9,641 research outputs found

    Intelligent Traffic Management: From Practical Stochastic Path Planning to Reinforcement Learning Based City-Wide Traffic Optimization

    Get PDF
    This research focuses on intelligent traffic management including stochastic path planning and city scale traffic optimization. Stochastic path planning focuses on finding paths when edge weights are not fixed and change depending on the time of day/week. Then we focus on minimizing the running time of the overall procedure at query time utilizing precomputation and approximation. The city graph is partitioned into smaller groups of nodes and represented by its exemplar. In query time, source and destination pairs are connected to their respective exemplars and the path between those exemplars is found. After this, we move toward minimizing the city wide traffic congestion by making structural changes include changing the number of lanes, using ramp metering, varying speed limit, and modifying signal timing is possible. We propose a multi agent reinforcement learning (RL) framework for improving traffic flow in city networks. Our framework utilizes two level learning: a) each single agent learns the initial policy and b) multiple agents (changing the environment at the same time) update their policy based on the interaction with the dynamic environment and in agreement with other agents. The goal of RL agents is to interact with the environment to learn the optimal modification for each road segment through maximizing the cumulative reward over the set of possible actions in state space

    Modeling structural change in spatial system dynamics: A Daisyworld example

    Get PDF
    System dynamics (SD) is an effective approach for helping reveal the temporal behavior of complex systems. Although there have been recent developments in expanding SD to include systems' spatial dependencies, most applications have been restricted to the simulation of diffusion processes; this is especially true for models on structural change (e.g. LULC modeling). To address this shortcoming, a Python program is proposed to tightly couple SD software to a Geographic Information System (GIS). The approach provides the required capacities for handling bidirectional and synchronized interactions of operations between SD and GIS. In order to illustrate the concept and the techniques proposed for simulating structural changes, a fictitious environment called Daisyworld has been recreated in a spatial system dynamics (SSD) environment. The comparison of spatial and non-spatial simulations emphasizes the importance of considering spatio-temporal feedbacks. Finally, practical applications of structural change models in agriculture and disaster management are proposed

    Sustaining Economic Exploitation of Complex Ecosystems in Computational Models of Coupled Human-Natural Networks

    Get PDF
    Understanding ecological complexity has stymied scientists for decades. Recent elucidation of the famously coined "devious strategies for stability in enduring natural systems" has opened up a new field of computational analyses of complex ecological networks where the nonlinear dynamics of many interacting species can be more realistically mod-eled and understood. Here, we describe the first extension of this field to include coupled human-natural systems. This extension elucidates new strategies for sustaining extraction of biomass (e.g., fish, forests, fiber) from ecosystems that account for ecological complexity and can pursue multiple goals such as maximizing economic profit, employment and carbon sequestration by ecosystems. Our more realistic modeling of ecosystems helps explain why simpler "maxi-mum sustainable yield" bioeconomic models underpinning much natural resource extraction policy leads to less profit, biomass, and biodiversity than predicted by those simple models. Current research directions of this integrated natu-ral and social science include applying artificial intelligence, cloud computing, and multiplayer online games
    corecore