In this paper we present the simplest individual level model of predator-prey
dynamics and show, via direct calculation, that it exhibits cycling behavior.
The deterministic analogue of our model, recovered when the number of
individuals is infinitely large, is the Volterra system (with density-dependent
prey reproduction) which is well-known to fail to predict cycles. This
difference in behavior can be traced to a resonant amplification of demographic
fluctuations which disappears only when the number of individuals is strictly
infinite. Our results indicate that additional biological mechanisms, such as
predator satiation, may not be necessary to explain observed predator-prey
cycles in real (finite) populations.Comment: 4 pages, 2 figure