114,531 research outputs found

    Multiple input control strategies for robust and adaptive climate engineering in a low order 3-box model

    Get PDF
    A low-order 3-box energy balance model for the climate system is employed with a multivariable control scheme for the evaluation of new robust and adaptive climate engineering strategies using solar radiation management. The climate engineering measures are deployed in three boxes thus representing northern, southern and central bands. It is shown that, through heat transport between the boxes, it is possible to effect a degree of latitudinal control through the reduction of insolation. The approach employed consists of a closed-loop system with an adaptive controller, where the required control intervention is estimated under the RCP4.5 radiative scenario. Through the online estimation of the controller parameters, adaptive control can overcome key issues related to uncertainties of the climate model, the external radiative forcing and the dynamics of the actuator used. In fact, the use of adaptive control offers a robust means of dealing with unforeseeable abrupt perturbations, as well as the parametrization of the model considered, to counteract the RCP4.5 scenario, while still providing bounds on stability and control performance. Moreover, applying multivariable control theory also allows the formal controllability and observability of the system to be investigated in order to identify all feasible control strategies

    Competition among small individuals hinders adaptive radiation despite ecological opportunity.

    Get PDF
    Ontogenetic diet shifts, where individuals change their resource use during development, are the rule rather than the exception in the animal world. Here, we aim to understand how such changes in diet during development affect the conditions for an adaptive radiation in the presence of ecological opportunity. We use a size-structured consumer-resource model and the adaptive dynamics approach to study the ecological conditions for speciation. We assume that small individuals all feed on a shared resource. Large individuals, on the other hand, have access to multiple food sources on which they can specialize. We find that competition among small individuals can hinder an adaptive radiation to unfold, despite plenty of ecological opportunity for large individuals. When small individuals experience strong competition for food, they grow slowly and only a few individuals are recruited to the larger size classes. Hence, competition for food among large individuals is weak and there is therefore no disruptive selection. In addition, initial conditions determine if an adaptive radiation occurs or not. A consumer population initially dominated by small individuals will not radiate. On the other hand, a population initially dominated by large individuals may undergo adaptive radiation and diversify into multiple species

    Mathematical Modeling of the Synergetic Effect between Radiotherapy and Immunotherapy

    Full text link
    Achieving effective synergy between radiotherapy and immunotherapy is critical for optimizing tumor control and treatment outcomes. To explore the underlying mechanisms of this synergy, we have investigated a novel treatment approach known as personalized ultra-fractionated stereotactic adaptive radiation therapy (PULSAR), which emphasizes the impact of radiation timing on treatment efficacy. However, the precise mechanism remains unclear. Building on insights from small animal PULSAR studies, we developed a mathematical framework consisting of multiple ordinary differential equations to elucidate the temporal dynamics of tumor control resulting from radiation and the adaptive immune response. The model accounts for the migration and infiltration of T-cells within the tumor microenvironment. This proposed model establishes a causal and quantitative link between radiation therapy and immunotherapy, providing a valuable in-silico analysis tool for designing future PULSAR trials

    Mega-evolutionary dynamics of the adaptive radiation of birds

    Get PDF
    The origin and expansion of biological diversity is regulated by both developmental trajectories and limits on available ecological niches. As lineages diversify, an early and often rapid phase of species and trait proliferation gives way to evolutionary slow- downs as new species pack into ever more densely occupied regions of ecological niche space. Small clades such as Darwin’s finches demonstrate that natural selection is the driving force of adaptive radiations, but how microevolutionary processes scale up to shape the expansion of phenotypic diversity over much longer evolutionary timescales is unclear. Here we address this problem on a global scale by analysing a crowd-sourced dataset of three-dimensional scanned bill morphology from more than 2,000 species. We find that bill diversity expanded early in extant avian evolutionary history, before transitioning to a phase dominated by packing of morphological space. However, this early phenotypic diversification is decoupled from temporal variation in evolutionary rate: rates of bill evolution vary among lineages but are comparatively stable through time. We find that rare, but major, discontinuities in phenotype emerge from rapid increases in rate along single branches, sometimes leading to depauperate clades with unusual bill morphologies. Despite these jumps between groups, the major axes of within-group bill-shape evolution are remarkably consistent across birds. We reveal that macroevolutionary processes underlying global-scale adaptive radiations support Darwinian and Simpsonian ideas of microevolution within adaptive zones and accelerated evolution between distinct adaptive peaks

    Protoplanetary disk fragmentation with varying radiative physics, initial conditions and numerical techniques

    Full text link
    We review recent results of SPH simulations of gravitational instability in gaseous protoplanetary disks,emphasizing the role of thermodynamics in both isolated and binary systems. Contradictory results appeared in the literature regarding disk fragmentation at tens of AU from the central star are likely due to the different treatment of radiation physics as well as reflecting different initial conditions. Further progress on the subject requires extensive comparisons between different codes with the requirement that the same initial conditions are adopted. It is discussed how the local conditions of the disks undergoing fragmentation at R<25R < 25 AU in recent SPH simulations are in rough agreement with the prediction of analytical models, with small differences being likely related to the inability of analytical models to account for the dynamics and thermodynamics of three-dimensional spiral shocks. We report that radically different adaptive hydrodynamical codes, SPH and adaptive mesh refinement (AMR), yield very similar results on disk fragmentation at comparable resolution in the simple case of an isothermal equation of state. A high number of refinements in AMR codes is necessary but not sufficient to correctly follow fragmentation, rather an initial resolution of the grid high enough to capture the wavelength of the strongest spiral modes when they are still barely nonlinear is essential. These tests represent a useful benchmark and a starting point for a forthcoming code comparison with realistic radiation physics.Comment: 13 pages, 4 figures, invited review, proceedings of the Conference "Extreme Solar Systems", Santorini, Greece, June 25-29, 2007, slightly extended version with bigger figure

    Feedback Design for Control of the Micro-Bunching Instability based on Reinforcement Learning

    Get PDF
    The operation of ring-based synchrotron light sources with short electron bunches increases the emission of coherent synchrotron radiation in the THz frequency range. However, the micro-bunching instability resulting from self-interaction of the bunch with its own radiation field limits stable operation with constant intensity of CSR emission to a particular threshold current. Above this threshold, the longitudinal charge distribution and thus the emitted radiation vary rapidly and continuously. Therefore, a fast and adaptive feedback system is the appropriate approach to stabilize the dynamics and to overcome the limitations given by the instability. In this contribution, we discuss first efforts towards a longitudinal feedback design that acts on the RF system of the KIT storage ring KARA (Karlsruhe Research Accelerator) and aims for stabilization of the emitted THz radiation. Our approach is based on methods of adaptive control that were developed in the field of reinforcement learning and have seen great success in other fields of research over the past decade. We motivate this particular approach and comment on different aspects of its implementation
    corecore