1,206 research outputs found

    The Chameleon Architecture for Streaming DSP Applications

    Get PDF
    We focus on architectures for streaming DSP applications such as wireless baseband processing and image processing. We aim at a single generic architecture that is capable of dealing with different DSP applications. This architecture has to be energy efficient and fault tolerant. We introduce a heterogeneous tiled architecture and present the details of a domain-specific reconfigurable tile processor called Montium. This reconfigurable processor has a small footprint (1.8 mm2^2 in a 130 nm process), is power efficient and exploits the locality of reference principle. Reconfiguring the device is very fast, for example, loading the coefficients for a 200 tap FIR filter is done within 80 clock cycles. The tiles on the tiled architecture are connected to a Network-on-Chip (NoC) via a network interface (NI). Two NoCs have been developed: a packet-switched and a circuit-switched version. Both provide two types of services: guaranteed throughput (GT) and best effort (BE). For both NoCs estimates of power consumption are presented. The NI synchronizes data transfers, configures and starts/stops the tile processor. For dynamically mapping applications onto the tiled architecture, we introduce a run-time mapping tool

    Octopus - an energy-efficient architecture for wireless multimedia systems

    Get PDF
    Multimedia computing and mobile computing are two trends that will lead to a new application domain in the near future. However, the technological challenges to establishing this paradigm of computing are non-trivial. Personal mobile computing offers a vision of the future with a much richer and more exciting set of architecture research challenges than extrapolations of the current desktop architectures. In particular, these devices will have limited battery resources, will handle diverse data types, and will operate in environments that are insecure, dynamic and which vary significantly in time and location. The approach we made to achieve such a system is to use autonomous, adaptable modules, interconnected by a switch rather than by a bus, and to offload as much as work as possible from the CPU to programmable modules that is placed in the data streams. A reconfigurable internal communication network switch called Octopus exploits locality of reference and eliminates wasteful data copies

    Cognitive Radio Programming: Existing Solutions and Open Issues

    Get PDF
    Software defined radio (sdr) technology has evolved rapidly and is now reaching market maturity, providing solutions for cognitive radio applications. Still, a lot of issues have yet to be studied. In this paper, we highlight the constraints imposed by recent radio protocols and we present current architectures and solutions for programming sdr. We also list the challenges to overcome in order to reach mastery of future cognitive radios systems.La radio logicielle a évolué rapidement pour atteindre la maturité nécessaire pour être mise sur le marché, offrant de nouvelles solutions pour les applications de radio cognitive. Cependant, beaucoup de problèmes restent à étudier. Dans ce papier, nous présentons les contraintes imposées par les nouveaux protocoles radios, les architectures matérielles existantes ainsi que les solutions pour les programmer. De plus, nous listons les difficultés à surmonter pour maitriser les futurs systèmes de radio cognitive

    Cognitive Sensor Platform

    Get PDF
    This paper describes a platform that is used to build embedded sensor systems for low energy implantable applications. One of the key characteristics of the platform is the ability to reason about the environment and dynamically modify the operational parameters of the system. Additionally the platform provides to ability to compose application specific sensor systems using a novel computational element that directly supports a synchronous-dataflow (SDF) programming paradigm. Cognition in the context of a sensor platform is defined as the “process of knowing, including aspects of awareness, perception, reasoning, and judgment”.DOI:http://dx.doi.org/10.11591/ijece.v4i4.568

    An embedded system supporting dynamic partial reconfiguration of hardware resources for morphological image processing

    Get PDF
    Processors for high-performance computing applications are generally designed with a focus on high clock rates, parallelism of operations and high communication bandwidth, often at the expense of large power consumption. However, the emphasis of many embedded systems and untethered devices is on minimal hardware requirements and reduced power consumption. With the incessant growth of computational needs for embedded applications, which contradict chip power and area needs, the burden is put on the hardware designers to come up with designs that optimize power and area requirements. This thesis investigates the efficient design of an embedded system for morphological image processing applications on Xilinx FPGAs (Field Programmable Gate Array) by optimizing both area and power usage while delivering high performance. The design leverages a unique capability of FPGAs called dynamic partial reconfiguration (DPR) which allows changing the hardware configuration of silicon pieces at runtime. DPR allows regions of the FPGA to be reprogrammed with new functionality while applications are still running in the remainder of the device. The main aim of this thesis is to design an embedded system for morphological image processing by accounting for real time and area constraints as compared to a statically configured FPGA. IP (Intellectual Property) cores are synthesized for both static and dynamic time. DPR enables instantiation of more hardware logic over a period of time on an existing device by time-multiplexing the hardware realization of functions. A comparison of power consumption is presented for the statically and dynamically reconfigured designs. Finally, a performance comparison is included for the implementation of the respective algorithms on a hardwired ARM processor as well as on another general-purpose processor. The results prove the viability of DPR for morphological image processing applications

    Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals

    Get PDF
    Multimedia applications are driving wireless network operators to add high-speed data services such as Edge (E-GPRS), WCDMA (UMTS) and WLAN (IEEE 802.11a,b,g) to the existing GSM network. This creates the need for multi-mode cellular handsets that support a wide range of communication standards, each with a different RF frequency, signal bandwidth, modulation scheme etc. This in turn generates several design challenges for the analog and digital building blocks of the physical layer. In addition to the above-mentioned protocols, mobile devices often include Bluetooth, GPS, FM-radio and TV services that can work concurrently with data and voice communication. Multi-mode, multi-band, and multi-standard mobile terminals must satisfy all these different requirements. Sharing and/or switching transceiver building blocks in these handsets is mandatory in order to extend battery life and/or reduce cost. Only adaptive circuits that are able to reconfigure themselves within the handover time can meet the design requirements of a single receiver or transmitter covering all the different standards while ensuring seamless inter-interoperability. This paper presents analog and digital base-band circuits that are able to support GSM (with Edge), WCDMA (UMTS), WLAN and Bluetooth using reconfigurable building blocks. The blocks can trade off power consumption for performance on the fly, depending on the standard to be supported and the required QoS (Quality of Service) leve

    Modeling and Mapping of Optimized Schedules for Embedded Signal Processing Systems

    Get PDF
    The demand for Digital Signal Processing (DSP) in embedded systems has been increasing rapidly due to the proliferation of multimedia- and communication-intensive devices such as pervasive tablets and smart phones. Efficient implementation of embedded DSP systems requires integration of diverse hardware and software components, as well as dynamic workload distribution across heterogeneous computational resources. The former implies increased complexity of application modeling and analysis, but also brings enhanced potential for achieving improved energy consumption, cost or performance. The latter results from the increased use of dynamic behavior in embedded DSP applications. Furthermore, parallel programming is highly relevant in many embedded DSP areas due to the development and use of Multiprocessor System-On-Chip (MPSoC) technology. The need for efficient cooperation among different devices supporting diverse parallel embedded computations motivates high-level modeling that expresses dynamic signal processing behaviors and supports efficient task scheduling and hardware mapping. Starting with dynamic modeling, this thesis develops a systematic design methodology that supports functional simulation and hardware mapping of dynamic reconfiguration based on Parameterized Synchronous Dataflow (PSDF) graphs. By building on the DIF (Dataflow Interchange Format), which is a design language and associated software package for developing and experimenting with dataflow-based design techniques for signal processing systems, we have developed a novel tool for functional simulation of PSDF specifications. This simulation tool allows designers to model applications in PSDF and simulate their functionality, including use of the dynamic parameter reconfiguration capabilities offered by PSDF. With the help of this simulation tool, our design methodology helps to map PSDF specifications into efficient implementations on field programmable gate arrays (FPGAs). Furthermore, valid schedules can be derived from the PSDF models at runtime to adapt hardware configurations based on changing data characteristics or operational requirements. Under certain conditions, efficient quasi-static schedules can be applied to reduce overhead and enhance predictability in the scheduling process. Motivated by the fact that scheduling is critical to performance and to efficient use of dynamic reconfiguration, we have focused on a methodology for schedule design, which complements the emphasis on automated schedule construction in the existing literature on dataflow-based design and implementation. In particular, we have proposed a dataflow-based schedule design framework called the dataflow schedule graph (DSG), which provides a graphical framework for schedule construction based on dataflow semantics, and can also be used as an intermediate representation target for automated schedule generation. Our approach to applying the DSG in this thesis emphasizes schedule construction as a design process rather than an outcome of the synthesis process. Our approach employs dataflow graphs for representing both application models and schedules that are derived from them. By providing a dataflow-integrated framework for unambiguously representing, analyzing, manipulating, and interchanging schedules, the DSG facilitates effective codesign of dataflow-based application models and schedules for execution of these models. As multicore processors are deployed in an increasing variety of embedded image processing systems, effective utilization of resources such as multiprocessor systemon-chip (MPSoC) devices, and effective handling of implementation concerns such as memory management and I/O become critical to developing efficient embedded implementations. However, the diversity and complexity of applications and architectures in embedded image processing systems make the mapping of applications onto MPSoCs difficult. We help to address this challenge through a structured design methodology that is built upon the DSG modeling framework. We refer to this methodology as the DEIPS methodology (DSG-based design and implementation of Embedded Image Processing Systems). The DEIPS methodology provides a unified framework for joint consideration of DSG structures and the application graphs from which they are derived, which allows designers to integrate considerations of parallelization and resource constraints together with the application modeling process. We demonstrate the DEIPS methodology through cases studies on practical embedded image processing systems
    corecore