of partitions, which can then be stored on the individual memory domains. This thesis analyzes the capabilites of the NORAD architecture, to perform scalable graph pattern matching on SMP systems. To increase the systems performance, we further develop, integrate and evaluate suitable optimization techniques. That is, we investigate the influence of the inherent data partitioning, the interplay of messaging with and without sufficient locality information and the actual partition placement on any NUMA socket in the system. To underline the applicability of our approach, we evaluate NeMeSys against synthetic datasets and perform an end-to-end evaluation of the whole system stack on the real world knowledge graph of Wikidata

    Automated Synthesis of Quantum Subcircuits

    Full text link
    The quantum computer has become contemporary reality, with the first two-qubit machine of mere decades ago transforming into cloud-accessible devices with tens, hundreds, or--in a few cases--even thousands of qubits. While such hardware is noisy and still relatively small, the increasing number of operable qubits raises another challenge: how to develop the now-sizeable quantum circuits executable on these machines. Preparing circuits manually for specifications of any meaningful size is at best tedious and at worst impossible, creating a need for automation. This article describes an automated quantum-software toolkit for synthesis, compilation, and optimization, which transforms classically-specified, irreversible functions to both technology-independent and technology-dependent quantum circuits. We also describe and analyze the toolkit's application to three situations--quantum read-only memories, quantum random number generators, and quantum oracles--and illustrate the toolkit's start-to-finish features from the input of classical functions to the output of quantum circuits ready-to-run on commercial hardware. Furthermore, we illustrate how the toolkit enables research beyond circuit synthesis, including comparison of synthesis and optimization methods and deeper understanding of even well-studied quantum algorithms. As quantum hardware continues to develop, such quantum circuit toolkits will play a critical role in realizing its potential.Comment: 49 pages, 25 figures, 20 table

    The Semantic Grid: A future e-Science infrastructure

    No full text
    e-Science offers a promising vision of how computer and communication technology can support and enhance the scientific process. It does this by enabling scientists to generate, analyse, share and discuss their insights, experiments and results in an effective manner. The underlying computer infrastructure that provides these facilities is commonly referred to as the Grid. At this time, there are a number of grid applications being developed and there is a whole raft of computer technologies that provide fragments of the necessary functionality. However there is currently a major gap between these endeavours and the vision of e-Science in which there is a high degree of easy-to-use and seamless automation and in which there are flexible collaborations and computations on a global scale. To bridge this practice–aspiration divide, this paper presents a research agenda whose aim is to move from the current state of the art in e-Science infrastructure, to the future infrastructure that is needed to support the full richness of the e-Science vision. Here the future e-Science research infrastructure is termed the Semantic Grid (Semantic Grid to Grid is meant to connote a similar relationship to the one that exists between the Semantic Web and the Web). In particular, we present a conceptual architecture for the Semantic Grid. This architecture adopts a service-oriented perspective in which distinct stakeholders in the scientific process, represented as software agents, provide services to one another, under various service level agreements, in various forms of marketplace. We then focus predominantly on the issues concerned with the way that knowledge is acquired and used in such environments since we believe this is the key differentiator between current grid endeavours and those envisioned for the Semantic Grid

    Open Source Platforms for Big Data Analytics

    Get PDF
    O conceito de Big Data tem tido um grande impacto no campo da tecnologia, em particular na gestão e análise de enormes volumes de informação. Atualmente, as organizações consideram o Big Data como uma oportunidade para gerir e explorar os seus dados o máximo possível, com o objetivo de apoiar as suas decisões dentro das diferentes áreas operacionais. Assim, é necessário analisar vários conceitos sobre o Big Data e o Big Data Analytics, incluindo definições, características, vantagens e desafios. As ferramentas de Business Intelligence (BI), juntamente com a geração de conhecimento, são conceitos fundamentais para o processo de tomada de decisão e transformação da informação. Ao investigar as plataformas de Big Data, as práticas industriais atuais e as tendências relacionadas com o mundo da investigação, é possível entender o impacto do Big Data Analytics nas pequenas organizações. Este trabalho pretende propor soluções para as micro, pequenas ou médias empresas (PME) que têm um grande impacto na economia portuguesa, dado que representam a maioria do tecido empresarial. As plataformas de código aberto para o Big Data Analytics oferecem uma grande oportunidade de inovação nas PMEs. Este trabalho de pesquisa apresenta uma análise comparativa das funcionalidades e características das plataformas e os passos a serem tomados para uma análise mais profunda e comparativa. Após a análise comparativa, apresentamos uma avaliação e seleção de plataformas Big Data Analytics (BDA) usando e adaptando a metodologia QSOS (Qualification and Selection of software Open Source) para qualificação e seleção de software open-source. O resultado desta avaliação e seleção traduziu-se na eleição de duas plataformas para os testes experimentais. Nas plataformas de software livre de BDA foi usado o mesmo conjunto de dados assim como a mesma configuração de hardware e software. Na comparação das duas plataformas, demonstrou que a HPCC Systems Platform é mais eficiente e confiável que a Hortonworks Data Platform. Em particular, as PME portuguesas devem considerar as plataformas BDA como uma oportunidade de obter vantagem competitiva e melhorar os seus processos e, consequentemente, definir uma estratégia de TI e de negócio. Por fim, este é um trabalho sobre Big Data, que se espera que sirva como um convite e motivação para novos trabalhos de investigação.The concept of Big Data has been having a great impact in the field of technology, particularly in the management and analysis of huge volumes of information. Nowadays organizations look for Big Data as an opportunity to manage and explore their data the maximum they can, with the objective of support decisions within its different operational areas. Thus, it is necessary to analyse several concepts about Big Data and Big Data Analytics, including definitions, features, advantages and disadvantages. Business intelligence along with the generation of knowledge are fundamental concepts for the process of decision-making and transformation of information. By investigate today's big data platforms, current industrial practices and related trends in the research world, it is possible to understand the impact of Big Data Analytics on small organizations. This research intends to propose solutions for micro, small or médium enterprises (SMEs) that have a great impact on the Portuguese economy since they represente approximately 90% of the companies in Portugal. The open source platforms for Big Data Analytics offers a great opportunity for SMEs. This research work presents a comparative analysis of those platforms features and functionalities and the steps that will be taken for a more profound and comparative analysis. After the comparative analysis, we present an evaluation and selection of Big Data Analytics (BDA) platforms using and adapting the Qualification and Selection of software Open Source (QSOS) method. The result of this evaluation and selection was the selection of two platforms for the empirical experiment and tests. The same testbed and dataset was used in the two Open Source Big Data Analytics platforms. When comparing two BDA platforms, HPCC Systems Platform is found to be more efficient and reliable than Hortonworks Data Platform. In particular, Portuguese SMEs should consider for BDA platforms an opportunity to obtain competitive advantage and improve their processes and consequently define an IT and business strategy. Finally, this is a research work on Big Data; it is hoped that this will serve as an invitation and motivation for new research
    • …
    corecore