18,236 research outputs found

    Trust and Risk in Business Networks: Towards a Due Diligence for Electronic Commerce

    Get PDF
    This paper develops a due diligence for electronic transactions with new partners in business networks with complex goods such as food products to enable the use of e-commerce potentials in first time transactions. The e-commerce due diligence is a means to reduce perceived risks and uncertainties for businesses and create trust and confidence in the electronic transaction with appropriate information. The paper presents a conceptual framework for the due diligence integrating the principles of transaction decision making and the four phases of a transaction process. The operationalization of the framework assigns trust signals and control elements to the four process phases to be communicated during the process.Trust, risk, electronic commerce, first time transactions, due diligence, food networks, Agribusiness, Institutional and Behavioral Economics, Marketing,

    To boldly go:an occam-π mission to engineer emergence

    Get PDF
    Future systems will be too complex to design and implement explicitly. Instead, we will have to learn to engineer complex behaviours indirectly: through the discovery and application of local rules of behaviour, applied to simple process components, from which desired behaviours predictably emerge through dynamic interactions between massive numbers of instances. This paper describes a process-oriented architecture for fine-grained concurrent systems that enables experiments with such indirect engineering. Examples are presented showing the differing complex behaviours that can arise from minor (non-linear) adjustments to low-level parameters, the difficulties in suppressing the emergence of unwanted (bad) behaviour, the unexpected relationships between apparently unrelated physical phenomena (shown up by their separate emergence from the same primordial process swamp) and the ability to explore and engineer completely new physics (such as force fields) by their emergence from low-level process interactions whose mechanisms can only be imagined, but not built, at the current time

    Asymptotic Consensus Without Self-Confidence

    Get PDF
    This paper studies asymptotic consensus in systems in which agents do not necessarily have self-confidence, i.e., may disregard their own value during execution of the update rule. We show that the prevalent hypothesis of self-confidence in many convergence results can be replaced by the existence of aperiodic cores. These are stable aperiodic subgraphs, which allow to virtually store information about an agent's value distributedly in the network. Our results are applicable to systems with message delays and memory loss.Comment: 13 page

    Formal Modeling of Connectionism using Concurrency Theory, an Approach Based on Automata and Model Checking

    Get PDF
    This paper illustrates a framework for applying formal methods techniques, which are symbolic in nature, to specifying and verifying neural networks, which are sub-symbolic in nature. The paper describes a communicating automata [Bowman & Gomez, 2006] model of neural networks. We also implement the model using timed automata [Alur & Dill, 1994] and then undertake a verification of these models using the model checker Uppaal [Pettersson, 2000] in order to evaluate the performance of learning algorithms. This paper also presents discussion of a number of broad issues concerning cognitive neuroscience and the debate as to whether symbolic processing or connectionism is a suitable representation of cognitive systems. Additionally, the issue of integrating symbolic techniques, such as formal methods, with complex neural networks is discussed. We then argue that symbolic verifications may give theoretically well-founded ways to evaluate and justify neural learning systems in the field of both theoretical research and real world applications

    Reconfigurable Intelligent Surfaces for Wireless Communications: Principles, Challenges, and Opportunities

    Full text link
    Recently there has been a flurry of research on the use of reconfigurable intelligent surfaces (RIS) in wireless networks to create smart radio environments. In a smart radio environment, surfaces are capable of manipulating the propagation of incident electromagnetic waves in a programmable manner to actively alter the channel realization, which turns the wireless channel into a controllable system block that can be optimized to improve overall system performance. In this article, we provide a tutorial overview of reconfigurable intelligent surfaces (RIS) for wireless communications. We describe the working principles of reconfigurable intelligent surfaces (RIS) and elaborate on different candidate implementations using metasurfaces and reflectarrays. We discuss the channel models suitable for both implementations and examine the feasibility of obtaining accurate channel estimates. Furthermore, we discuss the aspects that differentiate RIS optimization from precoding for traditional MIMO arrays highlighting both the arising challenges and the potential opportunities associated with this emerging technology. Finally, we present numerical results to illustrate the power of an RIS in shaping the key properties of a MIMO channel.Comment: to appear in the IEEE Transactions on Cognitive Communications and Networking (TCCN
    corecore