1,752 research outputs found

    Slowness learning for curiosity-driven agents

    Get PDF
    In the absence of external guidance, how can a robot learn to map the many raw pixels of high-dimensional visual inputs to useful action sequences? I study methods that achieve this by making robots self-motivated (curious) to continually build compact representations of sensory inputs that encode different aspects of the changing environment. Previous curiosity-based agents acquired skills by associating intrinsic rewards with world model improvements, and used reinforcement learning (RL) to learn how to get these intrinsic rewards. But unlike in previous implementations, I consider streams of high-dimensional visual inputs, where the world model is a set of compact low-dimensional representations of the high-dimensional inputs. To learn these representations, I use the slowness learning principle, which states that the underlying causes of the changing sensory inputs vary on a much slower time scale than the observed sensory inputs. The representations learned through the slowness learning principle are called slow features (SFs). Slow features have been shown to be useful for RL, since they capture the underlying transition process by extracting spatio-temporal regularities in the raw sensory inputs. However, existing techniques that learn slow features are not readily applicable to curiosity-driven online learning agents, as they estimate computationally expensive covariance matrices from the data via batch processing. The first contribution called the incremental SFA (IncSFA), is a low-complexity, online algorithm that extracts slow features without storing any input data or estimating costly covariance matrices, thereby making it suitable to be used for several online learning applications. However, IncSFA gradually forgets previously learned representations whenever the statistics of the input change. In open-ended online learning, it becomes essential to store learned representations to avoid re- learning previously learned inputs. The second contribution is an online active modular IncSFA algorithm called the curiosity-driven modular incremental slow feature analysis (Curious Dr. MISFA). Curious Dr. MISFA addresses the forgetting problem faced by IncSFA and learns expert slow feature abstractions in order from least to most costly, with theoretical guarantees. The third contribution uses the Curious Dr. MISFA algorithm in a continual curiosity-driven skill acquisition framework that enables robots to acquire, store, and re-use both abstractions and skills in an online and continual manner. I provide (a) a formal analysis of the working of the proposed algorithms; (b) compare them to the existing methods; and (c) use the iCub humanoid robot to demonstrate their application in real-world environments. These contributions together demonstrate that the online implementations of slowness learning make it suitable for an open-ended curiosity-driven RL agent to acquire a repertoire of skills that map the many raw pixels of high-dimensional images to multiple sets of action sequences

    Contributions to the analysis and segmentation of remote sensing hyperspectral images

    Get PDF
    142 p.This PhD Thesis deals with the segmentation of hyperspectral images from the point of view of Lattice Computing. We have introduced the application of Associative Morphological Memories as a tool to detect strong lattice independence, which has been proven equivalent to affine independence. Therefore, sets of strong lattice independent vectors found using our algorithms correspond to the vertices of convex sets that cover most of the data. Unmixing the data relative to these endmembers provides a collection of abundance images which can be assumed either as unsupervised segmentations of the images or as features extracted from the hyperspectral image pixels. Besides, we have applied this feature extraction to propose a content based image retrieval approach based on the image spectral characterization provided by the endmembers. Finally, we extended our ideas to the proposal of Morphological Cellular Automata whose dynamics are guided by the morphological/lattice independence properties of the image pixels. Our works have also explored the applicability of Evolution Strategies to the endmember induction from the hyperspectral image data

    Approaches to Generating Selectivity in Microcantilever Sensors

    Get PDF
    Microcantilever (MC) sensors have emerged as sensing transducers that offer greater sensitivity than comparable sensors due in large part to their very small dimensions. MCs have been utilized in many chemical sensing applications. Not only do MCs demonstrate greater sensitivity, but they also are relatively low in cost, they can be used in an array format, and they can be integrated into on-chip electronic circuitry. While MC sensors demonstrate great sensitivity, an area of weakness that MC sensors must overcome is that of selectivity. The response of a MC sensor to analyte is mechanical; these mechanical responses lack the information rich spectral features like those found in vibrational spectroscopic techniques. Thus the underlying goal of this research is to develop approaches to enhancing selectivity in MC sensors. The initial research focused simply on demonstrating that MC sensors could be functionalized with thiolated self-assembled monolayers (SAMs) and then used to detect metal ions in the liquid phase. The initial research not only demonstrated the moderate selectivity of SAMs to metal ions, but also the good sensitivity at which these metal ions could be detected. The second phase of the research represented the first time that microcantilever array sensors (MCAs) were functionalized with SAMs having different ligand functionalities on one sensor chip. The MCA was exposed to different metal ions and the response signatures used in conjunction with pattern recognition algorithms to identify and quantitate the metal ion injected. In an extension of the metal ion array research, the SAM MCA was coupled to an ion-exchange chromatography (IEC) column for the separation and detection of metal ions. The second major division of research presented in this work involves improving the selectivity of detection of analytes in the gas phase. MCAs differentially coated with polymeric RPs by way of PVD were made. Experimental parameters were adjusted to determine if the parameters would impact the selectivity of the MCA. The final project involved taking the former gas phase project a step further by invoking the use of gas chromatography (GC) to impart selectivity to the system

    Linear dimensionality reduction: Survey, insights, and generalizations

    Get PDF
    Linear dimensionality reduction methods are a cornerstone of analyzing high dimensional data, due to their simple geometric interpretations and typically attractive computational properties. These methods capture many data features of interest, such as covariance, dynamical structure, correlation between data sets, input-output relationships, and margin between data classes. Methods have been developed with a variety of names and motivations in many fields, and perhaps as a result the connections between all these methods have not been highlighted. Here we survey methods from this disparate literature as optimization programs over matrix manifolds. We discuss principal component analysis, factor analysis, linear multidimensional scaling, Fisher's linear discriminant analysis, canonical correlations analysis, maximum autocorrelation factors, slow feature analysis, sufficient dimensionality reduction, undercomplete independent component analysis, linear regression, distance metric learning, and more. This optimization framework gives insight to some rarely discussed shortcomings of well-known methods, such as the suboptimality of certain eigenvector solutions. Modern techniques for optimization over matrix manifolds enable a generic linear dimensionality reduction solver, which accepts as input data and an objective to be optimized, and returns, as output, an optimal low-dimensional projection of the data. This simple optimization framework further allows straightforward generalizations and novel variants of classical methods, which we demonstrate here by creating an orthogonal-projection canonical correlations analysis. More broadly, this survey and generic solver suggest that linear dimensionality reduction can move toward becoming a blackbox, objective-agnostic numerical technology.JPC and ZG received funding from the UK Engineering and Physical Sciences Research Council (EPSRC EP/H019472/1). JPC received funding from a Sloan Research Fellowship, the Simons Foundation (SCGB#325171 and SCGB#325233), the Grossman Center at Columbia University, and the Gatsby Charitable Trust.This is the author accepted manuscript. The final version is available from MIT Press via http://jmlr.org/papers/v16/cunningham15a.htm
    corecore