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ABSTRACT 

We have developed an enhanced real time traffic 

simulator running on High Performance Computing 

infrastructure for testing an efficiency and usability of a 

self-adaptive navigation system which implements a 

traffic flow optimization service coordinated with 

external client-side navigation applications and 

heterogeneous traffic data sources collected and fused in 

an intelligent way. Building blocks of the simulator 

include a server-side navigation system, Virtual Smart 

City World, benchmark settings, and a test bed 

containing industrial Sygic client-side navigation and a 

simplified simulation of vehicles. The important feature 

of the simulator is the ability to evaluate the traffic flow 

control strategy in the Smart City world, both with and 

without enabled Global View calculation of a traffic 

network for a given percentage of vehicles connected to 

the server-side service. The integration of the Sygic 

navigation to the large-scale traffic simulator allows 

performing compliance test of real navigation 

applications to the developed central navigation system. 

 

Keywords: traffic simulator, dynamic routing, HPC, 

smart city, navigation optimization 

 

1. INTRODUCTION 

One of the most significant challenges in a field of 

dynamic routing algorithms development and testing is 

to create a stable environment with data sets which it is 

possible to perform reliable and repeatable experiments 

on. Client-side navigation implemented as a mobile 

application by Sygic provides us with floating car data 

(FCD) which can be well used for our self-adaptive 

navigation system running on a central and 

knowledgeable server along with other data sources. This 

data is crucial for dynamic routing enhancement and the 

bigger the data is the better and more improved service 

of higher quality we can offer. However, to validate such 

dynamic routing, we need to ensure the correctness of the 

data in the first place. Simulating traffic from a 

macroscopic perspective turned out to be a convenient 

way how to repeatedly achieve a controlled traffic 

situation without massive amounts of data required by 

microscopic models. Nevertheless, our developed 

approach is also borrowing some ideas from the 

microscopic traffic simulation because the basic unit of 

the simulation is an individual vehicle driving along the 

chosen route. These vehicles then generate physical 

quantities like traffic flow or speed for the road network. 

In general, we consider this mixed approach to be a 

macroscopic model because these vehicles do not 

directly interact, and purpose of the model is to monitor 

the behavior of physical quantities describing the traffic 

and not behavior of individual vehicles. Our proposals 

are supported by article written by Harri, Filali and 

Bonnet (2009). By combining both macro and 

microscopic approaches we can have the model which 

does not require much data and is as easily manageable 

and adaptable as a microscopic simulation. 

The traffic simulator represents a move of an imaginary 

world vehicles based on a real world routing system. The 

whole simulator and its parts are meant to exploit High 

Performance Computing (HPC) infrastructure as the 

process itself is computationally demanding as described 

by Zehe, Knoll, Cai and Aydt (2015) and in need of many 

computational resources to work properly in time. 

The aim is to reflect current and future traffic situation 

and not only to find the shortest path while still on the 

road but also the most efficient one changing accordingly 

to traffic conditions. Thanks to above mentioned process 

we are able to give such a result with respect to data, 

benchmark and visualization. Our another goal was to 

keep a response time limit for every navigation request 

irrespective of the number of concurrent requests at all 

times. We consider 500 ms to be a reasonable threshold. 

 

There are many kinds of existing macroscopic traffic 

models and simulators. For instance, Abadi, Rajabioun 

and Ioannou (2015) utilize macroscopic simulation to 

predict the traffic flow. However, their simulation is 

closer to the classical macroscopic model because while 

they simulate individual routes, they utilize only 

information about traffic flow in conjunction with link-

to-link dividing ratio to simulate its changes. The article 

from Batista, Leclercq and Geroliminis (2017) utilizes 

the combination of macroscopic and microscopic models 

to simulate and describe the behaviour of the traffic 

network. Behaviour of their model is, though, more 
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influenced by the macroscopic part of the simulation than 

the behaviour of individual vehicles influenced by 

changing the traffic conditions during the simulation.  

Zhang, Wolshon and Dixit (2015) try to integrate two 

macroscopic models (Cell Transmission Model (CTM) 

with the Macroscopic Fundamental Diagram (MFD)) for 

urban networks in their article. While CTM is a very 

useful tool for macroscopic modelling, its data 

requirements are approaching the microscopic model.  

There is also a number of both free and paid traffic 

simulators like VISSIM (Fellendorf and Vortisch, 2010), 

SUMO (Behrisch, Bieker, Erdmann and Krajzewicz, 

2011), TRANSIMS (Smith, Beckman, Anson, Nagel and 

Williams, 1995) or Matsim (Horni, Nagel and Axhausen, 

2016). Generally, these products usually require much 

more data for their proper functioning because they are 

mainly based on microscopic approaches. Also, their 

potential application on an HPC infrastructure is 

questionable because of their existing implementation 

limits. Therefore, for our application, creating our own 

traffic simulator is more preferable. 

 

2. TRAFFIC SIMULATOR STRUCTURE 

The traffic simulator consists of several mutually 

cooperating parts that can be imagined as modules. The 

proposed design of the simulation model is divided into 

three main groups pictured and coloured in Figure 1: 

 

1. Simulator � yellow, 

 

2. Virtual World � green, 

 

3. Server-side Routing � blue. 

These groups use interfaces to communicate together and 

those are further explained in Section 3. They also have 

in common a general configuration file as an input used 

across all the parts (described in Section 4.1) and a united 

logging environment for the entire output. 

 

2.1. Simulator 

The Simulator part is responsible for initializing and 

running simulation modules that contribute to the Virtual 

World and thus affect the Global View. The initialization 

strongly depends on simulation inputs that can be 

generated prior to the simulation optionally.  Every 

simulation module subsists up to hundreds of simulated 

instances running in threads and to exploit HPC 

infrastructure better, every module can simultaneously 

run on numerous cluster computing nodes in parallel. 

Simulation instances are also able to directly obtain 

itineraries from the Routing service and actual road speed 

from the Virtual World. 

 

Every simulation experiment we launch must be 

accompanied by its description. This helps us to 

reproduce experiments, tell them apart knowing 

immediately what the aim of the experiment was 

supposed to be, and mainly to keep them deterministic. 

Because simulation consists of different modules, each 

one of them has its own setting file representing 

simulation instances. Each entry of a concrete setting file 

then represents a single instance of a given simulation 

module giving us total number of simulation instances 

per module. 

In the case of vehicle module description, we distinguish 

between Sygic and IT4I cars and especially keep the 

Figure 1: Simulation design 
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track of their individual travelling intensions. These are 

recognized by origins and destinations, start times, 

frequency of logging, requests for a current segment 

speed from the Virtual Smart City World (Section 2.2), 

and routing request to the Server-side Navigation System 

(Section 2.3).  

 

Even if we do not touch the vehicle setting, we can still 

adjust another simulation results seriously by changing 

the initial state of the Virtual World describing road 

network conditions and a traffic status. Every single 

segment is defined by a set of thresholds representing 

number of concurrent vehicles and their matching 

speeds. That way we are able to decide how many 

vehicles on the same way would imply a traffic jam, or 

when they should slow down or speed up. 

 

2.1.1. Generator 

As we need to modify the whole simulation run for 

various experiments repeatedly, we often need to adjust 

specified simulation settings. This task can be done 

manually by a user or automatically by a setting 

generator which creates setting files if those do not exist. 

The generator uses the general configuration file and runs 

in two modes � lightweight one for testing purposes or 

another one considering simulation aspects. 

With both modes, the segment setting resolves how the 

initial state of the Virtual World would be generated and 

the vehicle setting determines the initial state of every 

single instance of a vehicle. 

 

For example, if we choose generating vehicle setting for 

the testing mode, we need to declare origin-destination 

positions and those will be used for all the vehicles, 

basically creating desired number of vehicle instance 

copies. On the other hand, if we want simulated vehicles 

to vary, we can use our ordered routing graph to generate 

a different route for each vehicle in a deterministic 

manner as the ordering by a unique identifier stays the 

same. It is also possible to postpone start time of a vehicle 

and its round trip individually. Vehicles may use the 

Global View more or less often or not at all depending 

on the configuration file. 

 

We can also set a length of a vehicle, which will take 

effect in generating more realistic routing segment speed 

relations. Due to the fact that each routing segment has 

its known length, we can calculate how many vehicles 

would fit on such segment. This gives us an idea of 

concurrent vehicle thresholds. Connecting this 

information with the known maximal allowed speed of a 

specific segment extracted from OpenStreetMap (Pto�ek 
and Slaninová, 2018) road classification (highway, 

motorway, tertiary, etc.) we are able to set corresponding 

speeds for these thresholds. We are aware of a model like 

this being considerably simplified, but sufficient enough 

for our deterministic testing purposes.  

 

In even more simplified testing case, we have omitted 

any of this information and let the speed table to be 

generated with the same thresholds and speed values for 

all the segments. 

 

2.1.2. Sygic Navigation System 

To enhance the Global View�s data from the Virtual 

World by results coming from the real world, it is 

possible to use data from the Sygic mobile application as 

an additional input for FCD Engine producing an output. 

 

2.1.3. IT4I Cars Simulation 

The IT4I car (also producing FCD) is a basis of the 

simulation as every instance can interact with the Virtual 

World and the FCD Engine, both contributing to the 

Global View. HPC environment enables us to launch 

thousands of virtual cars simultaneously. This is very 

important as it allows us to get better and faster results in 

the case of urgent need of alternative routes to avoid the 

creation of higher traffic load on some roads. 

 

The logic behind the simulation of a moving IT4I car is 

explained in Section 4.2. 

 

2.1.4. External Data Sources 

External Data Sources (EDS) are a part of simulation 

instances and speak for any (third party) modules, such 

as clients for weather, traffic events, or yet another 

navigations, which are able to use our exposed interfaces 

(Section 3). We generally expect fewer EDS in 

comparison with instances of simulated moving vehicles. 

Unlike vehicles, EDS do not need to directly interact via 

routing interfaces. 

 

2.2. Virtual Smart City World 

As our simulation experiments rely mainly on dynamic 

routing, it is crucial to keep track of actual road network 

situation once it is generated (explained in Section 2.1.1) 

and initialized. The update of the Virtual World is based 

on many requests of running simulation instances that 

can indirectly (via interfaces) start to modify number of 

concurrent vehicles on segments and even segment 

speeds alone in the case of traffic events. How often is 

the Virtual World updated depends on individual setting 

of every simulation instance. 

In return, all vehicles are moving along their itinerary 

according to the speed they retrieve from the Virtual 

World. In response to the updated Virtual World, they 

can actually get a different itinerary, because the Virtual 

World plays a part in the Server-side routing graph 

update as it is more or less reflected in the Global View. 

 

Although the Virtual World can be updated in 

milliseconds, the update period of the Global View is set 

from the configuration. After that period, a snapshot of 

actual Virtual World changes is transformed into HDF5 

(Folk, Heber, Koziol, Pourmal and Robinson, 2011) 

format and stored in a real time. This means that 

vehicle�s speed on a certain segment can change 
immediately, but its itinerary would change no sooner 

than after the Global View update even though the 

vehicle is forced to request new route more often. 
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Updating the routing graph for speed weight of segments 

gives us a testing and validation tool for our dynamic 

routing environment as shown in Sections 5.1 and 5.2. 

 

2.2.1. GPS-Segment Mapping 

Simulation instances can use GPS coordinates to 

determine their positions, however our routing graph is 

derived from geometries representing edges (segments in 

our Virtual World). We have decided to use library called 

SpatiaLite (Casagrande, Cavallini, Frigeri, Furieri, 

Marchesini and Neteler, 2014) that extends SQLite for 

spatial queries and helps us with translation between 

segments and coordinates. 

2.2.2. Segment-Speed Mapping 

To update our Virtual World correctly, we need to know 

a current position in the case of an event (Section 3.2.2) 

and both previous and current position of every moving 

instance, like vehicle (Section 2.1.3). After mapping 

these positions to segments (if there is a need), it is 

possible to change speed value based on thresholds 

(shown in Table 1). 

The following simplified pseudocode describes 

obtaining speed value based on an instance of a vehicle 

and its visited segments. If the vehicle moves between 

two segments, the counts of concurrent vehicles on a 

given segments should change. Actual speed value of a 

current segment is returned even if the segment has not 

changed from the previous one, because meanwhile 

another vehicles could have entered or left from this 

segment and therefore affected thresholds. In spite of the 

multimode and multithread simulation process, it is 

inevitable to use locks. 

 
Structure segmentSpeedTable = InitializeSpeedTable(); 

 
UpdateVirtualWorld(previousSegment, currentSegment){ 

Speed speed; 

 

Lock(segmentSpeedTable); 

 

If(previousSegment <> currentSegment){ 

 segmentSpeedTable[previousSegment]-=1;//decrease 

 segmentSpeedTable[currentSegment]+=1;//increase 

} 

 

//get count of concurrent vehicles for actual segment 

var count = segmentSpeedTable[currentSegment]; 

//get speed matching actual segment�s threshold 

speed = segmentSpeedTable[currentSegment][count]; 

 

Unlock(segmentSpeedTable); 

 

Return speed; 

} 

Algorithm 1: Virtual World Update Pseudocode 

 

Because a behavior of every simulated vehicle at a 

certain point of a time is highly dependent on its actual 

segment and speed, we came up with a bound system 

based on a relation of the two. 

 

Let speed value (sv) expressed in km h!1 for a segment 

(S) with ID (n) be set to number (v) in the case of count 

of concurrent vehicles (ccv) being greater or equal to 

number (k). The expression can be written in the 

following form 

 

 

 

The examples of a segment-speed relations based on 

thresholds (bounds) are explained in Table 1 and 

expressed as 

 

Sn=<ccv_minn, ccv_maxn):svn  and therefore for ID 1 

S1=<0, 3):90; <3, 10):50; <10, +!):1 and therefore 

S1=0:90, 3:50, 10:1 to only use inclusive bounds  

 

Table 1: Segment Speeds 

Segment 

ID 

Speed for Bounded Intervals of Concurrent 

Vehicles 

Threshold 1 Threshold 2 Threshold 3 

1 <0,3):90 <3,10):50 <10, +"):1 

2 <0,3):50 <3,10):30 <10, +"):1 

3 <0,10):130 <10,30):90 <30, +"):1 

 

The default threshold count is three (as used for a 

demonstration), but can be changed dynamically. The 

only rule is that regardless the number of bounds, they 

should always cover the interval of <0, +"). Then we are 

able to check the actual speed for the currently highest 

applicable bound. In the case of nine vehicles, that would 

be 50 km h!1 from the second threshold on S1, but  

30 km h!1 for the same number of vehicles and threshold 

on S2, and 130 km h!1 on S3 from the first threshold.  

This is applied and shown in the Algorithm 1 where 

segmentSpeedTable[Sn][ccv] is referring to a formally 

expressed svn,bound=Sn:ccv giving the actual speed for the 

specific segment bound in respect of a current number of 

vehicles on the specific segment, therefore  

S1:9=501,2 and analogically S2:9=302,2 and S3:9=1303,1. 

 

The more vehicles, the higher bound and the lesser speed. 

It is important to mention, that the highest bound tends to 

be set at least to 1 km h!1 to prevent vehicles belonging 

to affected segment to get stuck there forever as they 

would be unable to leave with a zero speed. But as 

vehicles are slowly leaving a segment with speed of  

1 km h!1, the segment can eventually get to lower bound 

and thus higher speed. In the case of S1, the speed would 

increase back to 50 km h!1 and 90 km h!1 afterwards. 

 

2.3. Server-side Navigation System 

The server-side routing optimized by ANTAREX tools � 

project use case II, Silvano, C. et al. (2016) is the core of 

the Smart City navigation that is designed to handle a 

significant number of routing requests and processes 

them in parallel within low-level computing workers 

running on a heterogeneous HPC cluster. This self-

adaptive navigation system is largely used within 
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simulation instances and covers every part related to the 

routing. It can be enriched by the Global View of the 

traffic network. 

2.3.1. Routing Service 

The service is based on a management system providing 

scheduling and allocation of computing resources for 

routing workers as well as their communication with 

service clients. These workers can run in multinode mode 

in order to reach sufficient request throughput. 

At this moment the routing service supports several 

routing algorithms on a custom-generated routing graph. 

The routing algorithm option is part of a simulation 

configuration. By default, to find the shortest path our 

implementation of Dijkstra routing algorithm is used.  

We have chosen this algorithm for all of our simulation 

testing experiments to omit any need of a heuristic 

function which served our performance purposes well. 

 

2.3.2. Global View 

As every routing algorithm needs a network to find a path 

between nodes, we advance our routing graph edges with 

additional information and metrics to balance it 

accordingly. Changing weights of edges (costs) gives us 

an opportunity of the dynamic routing. The Global View 

can be calculated on the basis of the Virtual World data 

and the FCD Engine output. 

 

2.3.3. FCD Engine 

If we wanted to connect the Virtual World with the real 

one, we could connect another module into the scheme. 

Our FCD Engine manages to process data from Sygic 

navigations outside the simulation and offers a real time 

traffic monitoring that could serve for the initial Global 

View state instead of generated Virtual World.  

Processing FCD from Sygic navigation inside the 

simulation could help us comprehend what minimal 

percentage of FCD coverage (in comparison with IT4I 

cars) is needed to reliably monitor the traffic situation in 

the case of collaborative routing usage. 

3. TRAFFIC SIMULATION INTERFACES 

Interfaces serve to connect component modules 

described in Section 2 together as well as they help 

external parts to communicate with the server-side 

navigation services. They are based on HTTP and TCP 

protocols and are meant to serve two fundamental roles 

� simulation run and validations of aforehand mentioned 

services. 

 

3.1. Server-side Navigation Interface 

This interface is crucial for all the simulations, but has 

zero dependency on the simulation itself, because routing 

services can be used for a real world real-time 

navigations outside the simulation process as well. 

 

3.2. Simulation Interface 

The following interfaces were specially built for the 

simulation purposes and are highly dependent on the 

simulation itself. 

 

3.2.1. Configuration 

Since we can generate configurations for EDS instances 

described in Section 2.1.4, this interface can be used to 

deliver particular configurations before the simulation 

starts. For example, if Sygic navigation application 

wanted to use our pre-generated scenarios, they could ask 

for every single instance�s setting from the application. 

This guarantees simulation consistency as we are in 

charge of their origin and destination positions, number 

of instances, request limits and many more. This 

approach takes the advantage of avoiding hard-coded 

simulation scenarios and being able to change them 

relatively easily and quickly. 

 

3.2.2. Events 

By events we generally mean road closures, accidents or 

lane restrictions formed by their geozones and optional 

speeds that affect the Global View directly. Events can 

Figure 2: Simulation run 
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be raised interactively from within a map as shown in 

Figure 10 or by planned event instances based on a 

simulation setting. 

3.2.3. Speed 

Because our objective is not to develop a multi-agent 

system where simulation instances interact with each 

other, this interface was introduced to map position of a 

vehicle onto our routing graph returning a segment speed 

relation in response to the Virtual World. This way, each 

vehicle is assured to know how fast it can move without 

knowing about other vehicles it shares the road with and 

vice versa. It also delegates a vehicle�s understanding of 
our routing road network topology and corresponding 

threshold speed limits to centralized Virtual World. 

Speed interface works both ways, it returns value based 

on a current road type and number of concurrent vehicles 

and updates the Global View metrics at the same time to 

avoid  cumulating, as can be seen in Figure 11. 

 

4. TRAFFIC SIMULATION PROCESS 

The whole simulation process is based on a 

communication between the connected modules 

described in Section 2. After preparing essential 

environment (endpoints, datasets, services, notifications, 

etc.) and generating simulation settings, simulation 

instances are initialized, and vehicles start to move. The 

simulation runs until the last vehicle reaches its 

destination. 

Figure 2 shows the model described in Figure 1 from the 

runtime execution perspective. 

 

4.1. Execution 

The execution is done automatically and completely in 

the HPC environment and is handled by one main script. 

This master script is linked to all the modules� initial 
settings, configurations and auxiliary scripts as well as 

their separate process runtime logging. With this design 

we can easily launch self-contained experiments 

repeatedly to reproduce the results or to see how they 

change in time with different properties. 

 

4.2. Vehicle moving behaviour 

The moving strategy of a vehicle object is based on its 

itinerary and a speed determined by the road network 

condition at the time, e.g., free flow speed, heavy traffic, 

traffic jam or even a closure-causing obstacle. The 

itinerary may vary as the Global View keeps updating 

during a simulation. The speed may differ from the same 

reason, but based on the Virtual World.   

 

The vehicle (repeatedly) obtains its route itinerary from 

the server-side navigation system as seen in Figure 3, and 

its (in this case constant) speed from the Virtual World. 

The blue line represents a current itinerary and the purple 

line stands for already visited segments from either 

current or past itineraries (they can differ based on the 

Global View). The most recent position of the vehicle is 

represented by the blue dot, whereas the purple dots 

express tracks of history positions of the same vehicle. 

 

 
Figure 3: Vehicle route start 

 

Unlike the speed from the Virtual World, the itinerary is 

a subject to change with the Global View enabled only 

(described in Section 2.3.2). It is important to always be 

aware of the current road segment the vehicle is on 

because its travelled distance depends on the actual speed 

of the current segment for a given vehicle count. Since 

there is only one vehicle situated on the segment, as 

pictured, the speed does not change and neither do the 

distances between its positions. 

 

The vehicle does not leave its current segment till the 

total distance travelled by the vehicle is shorter than the 

distance from the start of the route to the end of a current 

segment as pictured in Figures 4 and 5. 

 

 
Figure 4: Vehicle route move on a segment 

 

 
Figure 5: Vehicle route move on the same segment 

 

While the vehicle is travelling along the road segment, 

its speed may be affected by a volume of concurrent 

vehicles on the same segment at the same time. As the 

vehicle instance continues, it may move onto a following 

road segment (as seen in Figure 6) from its (updated) 

itinerary (that can vary from the previous one) or not � 

regarding the actual segment speed and remaining 

segment distance. 

 

This motion process continues until a vehicle reaches its 

destination regardless an alternative route (no following 

segment � graph edge exists) as is depicted in Figure 7. 

DSpace VŠB - TUO    http://hdl.handle.net/10084/133452    December 2018



 
Figure 6: Vehicle route extended by following segment 

 

 
Figure 7: Vehicle route finished 

 

Moving a certain instance of a vehicle on segments of a 

routing graph is relied upon an invariant that can be 

described in do-while block by the pseudocode in 

Algorithm 2. 

 
Time time = GetTimeNow(); 

Position actualPosition = GetGpsFromSettings(); 

 

MOVE: 
do { 

 WaitForNextMove(waitingPeriod); 

 

 Route route = GetRoute(vehicleId); //Figure 3 

 Speed speed = GetSpeed (vehicleId, actualPosition); 

 Distance distance = speed * (GetTimeNow() - lastTime); 

 

 vehicleDistance += distance; 

 while (vehicleDistance >= routeDistance) { 

  If (routeItineraryNotEmpty) { 

   segment = DequeueItinerary(); 

   routeDistance += segmentLength; //Figure 6 

  } else { 

   Finished = true; //Figure 7 

   break; 

  } 

 } 

 

 //get ratio value between 0 (start) and 1 (end) inclusive 

segmentRatio = 
1 � (routeDistance � vehicleDistance) / segmentLength; 

  

 actualPosition = GetGpsFromSegmentRatio(); //Figure 4 

 Log(route, speed, distance,  actualPosition); 

 

 lastTime = GetTimeNow(); 

} while (NotFinished); 

 

If(RoundTrip){ 

 Finished = false; 

 vehicleDistance = routeDistance = 0; 

 Swap(GetGpsFromSettings(), actualPosition); 

 GoTo MOVE; 

} 

Algorithm 2: Real time Position Change Pseudocode 

4.3. Routing adaptation 

The adaptation is based on a cost of a given route and a 

chosen routing algorithm which calculates a total cost. 

The total cost of the route is a summary of costs of all the 

segments belonging to a given route � itinerary cost. This 

means that few segments of a route can outweigh the rest 

and vice versa. When the cost changes significantly, it 

may happen that from the point of the Global View, 

another route becomes more convenient than the existing 

one (as is illustrated in Figures 8, 9 and 10). 

The weight of an edge of a routing graph between two 

nodes can be in our case: 

 

1. Static � distance, which is not subject to change, 

 

2. Dynamic � transition time based on a speed 

being calculated just-in-time from the Global 

View according to a current traffic situation. 

 

 
Figure 8: Original route based on distance 

 

 
Figure 9: Segment speed evaluation 

 

 
Figure 10: Alternative route 

 

 

5. SIMULATION SCENARIOS 

The strategy and use cases of a simulation are created by 

an initial setting. It is also possible to use a map 

visualization to interact with the still running simulation 

itself. We have picked two use cases for a demonstration 

� roadblocks in Vienna, Austria city centre and a wilful 

cumulative traffic jam in Ostrava city, Czech Republic. 

 

5.1. Forcing optimization with blockages 

Figure 11 represents a scenario where we generated 

multiple vehicle instances and assigned them unique pair 

of nodes belonging to a routing graph, such that the nodes 

meet a criterion of having at least one crucial edge 
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between them. In a real world, the nodes represent origin 

and destination points and a set of edges creates a routing 

path. From a traffic experience, bridges are examples of 

critical edges, so we aimed at destinations across a river. 

The bridge areas being a part of their way were then 

flagged as traffic jams gradually in such manner so that 

their way was no longer considered as the optimal one. 

Affecting an actual road situation with the accidents 

shows vehicles rerouting eventually to avoid a rush. 

 

 
Figure 11: Static traffic jam 

 

5.2. Forcing optimization with Global View 

Our aim is to be able to dynamically cope with traffic 

jams accordingly � in our case to change the route of a 

vehicle based on a community contributing to the traffic 

situation as a whole. This means the final route is both 

individually the most beneficial as well as efficient from 

a global point of view. 

 

Figure 12 demonstrates numerous vehicle instances 

driving from and to the very same start and end points. 

In contrast with Figure 11 we decided not to influence 

the road network with any blockages and had vehicles to 

form the traffic jam themselves as they are moving. 

 

The route optimal for a single vehicle is shown on the left 

side and was used for all the vehicles, which leads to an 

overall slowdown caused by a traffic jam. To mitigate the 

slow-down and compare our results, we also run the same 

simulation, but with the Global View enabled at this 

time. As can be seen on the right side, there are several 

routes pictured apart from the original one. Distributing 

the vehicles into diverse routes helped the road network 

to balance and the last vehicle to arrive significantly 

sooner via the more fluent way as described in Section 6. 

 

 
Figure 12: Dynamic traffic jam handling 

 

6. RESULTS 

 

We have chosen three different origin locations and a 

common destination (route lengths 11.5, 6.5 and 5.9 

kilometres) such that they share final parts of their routes 

as captured in Figure 13 that represents every route 

without applying updates from the Global View. In this 

case, only one route exists for every origin-destination.  

 

 
Figure 13: Static routes during a simulation 

 

We have applied lightweight mode for generating testing 

Virtual World (described in Sections 2.1.1 and 2.2) and 

launched 200 vehicles for each starting position, 600 in 

total. Then, we have run the simulation with both Global 

View disabled and enabled several times to verify that 

our results match our settings repeatedly in both cases. 

Figures 14 and 15 show an obvious navigation adaptation 

where, unlike in Figure 13, vehicles started using by 

degrees more than three original routes obtained for three 

origin-destination pairs depending on another vehicle 

instances already sharing the same route at the time. 

 

 
Figure 14: Alternative routes during a simulation 

 

 
Figure 15: Alternative routes during a simulation II 
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Our first step was to prove our model to be deterministic 

in the meaning that the same simulation gives us very 

similar results regularly with little to no deviation caused 

by occasional request/response delays. When this has 

been achieved, we started with measuring the impact of 

the Global View usage being assured that the difference 

would not come from nondeterministic behaviour. These 

results based on the Global View only are showed below 

in Table 2, the better values are highlighted in green.  

 

Table 2: Driving Times in minutes and seconds 

Global 

View 

600 Vehicles (3x200) 

Average Median Minimum Maximum 

Off 17:26 14:28 04:36 39:49 

On 14:13 14:28 04:27 30:52 

 

We were able to observe #22.5% speed-up in the case of 

the maximal duration of a vehicle run with the Global 

View enabled. In our testing simulation scenario, this 

duration represents the very last car arriving to its 

destination.  

 

Our final results helped us to prove that from a globally 

collaborative perspective, utilization of the Global View 

based self-adaptive routing was timewise more efficient 

than in the event of a static one causing traffic jams. 

 

7. CONCLUSION AND FUTURE WORK 

 

We have presented the real time traffic simulator 

developed for running on HPC infrastructure for testing 

an efficiency and usability of the self-adaptive navigation 

system. Our first proposal was to meet a response time 

limit for every navigation request under 500 ms, which 

we are able to achieve at the moment. During our 

development and after the testing phase, we have 

discovered that the proposal can be different for our 

simulation case. 

 

We came up with the fact that during a simulation, a 

vehicle does not need to receive a response for an 

updated route in a strictly short time requiring more 

computing resources, especially when its amount for the 

simulation with thousands of cars could be very highly 

computationally demanding and not necessary for our 

case. Also, as mentioned in Section 2.2, the routing graph 

changes much less often than the Virtual World that 

vehicles contribute to; therefore, routing services give 

the same results during a short interval. And lastly, we 

have learnt that a vehicle is able to drive even without an 

updated route for some time as there is usually no need 

to obtain a completely new route every half a minute. 

 

Thus, our proposal has changed to satisfy a condition 

where every vehicle gets a response with a service-level 

agreement (SLA) much higher than the previous request 

limit time. As pictured in Graph 1, for the selected SLA 

60 seconds and for 5,000 simultaneous vehicles, we need 

to allocate approximately 43 cores, which corresponds to 

3 compute  nodes from the Anselm cluster (2x8 Intel 

Sandy Bridge cores @2.4 GHz, 64 GB RAM per node) 

to reach that SLA. 

 

From the self-adaptive routing system perspective, we 

have achieved promising navigation time improvement 

in the form of global traveling time speed-up. 

 

 
Graph 1: Simulation throughput � SLA 60 s 

 

Because our simulation process is data-driven, we plan 

to scale up our simulations and extend various models 

with EDS, better speed profiles and a related data fusion.  

 

In the future, we would like to continue our work with 

the second proposal and experiment with SLA levels 

sufficiency. Another goal is to examine the minimal 

percentage coverage of the external navigation (Figure 

16) vehicles needed for reliable traffic monitoring in 

respect of simulated vehicle instances yet managed. 

 

 
Figure 16: ANTAREX mobile navigation by Sygic 
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