
REAL TIME TRAFFIC SIMULATOR FOR SELF-ADAPTIVE NAVIGATION SYSTEM

VALIDATION

Vít Pto�ek(a), Ji!í �ev"ík(b), Jan Martinovi"(c), Kate!ina Slaninová(d), Luká� Rapant(e),

Radim Cmar(f)
(a),(b),(c),(d),(e)IT4Innovations, V�B - Technical University of Ostrava,

17. listopadu 15/2172, 708 33 Ostrava, Czech Republic
(f)Sygic

(a)vit.ptosek@vsb.cz, (b)jiri.sevcik@vsb.cz, (c)jan.martinovic@vsb.cz, (d)katerina.slaninova@vsb.cz,

(e)lukas.rapant@vsb.cz, (f)rcmar@sygic.com

ABSTRACT

We have developed an enhanced real time traffic

simulator running on High Performance Computing

infrastructure for testing an efficiency and usability of a

self-adaptive navigation system which implements a

traffic flow optimization service coordinated with

external client-side navigation applications and

heterogeneous traffic data sources collected and fused in

an intelligent way. Building blocks of the simulator

include a server-side navigation system, Virtual Smart

City World, benchmark settings, and a test bed

containing industrial Sygic client-side navigation and a

simplified simulation of vehicles. The important feature

of the simulator is the ability to evaluate the traffic flow

control strategy in the Smart City world, both with and

without enabled Global View calculation of a traffic

network for a given percentage of vehicles connected to

the server-side service. The integration of the Sygic

navigation to the large-scale traffic simulator allows

performing compliance test of real navigation

applications to the developed central navigation system.

Keywords: traffic simulator, dynamic routing, HPC,

smart city, navigation optimization

1. INTRODUCTION

One of the most significant challenges in a field of

dynamic routing algorithms development and testing is

to create a stable environment with data sets which it is

possible to perform reliable and repeatable experiments

on. Client-side navigation implemented as a mobile

application by Sygic provides us with floating car data

(FCD) which can be well used for our self-adaptive

navigation system running on a central and

knowledgeable server along with other data sources. This

data is crucial for dynamic routing enhancement and the

bigger the data is the better and more improved service

of higher quality we can offer. However, to validate such

dynamic routing, we need to ensure the correctness of the

data in the first place. Simulating traffic from a

macroscopic perspective turned out to be a convenient

way how to repeatedly achieve a controlled traffic

situation without massive amounts of data required by

microscopic models. Nevertheless, our developed

approach is also borrowing some ideas from the

microscopic traffic simulation because the basic unit of

the simulation is an individual vehicle driving along the

chosen route. These vehicles then generate physical

quantities like traffic flow or speed for the road network.

In general, we consider this mixed approach to be a

macroscopic model because these vehicles do not

directly interact, and purpose of the model is to monitor

the behavior of physical quantities describing the traffic

and not behavior of individual vehicles. Our proposals

are supported by article written by Harri, Filali and

Bonnet (2009). By combining both macro and

microscopic approaches we can have the model which

does not require much data and is as easily manageable

and adaptable as a microscopic simulation.

The traffic simulator represents a move of an imaginary

world vehicles based on a real world routing system. The

whole simulator and its parts are meant to exploit High

Performance Computing (HPC) infrastructure as the

process itself is computationally demanding as described

by Zehe, Knoll, Cai and Aydt (2015) and in need of many

computational resources to work properly in time.

The aim is to reflect current and future traffic situation

and not only to find the shortest path while still on the

road but also the most efficient one changing accordingly

to traffic conditions. Thanks to above mentioned process

we are able to give such a result with respect to data,

benchmark and visualization. Our another goal was to

keep a response time limit for every navigation request

irrespective of the number of concurrent requests at all

times. We consider 500 ms to be a reasonable threshold.

There are many kinds of existing macroscopic traffic

models and simulators. For instance, Abadi, Rajabioun

and Ioannou (2015) utilize macroscopic simulation to

predict the traffic flow. However, their simulation is

closer to the classical macroscopic model because while

they simulate individual routes, they utilize only

information about traffic flow in conjunction with link-

to-link dividing ratio to simulate its changes. The article

from Batista, Leclercq and Geroliminis (2017) utilizes

the combination of macroscopic and microscopic models

to simulate and describe the behaviour of the traffic

network. Behaviour of their model is, though, more

DSpace VŠB - TUO http://hdl.handle.net/10084/133452 December 2018

This is the post peer-review accepted manuscript of: Ptošek, V., Šev ík, J., Martinovi , J., Slaninová, K., Rapant, L., & Cmar, R. (2018). Real time traffic
simulator for self-adaptive navigation system validation. Paper presented at the 30th European Modeling and Simulation Symposium, EMSS 2018, 274-283.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VSB Technical University of Ostrava

https://core.ac.uk/display/161968056?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

influenced by the macroscopic part of the simulation than

the behaviour of individual vehicles influenced by

changing the traffic conditions during the simulation.

Zhang, Wolshon and Dixit (2015) try to integrate two

macroscopic models (Cell Transmission Model (CTM)

with the Macroscopic Fundamental Diagram (MFD)) for

urban networks in their article. While CTM is a very

useful tool for macroscopic modelling, its data

requirements are approaching the microscopic model.

There is also a number of both free and paid traffic

simulators like VISSIM (Fellendorf and Vortisch, 2010),

SUMO (Behrisch, Bieker, Erdmann and Krajzewicz,

2011), TRANSIMS (Smith, Beckman, Anson, Nagel and

Williams, 1995) or Matsim (Horni, Nagel and Axhausen,

2016). Generally, these products usually require much

more data for their proper functioning because they are

mainly based on microscopic approaches. Also, their

potential application on an HPC infrastructure is

questionable because of their existing implementation

limits. Therefore, for our application, creating our own

traffic simulator is more preferable.

2. TRAFFIC SIMULATOR STRUCTURE

The traffic simulator consists of several mutually

cooperating parts that can be imagined as modules. The

proposed design of the simulation model is divided into

three main groups pictured and coloured in Figure 1:

1. Simulator � yellow,

2. Virtual World � green,

3. Server-side Routing � blue.

These groups use interfaces to communicate together and

those are further explained in Section 3. They also have

in common a general configuration file as an input used

across all the parts (described in Section 4.1) and a united

logging environment for the entire output.

2.1. Simulator

The Simulator part is responsible for initializing and

running simulation modules that contribute to the Virtual

World and thus affect the Global View. The initialization

strongly depends on simulation inputs that can be

generated prior to the simulation optionally. Every

simulation module subsists up to hundreds of simulated

instances running in threads and to exploit HPC

infrastructure better, every module can simultaneously

run on numerous cluster computing nodes in parallel.

Simulation instances are also able to directly obtain

itineraries from the Routing service and actual road speed

from the Virtual World.

Every simulation experiment we launch must be

accompanied by its description. This helps us to

reproduce experiments, tell them apart knowing

immediately what the aim of the experiment was

supposed to be, and mainly to keep them deterministic.

Because simulation consists of different modules, each

one of them has its own setting file representing

simulation instances. Each entry of a concrete setting file

then represents a single instance of a given simulation

module giving us total number of simulation instances

per module.

In the case of vehicle module description, we distinguish

between Sygic and IT4I cars and especially keep the

Figure 1: Simulation design

DSpace VŠB - TUO http://hdl.handle.net/10084/133452 December 2018

track of their individual travelling intensions. These are

recognized by origins and destinations, start times,

frequency of logging, requests for a current segment

speed from the Virtual Smart City World (Section 2.2),

and routing request to the Server-side Navigation System

(Section 2.3).

Even if we do not touch the vehicle setting, we can still

adjust another simulation results seriously by changing

the initial state of the Virtual World describing road

network conditions and a traffic status. Every single

segment is defined by a set of thresholds representing

number of concurrent vehicles and their matching

speeds. That way we are able to decide how many

vehicles on the same way would imply a traffic jam, or

when they should slow down or speed up.

2.1.1. Generator

As we need to modify the whole simulation run for

various experiments repeatedly, we often need to adjust

specified simulation settings. This task can be done

manually by a user or automatically by a setting

generator which creates setting files if those do not exist.

The generator uses the general configuration file and runs

in two modes � lightweight one for testing purposes or

another one considering simulation aspects.

With both modes, the segment setting resolves how the

initial state of the Virtual World would be generated and

the vehicle setting determines the initial state of every

single instance of a vehicle.

For example, if we choose generating vehicle setting for

the testing mode, we need to declare origin-destination

positions and those will be used for all the vehicles,

basically creating desired number of vehicle instance

copies. On the other hand, if we want simulated vehicles

to vary, we can use our ordered routing graph to generate

a different route for each vehicle in a deterministic

manner as the ordering by a unique identifier stays the

same. It is also possible to postpone start time of a vehicle

and its round trip individually. Vehicles may use the

Global View more or less often or not at all depending

on the configuration file.

We can also set a length of a vehicle, which will take

effect in generating more realistic routing segment speed

relations. Due to the fact that each routing segment has

its known length, we can calculate how many vehicles

would fit on such segment. This gives us an idea of

concurrent vehicle thresholds. Connecting this

information with the known maximal allowed speed of a

specific segment extracted from OpenStreetMap (Pto�ek
and Slaninová, 2018) road classification (highway,

motorway, tertiary, etc.) we are able to set corresponding

speeds for these thresholds. We are aware of a model like

this being considerably simplified, but sufficient enough

for our deterministic testing purposes.

In even more simplified testing case, we have omitted

any of this information and let the speed table to be

generated with the same thresholds and speed values for

all the segments.

2.1.2. Sygic Navigation System

To enhance the Global View�s data from the Virtual

World by results coming from the real world, it is

possible to use data from the Sygic mobile application as

an additional input for FCD Engine producing an output.

2.1.3. IT4I Cars Simulation

The IT4I car (also producing FCD) is a basis of the

simulation as every instance can interact with the Virtual

World and the FCD Engine, both contributing to the

Global View. HPC environment enables us to launch

thousands of virtual cars simultaneously. This is very

important as it allows us to get better and faster results in

the case of urgent need of alternative routes to avoid the

creation of higher traffic load on some roads.

The logic behind the simulation of a moving IT4I car is

explained in Section 4.2.

2.1.4. External Data Sources

External Data Sources (EDS) are a part of simulation

instances and speak for any (third party) modules, such

as clients for weather, traffic events, or yet another

navigations, which are able to use our exposed interfaces

(Section 3). We generally expect fewer EDS in

comparison with instances of simulated moving vehicles.

Unlike vehicles, EDS do not need to directly interact via

routing interfaces.

2.2. Virtual Smart City World

As our simulation experiments rely mainly on dynamic

routing, it is crucial to keep track of actual road network

situation once it is generated (explained in Section 2.1.1)

and initialized. The update of the Virtual World is based

on many requests of running simulation instances that

can indirectly (via interfaces) start to modify number of

concurrent vehicles on segments and even segment

speeds alone in the case of traffic events. How often is

the Virtual World updated depends on individual setting

of every simulation instance.

In return, all vehicles are moving along their itinerary

according to the speed they retrieve from the Virtual

World. In response to the updated Virtual World, they

can actually get a different itinerary, because the Virtual

World plays a part in the Server-side routing graph

update as it is more or less reflected in the Global View.

Although the Virtual World can be updated in

milliseconds, the update period of the Global View is set

from the configuration. After that period, a snapshot of

actual Virtual World changes is transformed into HDF5

(Folk, Heber, Koziol, Pourmal and Robinson, 2011)

format and stored in a real time. This means that

vehicle�s speed on a certain segment can change
immediately, but its itinerary would change no sooner

than after the Global View update even though the

vehicle is forced to request new route more often.

DSpace VŠB - TUO http://hdl.handle.net/10084/133452 December 2018

Updating the routing graph for speed weight of segments

gives us a testing and validation tool for our dynamic

routing environment as shown in Sections 5.1 and 5.2.

2.2.1. GPS-Segment Mapping

Simulation instances can use GPS coordinates to

determine their positions, however our routing graph is

derived from geometries representing edges (segments in

our Virtual World). We have decided to use library called

SpatiaLite (Casagrande, Cavallini, Frigeri, Furieri,

Marchesini and Neteler, 2014) that extends SQLite for

spatial queries and helps us with translation between

segments and coordinates.

2.2.2. Segment-Speed Mapping

To update our Virtual World correctly, we need to know

a current position in the case of an event (Section 3.2.2)

and both previous and current position of every moving

instance, like vehicle (Section 2.1.3). After mapping

these positions to segments (if there is a need), it is

possible to change speed value based on thresholds

(shown in Table 1).

The following simplified pseudocode describes

obtaining speed value based on an instance of a vehicle

and its visited segments. If the vehicle moves between

two segments, the counts of concurrent vehicles on a

given segments should change. Actual speed value of a

current segment is returned even if the segment has not

changed from the previous one, because meanwhile

another vehicles could have entered or left from this

segment and therefore affected thresholds. In spite of the

multimode and multithread simulation process, it is

inevitable to use locks.

Structure segmentSpeedTable = InitializeSpeedTable();

UpdateVirtualWorld(previousSegment, currentSegment){

Speed speed;

Lock(segmentSpeedTable);

If(previousSegment <> currentSegment){

 segmentSpeedTable[previousSegment]-=1;//decrease

 segmentSpeedTable[currentSegment]+=1;//increase

}

//get count of concurrent vehicles for actual segment

var count = segmentSpeedTable[currentSegment];

//get speed matching actual segment�s threshold

speed = segmentSpeedTable[currentSegment][count];

Unlock(segmentSpeedTable);

Return speed;

}

Algorithm 1: Virtual World Update Pseudocode

Because a behavior of every simulated vehicle at a

certain point of a time is highly dependent on its actual

segment and speed, we came up with a bound system

based on a relation of the two.

Let speed value (sv) expressed in km h!1 for a segment

(S) with ID (n) be set to number (v) in the case of count

of concurrent vehicles (ccv) being greater or equal to

number (k). The expression can be written in the

following form

The examples of a segment-speed relations based on

thresholds (bounds) are explained in Table 1 and

expressed as

Sn=<ccv_minn, ccv_maxn):svn and therefore for ID 1

S1=<0, 3):90; <3, 10):50; <10, +!):1 and therefore

S1=0:90, 3:50, 10:1 to only use inclusive bounds

Table 1: Segment Speeds

Segment

ID

Speed for Bounded Intervals of Concurrent

Vehicles

Threshold 1 Threshold 2 Threshold 3

1 <0,3):90 <3,10):50 <10, +"):1

2 <0,3):50 <3,10):30 <10, +"):1

3 <0,10):130 <10,30):90 <30, +"):1

The default threshold count is three (as used for a

demonstration), but can be changed dynamically. The

only rule is that regardless the number of bounds, they

should always cover the interval of <0, +"). Then we are

able to check the actual speed for the currently highest

applicable bound. In the case of nine vehicles, that would

be 50 km h!1 from the second threshold on S1, but

30 km h!1 for the same number of vehicles and threshold

on S2, and 130 km h!1 on S3 from the first threshold.

This is applied and shown in the Algorithm 1 where

segmentSpeedTable[Sn][ccv] is referring to a formally

expressed svn,bound=Sn:ccv giving the actual speed for the

specific segment bound in respect of a current number of

vehicles on the specific segment, therefore

S1:9=501,2 and analogically S2:9=302,2 and S3:9=1303,1.

The more vehicles, the higher bound and the lesser speed.

It is important to mention, that the highest bound tends to

be set at least to 1 km h!1 to prevent vehicles belonging

to affected segment to get stuck there forever as they

would be unable to leave with a zero speed. But as

vehicles are slowly leaving a segment with speed of

1 km h!1, the segment can eventually get to lower bound

and thus higher speed. In the case of S1, the speed would

increase back to 50 km h!1 and 90 km h!1 afterwards.

2.3. Server-side Navigation System

The server-side routing optimized by ANTAREX tools �

project use case II, Silvano, C. et al. (2016) is the core of

the Smart City navigation that is designed to handle a

significant number of routing requests and processes

them in parallel within low-level computing workers

running on a heterogeneous HPC cluster. This self-

adaptive navigation system is largely used within

DSpace VŠB - TUO http://hdl.handle.net/10084/133452 December 2018

simulation instances and covers every part related to the

routing. It can be enriched by the Global View of the

traffic network.

2.3.1. Routing Service

The service is based on a management system providing

scheduling and allocation of computing resources for

routing workers as well as their communication with

service clients. These workers can run in multinode mode

in order to reach sufficient request throughput.

At this moment the routing service supports several

routing algorithms on a custom-generated routing graph.

The routing algorithm option is part of a simulation

configuration. By default, to find the shortest path our

implementation of Dijkstra routing algorithm is used.

We have chosen this algorithm for all of our simulation

testing experiments to omit any need of a heuristic

function which served our performance purposes well.

2.3.2. Global View

As every routing algorithm needs a network to find a path

between nodes, we advance our routing graph edges with

additional information and metrics to balance it

accordingly. Changing weights of edges (costs) gives us

an opportunity of the dynamic routing. The Global View

can be calculated on the basis of the Virtual World data

and the FCD Engine output.

2.3.3. FCD Engine

If we wanted to connect the Virtual World with the real

one, we could connect another module into the scheme.

Our FCD Engine manages to process data from Sygic

navigations outside the simulation and offers a real time

traffic monitoring that could serve for the initial Global

View state instead of generated Virtual World.

Processing FCD from Sygic navigation inside the

simulation could help us comprehend what minimal

percentage of FCD coverage (in comparison with IT4I

cars) is needed to reliably monitor the traffic situation in

the case of collaborative routing usage.

3. TRAFFIC SIMULATION INTERFACES

Interfaces serve to connect component modules

described in Section 2 together as well as they help

external parts to communicate with the server-side

navigation services. They are based on HTTP and TCP

protocols and are meant to serve two fundamental roles

� simulation run and validations of aforehand mentioned

services.

3.1. Server-side Navigation Interface

This interface is crucial for all the simulations, but has

zero dependency on the simulation itself, because routing

services can be used for a real world real-time

navigations outside the simulation process as well.

3.2. Simulation Interface

The following interfaces were specially built for the

simulation purposes and are highly dependent on the

simulation itself.

3.2.1. Configuration

Since we can generate configurations for EDS instances

described in Section 2.1.4, this interface can be used to

deliver particular configurations before the simulation

starts. For example, if Sygic navigation application

wanted to use our pre-generated scenarios, they could ask

for every single instance�s setting from the application.

This guarantees simulation consistency as we are in

charge of their origin and destination positions, number

of instances, request limits and many more. This

approach takes the advantage of avoiding hard-coded

simulation scenarios and being able to change them

relatively easily and quickly.

3.2.2. Events

By events we generally mean road closures, accidents or

lane restrictions formed by their geozones and optional

speeds that affect the Global View directly. Events can

Figure 2: Simulation run

DSpace VŠB - TUO http://hdl.handle.net/10084/133452 December 2018

be raised interactively from within a map as shown in

Figure 10 or by planned event instances based on a

simulation setting.

3.2.3. Speed

Because our objective is not to develop a multi-agent

system where simulation instances interact with each

other, this interface was introduced to map position of a

vehicle onto our routing graph returning a segment speed

relation in response to the Virtual World. This way, each

vehicle is assured to know how fast it can move without

knowing about other vehicles it shares the road with and

vice versa. It also delegates a vehicle�s understanding of
our routing road network topology and corresponding

threshold speed limits to centralized Virtual World.

Speed interface works both ways, it returns value based

on a current road type and number of concurrent vehicles

and updates the Global View metrics at the same time to

avoid cumulating, as can be seen in Figure 11.

4. TRAFFIC SIMULATION PROCESS

The whole simulation process is based on a

communication between the connected modules

described in Section 2. After preparing essential

environment (endpoints, datasets, services, notifications,

etc.) and generating simulation settings, simulation

instances are initialized, and vehicles start to move. The

simulation runs until the last vehicle reaches its

destination.

Figure 2 shows the model described in Figure 1 from the

runtime execution perspective.

4.1. Execution

The execution is done automatically and completely in

the HPC environment and is handled by one main script.

This master script is linked to all the modules� initial
settings, configurations and auxiliary scripts as well as

their separate process runtime logging. With this design

we can easily launch self-contained experiments

repeatedly to reproduce the results or to see how they

change in time with different properties.

4.2. Vehicle moving behaviour

The moving strategy of a vehicle object is based on its

itinerary and a speed determined by the road network

condition at the time, e.g., free flow speed, heavy traffic,

traffic jam or even a closure-causing obstacle. The

itinerary may vary as the Global View keeps updating

during a simulation. The speed may differ from the same

reason, but based on the Virtual World.

The vehicle (repeatedly) obtains its route itinerary from

the server-side navigation system as seen in Figure 3, and

its (in this case constant) speed from the Virtual World.

The blue line represents a current itinerary and the purple

line stands for already visited segments from either

current or past itineraries (they can differ based on the

Global View). The most recent position of the vehicle is

represented by the blue dot, whereas the purple dots

express tracks of history positions of the same vehicle.

Figure 3: Vehicle route start

Unlike the speed from the Virtual World, the itinerary is

a subject to change with the Global View enabled only

(described in Section 2.3.2). It is important to always be

aware of the current road segment the vehicle is on

because its travelled distance depends on the actual speed

of the current segment for a given vehicle count. Since

there is only one vehicle situated on the segment, as

pictured, the speed does not change and neither do the

distances between its positions.

The vehicle does not leave its current segment till the

total distance travelled by the vehicle is shorter than the

distance from the start of the route to the end of a current

segment as pictured in Figures 4 and 5.

Figure 4: Vehicle route move on a segment

Figure 5: Vehicle route move on the same segment

While the vehicle is travelling along the road segment,

its speed may be affected by a volume of concurrent

vehicles on the same segment at the same time. As the

vehicle instance continues, it may move onto a following

road segment (as seen in Figure 6) from its (updated)

itinerary (that can vary from the previous one) or not �

regarding the actual segment speed and remaining

segment distance.

This motion process continues until a vehicle reaches its

destination regardless an alternative route (no following

segment � graph edge exists) as is depicted in Figure 7.

DSpace VŠB - TUO http://hdl.handle.net/10084/133452 December 2018

Figure 6: Vehicle route extended by following segment

Figure 7: Vehicle route finished

Moving a certain instance of a vehicle on segments of a

routing graph is relied upon an invariant that can be

described in do-while block by the pseudocode in

Algorithm 2.

Time time = GetTimeNow();

Position actualPosition = GetGpsFromSettings();

MOVE:
do {

 WaitForNextMove(waitingPeriod);

 Route route = GetRoute(vehicleId); //Figure 3

 Speed speed = GetSpeed (vehicleId, actualPosition);

 Distance distance = speed * (GetTimeNow() - lastTime);

 vehicleDistance += distance;

 while (vehicleDistance >= routeDistance) {

 If (routeItineraryNotEmpty) {

 segment = DequeueItinerary();

 routeDistance += segmentLength; //Figure 6

 } else {

 Finished = true; //Figure 7

 break;

 }

 }

 //get ratio value between 0 (start) and 1 (end) inclusive

segmentRatio =
1 � (routeDistance � vehicleDistance) / segmentLength;

 actualPosition = GetGpsFromSegmentRatio(); //Figure 4

 Log(route, speed, distance, actualPosition);

 lastTime = GetTimeNow();

} while (NotFinished);

If(RoundTrip){

 Finished = false;

 vehicleDistance = routeDistance = 0;

 Swap(GetGpsFromSettings(), actualPosition);

 GoTo MOVE;

}

Algorithm 2: Real time Position Change Pseudocode

4.3. Routing adaptation

The adaptation is based on a cost of a given route and a

chosen routing algorithm which calculates a total cost.

The total cost of the route is a summary of costs of all the

segments belonging to a given route � itinerary cost. This

means that few segments of a route can outweigh the rest

and vice versa. When the cost changes significantly, it

may happen that from the point of the Global View,

another route becomes more convenient than the existing

one (as is illustrated in Figures 8, 9 and 10).

The weight of an edge of a routing graph between two

nodes can be in our case:

1. Static � distance, which is not subject to change,

2. Dynamic � transition time based on a speed

being calculated just-in-time from the Global

View according to a current traffic situation.

Figure 8: Original route based on distance

Figure 9: Segment speed evaluation

Figure 10: Alternative route

5. SIMULATION SCENARIOS

The strategy and use cases of a simulation are created by

an initial setting. It is also possible to use a map

visualization to interact with the still running simulation

itself. We have picked two use cases for a demonstration

� roadblocks in Vienna, Austria city centre and a wilful

cumulative traffic jam in Ostrava city, Czech Republic.

5.1. Forcing optimization with blockages

Figure 11 represents a scenario where we generated

multiple vehicle instances and assigned them unique pair

of nodes belonging to a routing graph, such that the nodes

meet a criterion of having at least one crucial edge

DSpace VŠB - TUO http://hdl.handle.net/10084/133452 December 2018

between them. In a real world, the nodes represent origin

and destination points and a set of edges creates a routing

path. From a traffic experience, bridges are examples of

critical edges, so we aimed at destinations across a river.

The bridge areas being a part of their way were then

flagged as traffic jams gradually in such manner so that

their way was no longer considered as the optimal one.

Affecting an actual road situation with the accidents

shows vehicles rerouting eventually to avoid a rush.

Figure 11: Static traffic jam

5.2. Forcing optimization with Global View

Our aim is to be able to dynamically cope with traffic

jams accordingly � in our case to change the route of a

vehicle based on a community contributing to the traffic

situation as a whole. This means the final route is both

individually the most beneficial as well as efficient from

a global point of view.

Figure 12 demonstrates numerous vehicle instances

driving from and to the very same start and end points.

In contrast with Figure 11 we decided not to influence

the road network with any blockages and had vehicles to

form the traffic jam themselves as they are moving.

The route optimal for a single vehicle is shown on the left

side and was used for all the vehicles, which leads to an

overall slowdown caused by a traffic jam. To mitigate the

slow-down and compare our results, we also run the same

simulation, but with the Global View enabled at this

time. As can be seen on the right side, there are several

routes pictured apart from the original one. Distributing

the vehicles into diverse routes helped the road network

to balance and the last vehicle to arrive significantly

sooner via the more fluent way as described in Section 6.

Figure 12: Dynamic traffic jam handling

6. RESULTS

We have chosen three different origin locations and a

common destination (route lengths 11.5, 6.5 and 5.9

kilometres) such that they share final parts of their routes

as captured in Figure 13 that represents every route

without applying updates from the Global View. In this

case, only one route exists for every origin-destination.

Figure 13: Static routes during a simulation

We have applied lightweight mode for generating testing

Virtual World (described in Sections 2.1.1 and 2.2) and

launched 200 vehicles for each starting position, 600 in

total. Then, we have run the simulation with both Global

View disabled and enabled several times to verify that

our results match our settings repeatedly in both cases.

Figures 14 and 15 show an obvious navigation adaptation

where, unlike in Figure 13, vehicles started using by

degrees more than three original routes obtained for three

origin-destination pairs depending on another vehicle

instances already sharing the same route at the time.

Figure 14: Alternative routes during a simulation

Figure 15: Alternative routes during a simulation II

DSpace VŠB - TUO http://hdl.handle.net/10084/133452 December 2018

Our first step was to prove our model to be deterministic

in the meaning that the same simulation gives us very

similar results regularly with little to no deviation caused

by occasional request/response delays. When this has

been achieved, we started with measuring the impact of

the Global View usage being assured that the difference

would not come from nondeterministic behaviour. These

results based on the Global View only are showed below

in Table 2, the better values are highlighted in green.

Table 2: Driving Times in minutes and seconds

Global

View

600 Vehicles (3x200)

Average Median Minimum Maximum

Off 17:26 14:28 04:36 39:49

On 14:13 14:28 04:27 30:52

We were able to observe #22.5% speed-up in the case of

the maximal duration of a vehicle run with the Global

View enabled. In our testing simulation scenario, this

duration represents the very last car arriving to its

destination.

Our final results helped us to prove that from a globally

collaborative perspective, utilization of the Global View

based self-adaptive routing was timewise more efficient

than in the event of a static one causing traffic jams.

7. CONCLUSION AND FUTURE WORK

We have presented the real time traffic simulator

developed for running on HPC infrastructure for testing

an efficiency and usability of the self-adaptive navigation

system. Our first proposal was to meet a response time

limit for every navigation request under 500 ms, which

we are able to achieve at the moment. During our

development and after the testing phase, we have

discovered that the proposal can be different for our

simulation case.

We came up with the fact that during a simulation, a

vehicle does not need to receive a response for an

updated route in a strictly short time requiring more

computing resources, especially when its amount for the

simulation with thousands of cars could be very highly

computationally demanding and not necessary for our

case. Also, as mentioned in Section 2.2, the routing graph

changes much less often than the Virtual World that

vehicles contribute to; therefore, routing services give

the same results during a short interval. And lastly, we

have learnt that a vehicle is able to drive even without an

updated route for some time as there is usually no need

to obtain a completely new route every half a minute.

Thus, our proposal has changed to satisfy a condition

where every vehicle gets a response with a service-level

agreement (SLA) much higher than the previous request

limit time. As pictured in Graph 1, for the selected SLA

60 seconds and for 5,000 simultaneous vehicles, we need

to allocate approximately 43 cores, which corresponds to

3 compute nodes from the Anselm cluster (2x8 Intel

Sandy Bridge cores @2.4 GHz, 64 GB RAM per node)

to reach that SLA.

From the self-adaptive routing system perspective, we

have achieved promising navigation time improvement

in the form of global traveling time speed-up.

Graph 1: Simulation throughput � SLA 60 s

Because our simulation process is data-driven, we plan

to scale up our simulations and extend various models

with EDS, better speed profiles and a related data fusion.

In the future, we would like to continue our work with

the second proposal and experiment with SLA levels

sufficiency. Another goal is to examine the minimal

percentage coverage of the external navigation (Figure

16) vehicles needed for reliable traffic monitoring in

respect of simulated vehicle instances yet managed.

Figure 16: ANTAREX mobile navigation by Sygic

DSpace VŠB - TUO http://hdl.handle.net/10084/133452 December 2018

ACKNOWLEDGEMENT

This work has been partially funded by ANTAREX, a

project supported by the EU H2020 FET-HPC program

under grant 671623, by The Ministry of Education,

Youth and Sports of the Czech Republic from the

National Programme of Sustainability (NPU II) project

'IT4Innovations excellence in science - LQ1602', as well

as by the SGC grant No. SP2018/173 "Dynamic systems

problems and their implementation on HPC$, V�B -

Technical University of Ostrava, Czech Republic and by

the IT4Innovations infrastructure which is supported

from the Large Infrastructures for Research,

Experimental Development and Innovations project

�IT4Innovations National Supercomputing Center �

LM2015070�.

REFERENCES

Harri, J., Filali, F. and C. Bonnet, 2009, Mobility models

for vehicular ad hoc networks: a survey and

taxonomy, Communications Surveys & Tutorials,

Volume 11, Part 4, Pages 19-41

Zehe, D., Knoll, A., Cai, W. and Aydt H., 2015,

Simulation Modelling Practice and Theory,

Volume 58, Part 2, Pages 157-171

Abadi, A., Rajabioun, T. and Ioannou P. A., 2015, Traffic

Flow Prediction for Road Transportation Networks

with Limited Traffic Data, Transactions on

Intelligent Transportation Systems, Volume 16, Part

2, Pages 653-662

Batista, S., Leclercq, L. and Geroliminis N., 2017, Trip

lengths and the macroscopic traffic simulation: an

interface between the microscopic and macroscopic

networks. hEART2017 - 6th symposium of the

European Association for Research in

Transportation, HAIFA, France. hEART2016 - 6th

symposium arranged by European Association for

Research in Transportation, Page 5

Zhang, Z., Wolshon, B. and Dixit V.V., 2015, Integration

of a cell transmission model and macroscopic

fundamental diagram: Network aggregation for

dynamic traffic models, Transportation Research

Part C: Emerging Technologies, Volume 55, Pages

298-309

Fellendorf, M. and Vortisch P., 2010, Microscopic

Traffic Flow Simulator VISSIM, Fundamentals of

Traffic Simulation. International Series in

Operations Research & Management Science, vol

145. Springer, New York

Behrisch, M., Bieker, L., Erdmann, J. and Krajzewicz,

D., 2011, SUMO � Simulation of Urban MObility

An Overview, SIMUL 2011, The Third

International Conference on Advances in System

Simulation, pp. 63-68

Smith, L., Beckman, R., Anson, D., Nagel, K. and

Williams, M., 1995, TRANSIMS: TRansportation

ANalysis and SIMulation System, 5. National

transportation planning methods applications

conference

Horni, A., Nagel, K. and Axhausen, K.W., 2016,

Introducing MATSim, The Multi-Agent Transport

Simulation MATSim, Ubiquity Press

Pto�ek, V. and Slaninová K., 2018, Multinode Approach

for Map Data Processing, 5th International Doctoral

Symposium on Applied Computation and Security

Systems (ACSS)

Folk, M., Heber, G., Koziol, Q., Pourmal, E. and

Robinson, D., 2011, An overview of the HDF5

technology suite and its applications, Proceedings

of the EDBT/ICDT 2011 Workshop on Array

Databases, p.36-47, March 25-25, Uppsala, Sweden

Casagrande, L., Cavallini, P., Frigeri, A., Furieri, A.,

Marchesini, I. and Neteler, M. G., 2014, GIS Open

Source: GRASS GIS, Quantum GIS and SpatiaLite

Silvano, C. et al., 2016, Autotuning and adaptivity

approach for energy efficient Exascale HPC

systems: The ANTAREX approach, 2016, Design,

Automation & Test in Europe Conference &

Exhibition (DATE), Dresden, pp. 708-713

DSpace VŠB - TUO http://hdl.handle.net/10084/133452 December 2018

