
Dynamic Execution of Scientific Workflows in

Cloud

E. Kail
1

, J. Kovács 2, M. Kozlovszky1,2 and P. Kacsuk
2,3

1 Óbuda University, John von Neumann Faculty of Informatics, Biotech Lab

Bécsi str. 96/b., H-1034, Budapest, Hungary
2 MTA SZTAKI, LPDS, Kende str. 13-17, H-1111, Budapest, Hungary

3 University of Westminster, 115 New Cavendish Street, London W1W 6UW

{kail.eszter, kozlovszky.miklos}@nik.uni-obuda.hu,

{jozsef.kovacs, kacsuk}@sztaki.mta.hu

Abstract - Scientific workflows have emerged in the past

decade as a new solution for representing complex scientific

experiments. Generally, they are data and compute

intensive applications and may need high performance

computing infrastructures (clusters, grids and cloud) to be

executed. Recently, cloud services have gained widespread

availability and popularity since their rapid elasticity and

resource pooling, which is well suited to the nature of

scientific applications that may experience variable demand

and eventually spikes in resource. In this paper we

investigate dynamic execution capabilities, focused on fault

tolerance behavior in the Occopus framework which was

developed by SZTAKI and was targeted to provide

automatic features for configuring and orchestrating

distributed applications (so called virtual infrastructures)

on single or multi cloud systems.

I. INTRODUCTION

Over the last few years, cloud computing has emerged as

a new model of distributed computing by offering

hardware and software resources as virtualization-enabled

services. Cloud providers give application owners the

option to deploy their application over a network with a

virtually infinite resource pool with modest operating and

practically no investment costs. Today, cloud computing

systems follow a service-driven, layered software

architecture model, with Software as a Service (SaaS),

Platform as a Service (PaaS), and Infrastructure as a

Service (IaaS). In this paper we are primarily focusing on

IaaS cloud services. In an IaaS environment the CPU,

storage, and network resources are supplied by a

collection of data centers installed with hundreds to

thousands of physical resources such as cloud servers,

storage repositories, and network backbone. It is the task

of the cloud orchestrator to select the appropriate

resource for an initiated application or service executed in

the cloud.
Due to their rapid elasticity and almost infinite

resource pooling capabilities cloud services have also
gained widespread popularity for enacting scientific
experiments. Scientific experiments are widely used in
most scientific domains such as bioinformatics,
earthquake science, astronomy, etc. In general they consist

of multiple computing tasks that can be executed on
distributed and parallel infrastructures.

Scientific workflows are used to model these scientific
experiments at a high level abstraction. They are
graphically represented by Directed Acyclic Graphs
(DAGs), where the nodes are the computing tasks and the
edges between them represent the data or control flow.
Since these experiments mostly require compute and data
intensive tasks the execution of scientific workflows may
last for even weeks or months, and may manipulate even
terabytes of data. Thus scientific workflows should be
executed in a dynamic manner in order to save energy and
time.

Dynamic execution has three main aspects: fault
tolerance, intervention and optimization techniques. Fault
tolerance means to continue the execution with the
required SLA even in the presence of failures, or to adapt
to new situations and actual needs during runtime. Since
scientific workflows are mainly explorative by nature
scientists often need to monitor the execution, to get
feedback about the status of the execution and to interfere
with it. Intervention by the scientist, workflow developer
or the administrator may also be needed in a planned or in
an ad-hoc manner. The third aspect of dynamic execution
concerns with optimization mechanisms, such as
performance, budget, time or power optimization
techniques.

In this paper we are investigating the possibilities of
executing scientific workflows dynamically in Occopus,
we examine the required extensions to provide a reliable
service for workflow orchestration and propose a fault
tolerant mechanism which is based on the workflow
structure and replication technique.

Occopus [7] is a newly introduced framework,
developed by the Hungarian SZTAKI and was targeted to
provide automatic features for configuring and
orchestrating distributed applications on single or multi
cloud systems.

Our paper is structured as follows: in the next section
we give a brief overview about the related work on
communication middleware used in distributed systems
and on fault tolerance in cloud. In section III we introduce
Occopus framework in a more detailed fashion. In section

348 MIPRO 2016/DC VIS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/83049172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IV we analyze the possibility of executing workflows in
Occopus and section V introduces our solution in detail.
Finally in the last section we give a brief insight into our
fault tolerant proposal and the conclusion closes our work.

II. RELATED WORK

A. Communication middleware in the cloud

As distributed applications transcending geographical and

organizational boundaries the demands placed upon their

communication infrastructures will increase exponentially.

Modern systems operate in complex environments with

multiple programming languages, hardware platforms,

operating systems and the requirement for dynamic

deployments, and reliability while maintaining a high

Quality-of-Service (QoS).

Cloud orchestration in general means to build up and

manage interconnections and interactions between

distributed services on single or multi cloud systems. At

first the orchestrator allocates the most appropriate

resource for a job from a resource pool, than monitors the

functioning of the resource with a so called heartbeat

mechanism. However, this mechanism only gives

feedback about the physical status of the resources (CPU,

memory usage, etc.) it cannot provide reliability in

communication and data sharing.

Concerning scientific workflows the main challenge is to

provide high availability, reliable communication, fault

tolerance and SLA based service. In most scientific

workflow management system a special middleware is

responsible to maintain the connection, and data

movement between the distributed services and to

schedule the tasks according to available resources and

predefined constraints (data flow model).

To provide a reliable, flexible and scalable

communication between the services a suitable

communication middleware is needed.

Communication middlewares can be categorized as

Remote Procedure Call (RPC) oriented Middleware,

Transaction-Oriented Middleware (TOM), Object-

Oriented/Component middleware (OOCM) and Message-

Oriented Middleware (MOM) [6].

RPC oriented Middleware is based on a client-server

architecture and provides remote procedure calls through

APIs. This kind of communication is synchronous to the

user, since it waits until the server returns a response thus

it does not enable a scalable and fault tolerant solution for

workflows [5].

A Transaction-Oriented Middleware (TOM) is used to

ensure the correctness of transaction operations in a

distributed environment. It is primarily used in

architectures built around database applications [14].

TOM supports synchronous and asynchronous

communication among heterogeneous hosts, but due to its

redundancies and control information attached to the pure

data for ensuring high reliability, it results in low

scalability in both the data volume that can be handled,

and in the number of interacting actors.

An Object-Oriented/Component Middleware (OOCM) is

based on object-oriented programming models and

supports distributed object request. OOCM is an

extension of Remote Procedure Calls (RPC), and it adds

several features that emerge from object-oriented

programming languages, such as object references,

inheritance and exceptions. These added features make

OOCM flexible, however this solution enables still

limited scalability.

A Message-Oriented Middleware (MOM) allows

message passing across applications on distributed

systems. A MOM provides several features such as:

 asynchronous and synchronous communication

mechanisms

 data format transformation (i.e. a MOM can

change the format of the data contained in the

messages to fit the receiving application [16])

 loose coupling among applications

 parallel processing of messages

 support for several levels of priority.

Message passing is the ancestor of the distributed

interactions and one of the realizations of MOM. The

producer and the consumer are communicating via

sending messages. The producer and the consumer are

coupled both in time and space; they must both be active

at the same time. The consumer receives messages by

listening synchronously on a channel and the recipient of

a message is known to the sender.

Message queues are newer solutions for MOM, where

messages are concurrently pulled by consumers, as well

as a subscription based exchange solution, allowing

groups of consumers to subscribe to groups of publishers,

resulting in a communication network or platform, or a

message bus. Message queues provide an asynchronous

communication protocol. Its widespread popularity lies in

not only its asynchronous feature but in the fact that it

provides persistence, reliability and scalability enabling

both time and space decoupling of the so called

publishers and consumers.

Advanced Message Queuing Protocol (AMQP) [1] is an

open standard application layer protocol for message-

oriented middleware. RabbitMQ [3] is an open source

message broker software (sometimes called message-

oriented middleware) that implements the AMQP and can

be easily used on almost all major operating systems.

B. Fault tolerance in cloud

Although cloud computing has been widely adopted by

the industry, still there are many research issues to be

fully addressed like fault tolerance, workflow scheduling,

workflow management, security, etc [8]. Fault tolerance

is one of the key issues amongst all. It is a complex

challenge to deliver the quality, robustness, and reliability

in the cloud that is needed for widespread acceptance as

tools for the scientists’ community.

To deal with this problem many research has been

already done in fault tolerance. Fault tolerance policy can

be proactive and reactive. While the aim of proactive

MIPRO 2016/DC VIS 349

https://en.wikipedia.org/wiki/Open_standard
https://en.wikipedia.org/wiki/Application_layer
https://en.wikipedia.org/wiki/Message-oriented_middleware
https://en.wikipedia.org/wiki/Message-oriented_middleware
https://en.wikipedia.org/wiki/Message_broker
https://en.wikipedia.org/wiki/Message-oriented_middleware
https://en.wikipedia.org/wiki/Message-oriented_middleware

techniques is to avoid situations caused by failures by

predicting them and taking the necessary actions, reactive

fault tolerance policies reduce the effect of failures on

application execution when the failure effectively occurs.

Different fault tolerance challenges and techniques

(resubmission, checkpointing, self-healing, job migration,

preemptive migration) have been implemented using

various tools (HAProxy, Hadoop, SGuard,) in the cloud.

Also there are a lot of methods created for providing fault

tolerant execution of scientific workflows in the cloud.

Mostly they heavily rely on sophisticated and complex

models of the failure behavior specific to the targeted

computing environment. In our investigations we are

targeting a solution that is mostly based on the workflow

structure and data about the actual execution timings

retrieved from provenance database.

III. OCCOPUS ARCHITECTURE

Occopus [7] (Fig. 1) has five main components:
enactor issues virtual machine management requests
towards the infrastructure processor; infrastructure
processor, which is the internal representation of a virtual
infrastructure (enabling the grouping of VMs serving a
common aim); cloud handler enables federated and
interoperable cloud use by abstracting basic IaaS
functionalities like VM creation service composer, which
ensures that VMs meet their expected functionalities by
utilizing configuration management tools and finally the
information broker that decouples the information
producer and consumer roles with a unified interface
throughout the architecture.

After receiving the required infrastructure description
the enactor immediately compiles it to an internal
representation. It is the role of the enactor to forward and
upgrade the node requests to the infrastructure processor
and to monitor the state of the infrastructure continuously
during the setup and the existence of the infrastructure.
This monitoring function is achieved by the help of the
info broker. Among others this component is responsible
for tracking the information flow between the nodes. If it
notices a failure of a node or a connection it notifies the
enactor. The enactor then upgrades the infrastructure
description and forwards it to the infrastructure processor.

The infrastructure processor receives node creation and

node destruction requests from the enactor. During

creation infrastructure processor sends a contextualized

VM requests to the cloud handler. Within the

contextualization information the processor places a

reference to some of the previously created attributes of

VMs.Node destruction requests are directly forwarded to

the cloud handler component.
The cloud handler as its basic functionality, provides

an abstraction over IaaS functionalities and allow the
creation, monitoring and destruction of virtual machines.
For these functionalities, it offers a plugin architecture that
can be implemented with several IaaS interfaces (currently
Occopus supports EC2, nova, cloudbroker, docker and
OCCI interfaces).

The main functionality of the Service Composer is the
management of deployed software and its configuration
on the node level. This functionality is well developed and
even commercial tools are available to the public.
Occopus Service Composer component therefore offers
interfaces to these widely available tools (e.g., Chef,
Puppet, Docker, Ansible).

Cloud Handler
[boto, nova, docker,
cloudbroker, occi]

Service Composer
[chef]

Node resolver
[cloudinit, docker,

cloudbroker]

Infrastructure
Processor

Info
Provider

Info
Provider

Info Broker

C
o

m
p

ile
r

Info
Provider

Infra-
and

Node
descripti

ons

Enactor

Figure 1. Occopus architecture

IV. SCIENTIFIC WORKFLOWS IN OCCOPUS

A. Scientific workflows

In Occopus framework a virtual infrastructure can be
built upon a directed acyclic graph representing some
complex scientific experiment which consists of numerous
computational steps. The connection between these
computational steps represent the data dependency, in
other words the dataflow during the experiment. With
Occopus the infrastructure descriptor would contain the
needed resource requirements for each task and also the
SLA for the tasks or for the whole workflow. An SLA
requirement could be time or budget constraint or a need
for green execution. In such a scenario the execution
could be seen as data flowing across the VMs starting
from the entry task executed on the first VM, terminating
by the exit task executed on the last VM. In a scenario like
this every computational step is mapped to an individual
VM. After submitting the virtual infrastructure descriptor
based on the workflow model Occopus would support the
creation of an infrastructure like this. This type of
workflow creation and execution is called Service
Choreography in related works.

1) Advantages

Concerning the execution of scientific workflows in

Occopus has several advantages:
The resources are available continuously, it means that

task execution are not forced to wait for free resource. The
infrastructure is built up easily without expertise
knowledge of the individual cloud providers. The
monitoring is also provided by the Occopus framework.
There is no need for scheduling and resource allocation is
done by Occopus based on the virtual infrastructure
descriptors.

350 MIPRO 2016/DC VIS

2) Problems with scientific workflows executed in

Occopus

Concerning scientific workflows there might arise a lot

of issues:

Scientific experiments are being data and compute
intensive which may last for even weeks or month and
may use or produce even terabytes of data. Due to the
long execution time many failure could arise. Types of
faults that can arise during execution and need to be
handled in order to provide a fault tolerant execution can
mainly be categorized to the following categories: VM
faults, programming faults, network issues, authentication
problems, file staging errors, and data movement issues.
In order not to lose the already calculated work, fault
tolerance must be provided.

• When a node fails, the computation which was done by
this node is lost. As described in the previous section
Occopus monitors the nodes of the virtual infrastructure
and when the enactor notices a failed node, it is deleted
from the virtual infrastructure list and a new one is
created. The execution could be restarted on it. But what
should happen with the data that was consumed by this
failed node?

 • Let us focus on only one aspect of SLA-s (Service Level
Agreement), namely the time constraints. Scientific
workflows are often constrained by soft or hard deadlines.
While soft deadline means that the proposed deadline
should be met with a probability p, hard deadline means
that the results are useless after the deadline. When there
is a failure upon recovery the makespan of the whole
workflow is increased and maybe deadlines cannot be
met. How can it be ensured that SLAs are met?

• Fault tolerance technique should also be concerned when
executing scientific workflows in the cloud. The most
frequent fault tolerant techniques in the cloud are using
resubmission and replicas. How can it be ensured that
more than one successors of the same type (replica) is able
to receive the results of the predecessor(s) and how can it
be provided that the number of replicas can change
dynamically in time?

In the next section we are looking for the best solution
that address the issues described above.

V. SOLUTIONS

There are two main widespread used alternatives that can

give solutions for the above mentioned problems and are

supported by open source softwares. One of them is

based on service discovery feature, while the other uses a

message queueing system.

A. Service Registry

Service discovery is a key component of most distributed

systems and service oriented architectures deploying

more services. Service locations can change quite

frequently due to host failure or replacement, similarly to

a scientific workflow execution. A node must discover

somehow the IP address and the port number of the peer

application. One solution is to use a dedicated,

centralized service registry node.

A service registry, is a database of services, their

instances and their locations. The main task of it is to

register hosts, ports and authentication credentials, etc.

Service instances are registered with the service registry

on startup and deregistered on shutdown. Clients of the

service query the service registry to find the available

instances of a service. If a node fails the service registry

database is upgraded with the new node.

Concerning workflow execution if a node fails then the

service registry updates its database with the new client,

but the computation that was already done is lost. Also

the consumed data is lost with the failed node. If a

computation has successfully terminated on a VM then

the results of this computation task can be (should be)

stored in provenance database, but because of the nature

and size of the provenance database, it must be located on

a permanent storage. To retrieve these data from this

storage may have high latency due to geographic location

which can be far from the cloud provider.

The flexibility of the solution is also not so good. In this

case the nodes know where to send data so they use the

synchronous remote procedure call or the asynchronous

message passing middleware. As it was mentioned

already in the related work the RPC model does not

support large volume of data and does not support

reliable transport of data. Also with message passing

middleware the communication abstract is the channel

and a connection must be set up between producer and

consumer and consumer listens for the channel

synchronously.

Using this solution a special agent would be needed to

orchestrate the execution of the workflow itself. Without

this agent this solution would work only for small

workflows that use does not move high volume of data

does not need long time to be executed and the reliability

of the resources are high.

B. Message Queuing

Using message queues would simplify almost all of the

above mentioned problems. Advanced Message Queuing

(AMQ) Protocol is an open standard message oriented

middleware. In this approach the message producer does

not send the message directly to a specific consumer

instead characterize messages into classes without

knowledge of which consumer there may be. Similarly,

consumers only receive messages that are of interest,

without knowledge of existing producers. AMQP

operates over an underlying reliable transport layer

protocol such as Transmission Control Protocol (TCP).

The basic idea is that consumers and producers use a

special node to accomplish message passing, which

serves as a rendezvous point between senders and

receivers of messages. They are the queues which are

buffers that temporary or permanently store the messages.

The middleware server has two main functionalities: one

of them is buffering the messages in memory or on disk

when the recipient cannot accept it fast enough and the

other one is to route the messages to the appropriate

MIPRO 2016/DC VIS 351

queue. When a message arrives in a queue the server

attempts to deliver it to the consumer immediately. If this

is not possible the message is stored until the consumer is

ready. If it is possible the message is deleted from the

buffer immediately or after the consumer has

acknowledged it. The reliability lies in this feature. The

acknowledgments could be sent only when the node had

successfully processed the data. The scalability and fault

tolerance can be realized by clustering the same type of

nodes. In this solution the consumers and producers are

not known to each other and there can be more than one

consumer belonging to a single queue. The power of

AMQP comes from the ability to create queues, to route

messages to queues and even to create routing rules

dynamically at runtime based on the actual environmental

conditions. This feature would enable to realize an SLA

based, fault tolerant execution for workflows.

Figure 2. Possible architecture with Message Queueing

In Fig. 2 a possible architecture for executing scientific

workflows with Occopus can be seen. The abstract model

of the scientific workflow consists of 3 tasks (A1, A2 and

A3) for each an individual VM is started in the cloud.

These are provided by the Occopus framework. Also

Occopus does the monitoring of the resources, as well as

the infrastructure upgrading. All of the tasks are

communicating with the MQ (message queue), so they

are not aware of each other. The MQ can be positioned

also in the cloud on a VM or on external storage. It

depends on the amount of data that must be shared

between the tasks and the geographic location of the

VMs. The Agent is only responsible for monitoring the

workflow execution according to the predefined

constraints (the input, output format of the data, time

constraints, etc.) and according to the SLA to request a

virtual infrastructure change from the Occopus

framework (for example to start more or less replicas of

the tasks).

VI. FAULT TOLERANCE METHOD BASED ON WORKFLOW

STRUCTURE

Concerning time critical applications a reliable fault

tolerant method should be provided. In this section we lay

down the bases of our fault tolerant framework that uses

replicas in order to ensure that time critical workflows

can be successfully terminated before the soft or hard

deadline with a probability of p. In our solution every

task in a workflow is assigned certain number of replicas.

The number of replicas is determined by the estimated

execution time of a task, the structure of the workflow,

the failure zone of a task (which is the affected tasks in

the case of a failure of a given task), and the estimated

failure detection time and resubmission time. Before

Occopus starts to build the infrastructure the algorithm is

executed to determine the number of replicas of each task

and the infrastructure is built. When during execution

unexpected situation happens (for example too many

failures occurring, or even that there is no error) than the

number of replicas can be changed accordingly since

Occopus is able to upgrade the infrastructure.

Determining the exact details of our algorithm is our

future work.

VII. CONLUSION

In this paper we have introduced Occopus, a one click
cloud orchestrator framework, which supports distributed
applications to be executed in single or multi homed
clouds. We have investigated the advantages and
problems of having scientific workflows being executed
with Occopus and gave a proposal for a communication
middleware which would provide a reliable, fault tolerant
workflow execution environment. We gave a first insight
for a fault tolerant method that can be used with Occopus
as well and which detailed work out determines our future
research direction.

REFERENCES

[1] AMQP Advanced Message Queuing Protocol, Protocol

Specification, Version 0-9-1, 13 November 2008.

[2] E. Curry, Message-Oriented Middleware, in: Q.H. Mahmoud
(Ed.), Middleware for Communications, John Wiley and Sons,
Chichester, England, 2004, pp. 1–28.

[3] A. Videla, J.W. Williams, RabbitMQ in Action: Distributed
Messaging for Everyone, MEAP Edition Manning Early Access
Program, 2011.

[4] P.T. Eugster, P. Felber, R. Guerraoui, A.-M. Kermarrec, “The
many faces of publish/ subscribe”, ACM Comput. Surv. 35 (2)
(2003) 114–131.

[5] K. Geihs, Middleware challenges ahead, IEEE Comput. 34 (6)
(June 2001) 24–31.

[6] M. Albano et al. Message-oriented middleware for smart grids,
Computer Standards & Interfaces 38 (2015) 133–143.

[7] G. Kecskeméti, M. Gergely, A. Visegrádi, Zs. Németh, J. Kovács,
P. Kacsuk, One Click Cloud Orchestrator: bringing Complex
Applications Effortlessly to the Clouds, WORKS 2014.

[8] A. Bala, I. Chana, Fault Tolerance- Challenges, Techniques and
Implementation in Cloud Computing, IJCSI International Journal
of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012

352 MIPRO 2016/DC VIS

	dcvis_31_3997

