57,806 research outputs found

    A synthetic Escherichia coli predator–prey ecosystem

    Get PDF
    We have constructed a synthetic ecosystem consisting of two Escherichia coli populations, which communicate bi-directionally through quorum sensing and regulate each other's gene expression and survival via engineered gene circuits. Our synthetic ecosystem resembles canonical predator–prey systems in terms of logic and dynamics. The predator cells kill the prey by inducing expression of a killer protein in the prey, while the prey rescue the predators by eliciting expression of an antidote protein in the predator. Extinction, coexistence and oscillatory dynamics of the predator and prey populations are possible depending on the operating conditions as experimentally validated by long-term culturing of the system in microchemostats. A simple mathematical model is developed to capture these system dynamics. Coherent interplay between experiments and mathematical analysis enables exploration of the dynamics of interacting populations in a predictable manner

    Effects of demographic stochasticity on biological community assembly on evolutionary time scales

    Full text link
    We study the effects of demographic stochasticity on the long-term dynamics of biological coevolution models of community assembly. The noise is induced in order to check the validity of deterministic population dynamics. While mutualistic communities show little dependence on the stochastic population fluctuations, predator-prey models show strong dependence on the stochasticity, indicating the relevance of the finiteness of the populations. For a predator-prey model, the noise causes drastic decreases in diversity and total population size. The communities that emerge under influence of the noise consist of species strongly coupled with each other and have stronger linear stability around the fixed-point populations than the corresponding noiseless model. The dynamics on evolutionary time scales for the predator-prey model are also altered by the noise. Approximate 1/f1/f fluctuations are observed with noise, while 1/f21/f^{2} fluctuations are found for the model without demographic noise

    Predator-prey cycles from resonant amplification of demographic stochasticity

    Full text link
    In this paper we present the simplest individual level model of predator-prey dynamics and show, via direct calculation, that it exhibits cycling behavior. The deterministic analogue of our model, recovered when the number of individuals is infinitely large, is the Volterra system (with density-dependent prey reproduction) which is well-known to fail to predict cycles. This difference in behavior can be traced to a resonant amplification of demographic fluctuations which disappears only when the number of individuals is strictly infinite. Our results indicate that additional biological mechanisms, such as predator satiation, may not be necessary to explain observed predator-prey cycles in real (finite) populations.Comment: 4 pages, 2 figure

    Tearing Out the Income Tax by the (Grass)Roots

    Get PDF
    Landscapes are increasingly fragmented, and conservation programs have started to look at network approaches for maintaining populations at a larger scale. We present an agent-based model of predator–prey dynamics where the agents (i.e. the individuals of either the predator or prey population) are able to move between different patches in a landscaped network. We then analyze population level and coexistence probability given node-centrality measures that characterize specific patches. We show that both predator and prey species benefit from living in globally well-connected patches (i.e. with high closeness centrality). However, the maximum number of prey species is reached, on average, at lower closeness centrality levels than for predator species. Hence, prey species benefit from constraints imposed on species movement in fragmented landscapes since they can reproduce with a lesser risk of predation, and their need for using anti-predatory strategies decreases.authorCount :

    Ecological system with fear induced group defence and prey refuge

    Full text link
    In this study, we investigate the dynamics of a spatial and non spatial prey-predator interaction model that includes the following: (i) fear effect incorporated in prey birth rate; (ii) group defence of prey against predators; and (iii) prey refuge. We provide comprehensive mathematical analysis of extinction and persistence scenarios for both prey and predator species. To better explore the dynamics of the system, a thorough investigation of bifurcation analysis has been performed using fear level, prey birth rate, and prey death rate caused by intra-prey competition as bifurcation parameter. All potential occurrences of bi-stability dynamics have also been investigated for some relevant sets of parametric values. Our numerical evaluations show that high levels of fear can stabilize the prey-predator system by ruling out the possibility of periodic solutions. Also, our model Hopf bifurcation is subcritical in contrast to traditional prey-predator models, which ignore the cost of fear and have supercritical Hopf bifurcations in general. In contrast to the general trend, predator species go extinct at higher values of prey birth rates. We have also found that, contrary to the typical tendency for prey species to go extinct, both prey and predator populations may coexist in the system as intra-prey competition level grows noticeably. The stability and Turing instability of associated spatial model have also been investigated analytically. We also perform the numerical simulation to observe the effect of different parameters on the density distribution of species. Different types of spatiotemporal patterns like spot, mixture of spots and stripes have been observed via variation of time evolution, diffusion coefficient of predator population, level of fear factor and prey refuge. The fear level parameter (k) has a great impact on the spatial dynamics of model system
    • …
    corecore