664 research outputs found

    Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud

    Full text link
    With the advent of cloud computing, organizations are nowadays able to react rapidly to changing demands for computational resources. Not only individual applications can be hosted on virtual cloud infrastructures, but also complete business processes. This allows the realization of so-called elastic processes, i.e., processes which are carried out using elastic cloud resources. Despite the manifold benefits of elastic processes, there is still a lack of solutions supporting them. In this paper, we identify the state of the art of elastic Business Process Management with a focus on infrastructural challenges. We conceptualize an architecture for an elastic Business Process Management System and discuss existing work on scheduling, resource allocation, monitoring, decentralized coordination, and state management for elastic processes. Furthermore, we present two representative elastic Business Process Management Systems which are intended to counter these challenges. Based on our findings, we identify open issues and outline possible research directions for the realization of elastic processes and elastic Business Process Management.Comment: Please cite as: S. Schulte, C. Janiesch, S. Venugopal, I. Weber, and P. Hoenisch (2015). Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud. Future Generation Computer Systems, Volume NN, Number N, NN-NN., http://dx.doi.org/10.1016/j.future.2014.09.00

    Anytime Cognition: An information agent for emergency response

    Get PDF
    Planning under pressure in time-constrained environments while relying on uncertain information is a challenging task. This is particularly true for planning the response during an ongoing disaster in a urban area, be that a natural one, or a deliberate attack on the civilian population. As the various activities pertaining to the emergency response need to be coordinated in response to multiple reports from the disaster site, a user finds itself cognitively overloaded. To address this issue, we designed the Anytime Cognition (ANTICO) concept to assist human users working in time-constrained environments by maintaining a manageable level of cognitive workload over time. Based on the ANTICO concept, we develop an agent framework for proactively managing a user’s changing information requirements by integrating information management techniques with probabilistic plan recognition. In this paper, we describe a prototype emergency response application in the context of a subset of the attacks devised by the American Department of Homeland Security

    Dynamic execution of scientific workflows in cloud

    Get PDF

    Stochastic scheduling and workload allocation : QoS support and profitable brokering in computing grids

    No full text
    Abstract: The Grid can be seen as a collection of services each of which performs some functionality. Users of the Grid seek to use combinations of these services to perform the overall task they need to achieve. In general this can be seen as aset of services with a workflow document describing how these services should be combined. The user may also have certain constraints on the workflow operations, such as execution time or cost ----t~ th~ user, specified in the form of a Quality of Service (QoS) document. The users . submit their workflow to a brokering service along with the QoS document. The brokering service's task is to map any given workflow to a subset of the Grid services taking the QoS and state of the Grid into account -- service availability and performance. We propose an approach for generating constraint equations describing the workflow, the QoS requirements and the state of the Grid. This set of equations may be solved using Mixed-Integer Linear Programming (MILP), which is the traditional method. We further develop a novel 2-stage stochastic MILP which is capable of dealing with the volatile nature of the Grid and adapting the selection of the services during the lifetime of the workflow. We present experimental results comparing our approaches, showing that the . 2-stage stochastic programming approach performs consistently better than other traditional approaches. Next we addresses workload allocation techniques for Grid workflows in a multi-cluster Grid We model individual clusters as MIMIk. queues and obtain a numerical solutio~ for missed deadlines (failures) of tasks of Grid workflows. We also present an efficient algorithm for obtaining workload allocations of clusters. Next we model individual cluster resources as G/G/l queues and solve an optimisation problem that minimises QoS requirement violation, provides QoS guarantee and outperforms reservation based scheduling algorithms. Both approaches are evaluated through an experimental simulation and the results confirm that the proposed workload allocation strategies combined with traditional scheduling algorithms performs considerably better in terms of satisfying QoS requirements of Grid workflows than scheduling algorithms that don't employ such workload allocation techniques. Next we develop a novel method for Grid brokers that aims at maximising profit whilst satisfying end-user needs with a sufficient guarantee in a volatile utility Grid. We develop a develop a 2-stage stochastic MILP which is capable of dealing with the volatile nature . of the Grid and obtaining cost bounds that ensure that end-user cost is minimised or satisfied and broker's profit is maximised with sufficient guarantee. These bounds help brokers know beforehand whether the budget limits of end-users can be satisfied and. if not then???????? obtain appropriate future leases from service providers. Experimental results confirm the efficacy of our approach.Imperial Users onl

    Resource Provisioning for Task-Batch Based Workflows with Deadlines in Public Clouds

    Full text link
    [EN] To meet the dynamic workload requirements in widespread task-batch based workflow applications, it is important to design algorithms for DAG-based platforms (such as Dryad, Spark and Pegasus) to rent virtual machines from public clouds dynamically. In terms of depths and functionalities, tasks of different task-batches are merged into task-units. A unit-aware deadline division method is investigated for properly dividing workflow deadlines to task deadlines so as to minimize the utilization of rented intervals. A rule-based task scheduling method is presented for allocating tasks to time slots of rented Virtual Machines (VMs) with a task right shifting operation and a weighted priority composite rule. A Unit-aware Rule-based Heuristic (URH) is proposed for elastically provisioning VMs to task-batch based workflows to minimize the rental cost in DAG-based cloud platforms. Effectiveness of the proposed URH methods is verified by comparing them against two adapted existing algorithms for similar problems on some realistic workflows.The authors would like to thank the reviewers for their constructive and useful comments. This work is supported by the National Natural Science Foundation of China (Grant No.61602243 and 61572127), the Natural Science Foundation of Jiangsu Province (Grant No.BK20160846), the Jiangsu Key Laboratory of Image and Video Understanding for Social Safety (Grant No. 30916014107). Ruben Ruiz is partially supported by the Spanish Ministry of Economy and Competitiveness, under the project "SCHEYARD" (DPI2015-65895-R) financed by FEDER funds.Cai, Z.; Li, X.; Ruiz García, R. (2019). Resource Provisioning for Task-Batch Based Workflows with Deadlines in Public Clouds. IEEE Transactions on Cloud Computing. 7(3):814-826. https://doi.org/10.1109/TCC.2017.2663426S8148267
    corecore