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Abstract - Scientific workflows have emerged in the past 

decade as a new solution for representing complex scientific 

experiments. Generally, they are data and compute 

intensive applications and may need high performance 

computing infrastructures (clusters, grids and cloud) to be 

executed. Recently, cloud services have gained widespread 

availability and popularity since their rapid elasticity and 

resource pooling, which is well suited to the nature of 

scientific applications that may experience variable demand 

and eventually spikes in resource. In this paper we 

investigate dynamic execution capabilities, focused on fault 

tolerance behavior in the Occopus framework which was 

developed by SZTAKI and was targeted to provide 

automatic features for configuring and orchestrating 

distributed applications (so called virtual infrastructures) 

on single or multi cloud systems. 

I. INTRODUCTION 

 

Over the last few years, cloud computing has emerged as 

a new model of distributed computing by offering 

hardware and software resources as virtualization-enabled 

services. Cloud providers give application owners the 

option to deploy their application over a network with a 

virtually infinite resource pool with modest operating and 

practically no investment costs. Today, cloud computing 

systems follow a service-driven, layered software 

architecture model, with Software as a Service (SaaS), 

Platform as a Service (PaaS), and Infrastructure as a 

Service (IaaS). In this paper we are primarily focusing on 

IaaS cloud services. In an IaaS environment the CPU, 

storage, and network resources are supplied by a 

collection of data centers installed with hundreds to 

thousands of physical resources such as cloud servers, 

storage repositories, and network backbone. It is the task 

of the cloud orchestrator to select the appropriate 

resource for an initiated application or service executed in 

the cloud.   
Due to their rapid elasticity and almost infinite 

resource pooling capabilities cloud services have also 
gained widespread popularity for enacting scientific 
experiments. Scientific experiments are widely used in 
most scientific domains such as bioinformatics, 
earthquake science, astronomy, etc. In general they consist 

of multiple computing tasks that can be executed on 
distributed and parallel infrastructures.  

Scientific workflows are used to model these scientific 
experiments at a high level abstraction. They are 
graphically represented by Directed Acyclic Graphs 
(DAGs), where the nodes are the computing tasks and the 
edges between them represent the data or control flow. 
Since these experiments mostly require compute and data 
intensive tasks the execution of scientific workflows may 
last for even weeks or months, and may manipulate even 
terabytes of data. Thus scientific workflows should be 
executed in a dynamic manner in order to save energy and 
time. 

Dynamic execution has three main aspects: fault 
tolerance, intervention and optimization techniques. Fault 
tolerance means to continue the execution with the 
required SLA even in the presence of failures, or to adapt 
to new situations and actual needs during runtime. Since 
scientific workflows are mainly explorative by nature 
scientists often need to monitor the execution, to get 
feedback about the status of the execution and to interfere 
with it. Intervention by the scientist, workflow developer 
or the administrator may also be needed in a planned or in 
an ad-hoc manner. The third aspect of dynamic execution 
concerns with optimization mechanisms, such as 
performance, budget, time or power optimization 
techniques. 

In this paper we are investigating the possibilities of 
executing scientific workflows dynamically in Occopus, 
we examine the required extensions to provide a reliable 
service for workflow orchestration and propose a fault 
tolerant mechanism which is based on the workflow 
structure and replication technique. 

Occopus [7] is a newly introduced framework, 
developed by the Hungarian SZTAKI and was targeted to 
provide automatic features for configuring and 
orchestrating distributed applications on single or multi 
cloud systems. 

Our paper is structured as follows: in the next section 
we give a brief overview about the related work on 
communication middleware used in distributed systems 
and on fault tolerance in cloud. In section III we introduce 
Occopus framework in a more detailed fashion. In section 
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IV we analyze the possibility of executing workflows in 
Occopus and section V introduces our solution in detail. 
Finally in the last section we give a brief insight into our 
fault tolerant proposal and the conclusion closes our work. 

II. RELATED WORK 

A. Communication middleware in the cloud 

As distributed applications transcending geographical and 

organizational boundaries the demands placed upon their 

communication infrastructures will increase exponentially. 

Modern systems operate in complex environments with 

multiple programming languages, hardware platforms, 

operating systems and the requirement for dynamic 

deployments, and reliability while maintaining a high 

Quality-of-Service (QoS).  

Cloud orchestration in general means to build up and 

manage interconnections and interactions between 

distributed services on single or multi cloud systems. At 

first the orchestrator allocates the most appropriate 

resource for a job from a resource pool, than monitors the 

functioning of the resource with a so called heartbeat 

mechanism. However, this mechanism only gives 

feedback about the physical status of the resources (CPU, 

memory usage, etc.) it cannot provide reliability in 

communication and data sharing. 

Concerning scientific workflows the main challenge is to 

provide high availability, reliable communication, fault 

tolerance and SLA based service. In most scientific 

workflow management system a special middleware is 

responsible to maintain the connection, and data 

movement between the distributed services and to 

schedule the tasks according to available resources and 

predefined constraints (data flow model). 

To provide a reliable, flexible and scalable 

communication between the services a suitable 

communication middleware is needed. 

Communication middlewares can be categorized as 

Remote Procedure Call (RPC) oriented Middleware, 

Transaction-Oriented Middleware (TOM), Object-

Oriented/Component middleware (OOCM) and Message-

Oriented Middleware (MOM) [6]. 

RPC oriented Middleware is based on a client-server 

architecture and provides remote procedure calls through 

APIs. This kind of communication is synchronous to the 

user, since it waits until the server returns a response thus 

it does not enable a scalable and fault tolerant solution for 

workflows [5]. 

A Transaction-Oriented Middleware (TOM) is used to 

ensure the correctness of transaction operations in a 

distributed environment. It is primarily used in 

architectures built around database applications [14]. 

TOM supports synchronous and asynchronous 

communication among heterogeneous hosts, but due to its 

redundancies and control information attached to the pure 

data for ensuring high reliability, it results in low 

scalability in both the data volume that can be handled, 

and in the number of interacting actors. 

An Object-Oriented/Component Middleware (OOCM) is 

based on object-oriented programming models and 

supports distributed object request. OOCM is an 

extension of Remote Procedure Calls (RPC), and it adds 

several features that emerge from object-oriented 

programming languages, such as object references, 

inheritance and exceptions. These added features make 

OOCM flexible, however this solution enables still 

limited scalability. 

A Message-Oriented Middleware (MOM) allows 

message passing across applications on distributed 

systems. A MOM provides several features such as:  

 asynchronous and synchronous communication 

mechanisms 

 data format transformation (i.e. a MOM can 

change the format of the data contained in the 

messages to fit the receiving application [16]) 

 loose coupling among applications 

 parallel processing of messages 

 support for several levels of priority.  

Message passing is the ancestor of the distributed 

interactions and one of the realizations of MOM. The 

producer and the consumer are communicating via 

sending messages. The producer and the consumer are 

coupled both in time and space; they must both be active 

at the same time. The consumer receives messages by 

listening synchronously on a channel and the recipient of 

a message is known to the sender. 

Message queues are newer solutions for MOM, where 

messages are concurrently pulled by consumers, as well 

as a subscription based exchange solution, allowing 

groups of consumers to subscribe to groups of publishers, 

resulting in a communication network or platform, or a 

message bus. Message queues provide an asynchronous 

communication protocol. Its widespread popularity lies in 

not only its asynchronous feature but in the fact that it 

provides persistence, reliability and scalability enabling 

both time and space decoupling of the so called 

publishers and consumers. 

Advanced Message Queuing Protocol (AMQP) [1] is an 

open standard application layer protocol for message-

oriented middleware.  RabbitMQ [3] is an open source 

message broker software (sometimes called message-

oriented middleware) that implements the AMQP and can 

be easily used on almost all major operating systems. 

 

B. Fault tolerance in cloud 

Although cloud computing has been widely adopted by 

the industry, still there are many research issues to be 

fully addressed like fault tolerance, workflow scheduling, 

workflow management, security, etc [8]. Fault tolerance 

is one of the key issues amongst all. It is a complex 

challenge to deliver the quality, robustness, and reliability 

in the cloud that is needed for widespread acceptance as 

tools for the scientists’ community.  

 

 

To deal with this problem many research has been 

already done in fault tolerance. Fault tolerance policy can 

be proactive and reactive. While the aim of proactive 
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techniques is to avoid situations caused by failures by 

predicting them and taking the necessary actions, reactive 

fault tolerance policies reduce the effect of failures on 

application execution when the failure effectively occurs. 

Different fault tolerance challenges and techniques 

(resubmission, checkpointing, self-healing, job migration, 

preemptive migration) have been implemented using 

various tools (HAProxy, Hadoop, SGuard,) in the cloud. 

Also there are a lot of methods created for providing fault 

tolerant execution of scientific workflows in the cloud. 

Mostly they heavily rely on sophisticated and complex 

models of the failure behavior specific to the targeted 

computing environment. In our investigations we are 

targeting a solution that is mostly based on the workflow 

structure and data about the actual execution timings 

retrieved from provenance database. 

 

III. OCCOPUS ARCHITECTURE 

 

Occopus [7] (Fig. 1) has five main components: 
enactor issues virtual machine management requests 
towards the infrastructure processor;  infrastructure 
processor, which is the internal representation of a virtual 
infrastructure (enabling the grouping of VMs serving a 
common aim); cloud handler  enables federated and 
interoperable cloud use by abstracting basic IaaS 
functionalities like VM creation service composer, which 
ensures that VMs meet their expected functionalities by 
utilizing configuration management tools and finally the 
information broker that decouples the information 
producer and consumer roles with a unified interface 
throughout the architecture.  

After receiving the required infrastructure description 
the enactor immediately compiles it to an internal 
representation. It is the role of the enactor to forward and 
upgrade the node requests to the infrastructure processor 
and to monitor the state of the infrastructure continuously 
during the setup and the existence of the infrastructure. 
This monitoring function is achieved by the help of the 
info broker. Among others this component is responsible 
for tracking the information flow between the nodes. If it 
notices a failure of a node or a connection it notifies the 
enactor. The enactor then upgrades the infrastructure 
description and forwards it to the infrastructure processor. 

The infrastructure processor receives node creation and 

node destruction requests from the enactor. During 

creation infrastructure processor sends a contextualized 

VM requests to the cloud handler. Within the 

contextualization information the processor places a 

reference to some of the previously created attributes of 

VMs.Node destruction requests are directly forwarded to 

the cloud handler component.  
The cloud handler as its basic functionality, provides 

an abstraction over IaaS functionalities and allow the 
creation, monitoring and destruction of virtual machines. 
For these functionalities, it offers a plugin architecture that 
can be implemented with several IaaS interfaces (currently 
Occopus supports EC2, nova, cloudbroker, docker and 
OCCI interfaces).  

The main functionality of the Service Composer is the 
management of deployed software and its configuration 
on the node level. This functionality is well developed and 
even commercial tools are available to the public. 
Occopus Service Composer component therefore offers 
interfaces to these widely available tools (e.g., Chef, 
Puppet, Docker, Ansible). 
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Figure 1.  Occopus architecture 

 

IV. SCIENTIFIC WORKFLOWS IN OCCOPUS 

A. Scientific workflows 

In Occopus framework a virtual infrastructure can be 
built upon a directed acyclic graph representing some 
complex scientific experiment which consists of numerous 
computational steps. The connection between these 
computational steps represent the data dependency, in 
other words the dataflow during the experiment. With 
Occopus the infrastructure descriptor would contain the 
needed resource requirements for each task and also the 
SLA for the tasks or for the whole workflow.  An SLA 
requirement could be time or budget constraint or a need 
for green execution. In such a scenario the execution 
could be seen as data flowing across the VMs starting 
from the entry task executed on the first VM, terminating 
by the exit task executed on the last VM. In a scenario like 
this every computational step is mapped to an individual 
VM. After submitting the virtual infrastructure descriptor 
based on the workflow model Occopus would support the 
creation of an infrastructure like this. This type of 
workflow creation and execution is called Service 
Choreography in related works. 

1) Advantages 

 

Concerning the execution of scientific workflows in 

Occopus has several advantages:  
The resources are available continuously, it means that 

task execution are not forced to wait for free resource. The 
infrastructure is built up easily without expertise 
knowledge of the individual cloud providers. The 
monitoring is also provided by the Occopus framework. 
There is no need for scheduling and resource allocation is 
done by Occopus based on the virtual infrastructure 
descriptors. 
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2) Problems with scientific workflows executed in 

Occopus 

 
Concerning scientific workflows there might arise a lot 

of issues: 

Scientific experiments are being data and compute 
intensive which may last for even weeks or month and 
may use or produce even terabytes of data. Due to the 
long execution time many failure could arise. Types of 
faults that can arise during execution and need to be 
handled in order to provide a fault tolerant execution can 
mainly be categorized to the following categories: VM 
faults, programming faults, network issues, authentication 
problems, file staging errors, and data movement issues. 
In order not to lose the already calculated work, fault 
tolerance must be provided.  

• When a node fails, the computation which was done by 
this node is lost. As described in the previous section 
Occopus monitors the nodes of the virtual infrastructure 
and when the enactor notices a failed node, it is deleted 
from the virtual infrastructure list and a new one is 
created. The execution could be restarted on it. But what 
should happen with the data that was consumed by this 
failed node? 

 • Let us focus on only one aspect of SLA-s (Service Level 
Agreement), namely the time constraints. Scientific 
workflows are often constrained by soft or hard deadlines. 
While soft deadline means that the proposed deadline 
should be met with a probability p, hard deadline means 
that the results are useless after the deadline. When there 
is a failure upon recovery the makespan of the whole 
workflow is increased and maybe deadlines cannot be 
met. How can it be ensured that SLAs are met? 

• Fault tolerance technique should also be concerned when 
executing scientific workflows in the cloud. The most 
frequent fault tolerant techniques in the cloud are using 
resubmission and replicas. How can it be ensured that 
more than one successors of the same type (replica) is able 
to receive the results of the predecessor(s) and how can it 
be provided that the number of replicas can change 
dynamically in time?  

In the next section we are looking for the best solution 
that address the issues described above. 

V. SOLUTIONS 

 

There are two main widespread used alternatives that can 

give solutions for the above mentioned problems and are 

supported by open source softwares. One of them is 

based on service discovery feature, while the other uses a 

message queueing system. 

A. Service Registry 

Service discovery is a key component of most distributed 

systems and service oriented architectures deploying 

more services. Service locations can change quite 

frequently due to host failure or replacement, similarly to 

a scientific workflow execution. A node must discover 

somehow the IP address and the port number of the peer 

application. One solution is to use a dedicated, 

centralized service registry node.  

A service registry, is a database of services, their 

instances and their locations. The main task of it is to 

register hosts, ports and authentication credentials, etc. 

Service instances are registered with the service registry 

on startup and deregistered on shutdown. Clients of the 

service query the service registry to find the available 

instances of a service. If a node fails the service registry 

database is upgraded with the new node.  

Concerning workflow execution if a node fails then the 

service registry updates its database with the new client, 

but the computation that was already done is lost. Also 

the consumed data is lost with the failed node. If a 

computation has successfully terminated on a VM then 

the results of this computation task can be (should be) 

stored in provenance database, but because of the nature 

and size of the provenance database, it must be located on 

a permanent storage. To retrieve these data from this 

storage may have high latency due to geographic location 

which can be far from the cloud provider. 

The flexibility of the solution is also not so good. In this 

case the nodes know where to send data so they use the 

synchronous remote procedure call or the asynchronous 

message passing middleware. As it was mentioned 

already in the related work the RPC model does not 

support large volume of data and does not support 

reliable transport of data. Also with message passing 

middleware the communication abstract is the channel 

and a connection must be set up between producer and 

consumer and consumer listens for the channel 

synchronously. 

Using this solution a special agent would be needed to 

orchestrate the execution of the workflow itself. Without 

this agent this solution would work only for small 

workflows that use does not move high volume of data 

does not need long time to be executed and the reliability 

of the resources are high.  

 

B. Message Queuing 

Using message queues would simplify almost all of the 

above mentioned problems. Advanced Message Queuing 

(AMQ) Protocol is an open standard message oriented 

middleware. In this approach the message producer does 

not send the message directly to a specific consumer 

instead characterize messages into classes without 

knowledge of which consumer there may be. Similarly, 

consumers only receive messages that are of interest, 

without knowledge of existing producers. AMQP 

operates over an underlying reliable transport layer 

protocol such as Transmission Control Protocol (TCP). 

The basic idea is that consumers and producers use a 

special node to accomplish message passing, which 

serves as a rendezvous point between senders and 

receivers of messages. They are the queues which are 

buffers that temporary or permanently store the messages. 

The middleware server has two main functionalities: one 

of them is buffering the messages in memory or on disk 

when the recipient cannot accept it fast enough and the 

other one is to route the messages to the appropriate 
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queue. When a message arrives in a queue the server 

attempts to deliver it to the consumer immediately. If this 

is not possible the message is stored until the consumer is 

ready. If it is possible the message is deleted from the 

buffer immediately or after the consumer has 

acknowledged it. The reliability lies in this feature. The 

acknowledgments could be sent only when the node had 

successfully processed the data. The scalability and fault 

tolerance can be realized by clustering the same type of 

nodes. In this solution the consumers and producers are 

not known to each other and there can be more than one 

consumer belonging to a single queue. The power of 

AMQP comes from the ability to create queues, to route 

messages to queues and even to create routing rules 

dynamically at runtime based on the actual environmental 

conditions. This feature would enable to realize an SLA 

based, fault tolerant execution for workflows.  

 
Figure 2.  Possible architecture with Message Queueing 

In Fig. 2 a possible architecture for executing scientific 

workflows with Occopus can be seen. The abstract model 

of the scientific workflow consists of 3 tasks (A1, A2 and 

A3) for each an individual VM is started in the cloud. 

These are provided by the Occopus framework. Also 

Occopus does the monitoring of the resources, as well as 

the infrastructure upgrading. All of the tasks are 

communicating with the MQ (message queue), so they 

are not aware of each other. The MQ can be positioned 

also in the cloud on a VM or on external storage. It 

depends on the amount of data that must be shared 

between the tasks and the geographic location of the 

VMs. The Agent is only responsible for monitoring the 

workflow execution according to the predefined 

constraints (the input, output format of the data, time 

constraints, etc.) and according to the SLA to request a 

virtual infrastructure change from the Occopus 

framework (for example to start more or less replicas of 

the tasks). 

VI. FAULT TOLERANCE METHOD BASED ON WORKFLOW 

STRUCTURE 

Concerning time critical applications a reliable fault 

tolerant method should be provided. In this section we lay 

down the bases of our fault tolerant framework that uses 

replicas in order to ensure that time critical workflows 

can be successfully terminated before the soft or hard 

deadline with a probability of p. In our solution every 

task in a workflow is assigned certain number of replicas. 

The number of replicas is determined by the estimated 

execution time of a task, the structure of the workflow, 

the failure zone of a task (which is the affected tasks in 

the case of a failure of a given task), and the estimated 

failure detection time and resubmission time. Before 

Occopus starts to build the infrastructure the algorithm is 

executed to determine the number of replicas of each task 

and the infrastructure is built. When during execution 

unexpected situation happens (for example too many 

failures occurring, or even that there is no error) than the 

number of replicas can be changed accordingly since 

Occopus is able to upgrade the infrastructure. 

Determining the exact details of our algorithm is our 

future work. 

VII. CONLUSION 

In this paper we have introduced Occopus, a one click 
cloud orchestrator framework, which supports distributed 
applications to be executed in single or multi homed 
clouds. We have investigated the advantages and 
problems of having scientific workflows being executed 
with Occopus and gave a proposal for a communication 
middleware which would provide a reliable, fault tolerant 
workflow execution environment. We gave a first insight 
for a fault tolerant method that can be used with Occopus 
as well and which detailed work out determines our future 
research direction. 
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