588 research outputs found

    Applications of Biological Cell Models in Robotics

    Full text link
    In this paper I present some of the most representative biological models applied to robotics. In particular, this work represents a survey of some models inspired, or making use of concepts, by gene regulatory networks (GRNs): these networks describe the complex interactions that affect gene expression and, consequently, cell behaviour

    Computing multi-scale organizations built through assembly

    Get PDF
    The ability to generate and control assembling structures built over many orders of magnitude is an unsolved challenge of engineering and science. Many of the presumed transformational benefits of nanotechnology and robotics are based directly on this capability. There are still significant theoretical difficulties associated with building such systems, though technology is rapidly ensuring that the tools needed are becoming available in chemical, electronic, and robotic domains. In this thesis a simulated, general-purpose computational prototype is developed which is capable of unlimited assembly and controlled by external input, as well as an additional prototype which, in structures, can emulate any other computing device. These devices are entirely finite-state and distributed in operation. Because of these properties and the unique ability to form unlimited size structures of unlimited computational power, the prototypes represent a novel and useful blueprint on which to base scalable assembly in other domains. A new assembling model of Computational Organization and Regulation over Assembly Levels (CORAL) is also introduced, providing the necessary framework for this investigation. The strict constraints of the CORAL model allow only an assembling unit of a single type, distributed control, and ensure that units cannot be reprogrammed - all reprogramming is done via assembly. Multiple units are instead structured into aggregate computational devices using a procedural or developmental approach. Well-defined comparison of computational power between levels of organization is ensured by the structure of the model. By eliminating ambiguity, the CORAL model provides a pragmatic answer to open questions regarding a framework for hierarchical organization. Finally, a comparison between the designed prototypes and units evolved using evolutionary algorithms is presented as a platform for further research into novel scalable assembly. Evolved units are capable of recursive pairing ability under the control of a signal, a primitive form of unlimited assembly, and do so via symmetry-breaking operations at each step. Heuristic evidence for a required minimal threshold of complexity is provided by the results, and challenges and limitations of the approach are identified for future evolutionary studies

    Evolving Modularity in Soft Robots Through an Embodied and Self-Organizing Neural Controller

    Get PDF
    Modularity is a desirable property for embodied agents, as it could foster their suitability to different domains by disassembling them into transferable modules that can be reassembled differently. We focus on a class of embodied agents known as voxel-based soft robots (VSRs). They are aggregations of elastic blocks of soft material; as such, their morphologies are intrinsically modular. Nevertheless, controllers used until now for VSRs act as abstract, disembodied processing units: Disassembling such controllers for the purpose of module transferability is a challenging problem. Thus, the full potential of modularity for VSRs still remains untapped. In this work, we propose a novel self-organizing, embodied neural controller for VSRs. We optimize it for a given task and morphology by means of evolutionary computation: While evolving, the controller spreads across the VSR morphology in a way that permits emergence of modularity. We experimentally investigate whether such a controller (i) is effective and (ii) allows tuning of its degree of modularity, and with what kind of impact. To this end, we consider the task of locomotion on rugged terrains and evolve controllers for two morphologies. Our experiments confirm that our self-organizing, embodied controller is indeed effective. Moreover, by mimicking the structural modularity observed in biological neural networks, different levels of modularity can be achieved. Our findings suggest that the self-organization of modularity could be the basis for an automatic pipeline for assembling, disassembling, and reassembling embodied agents

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Mobile ad hoc networks for intelligent systems

    Get PDF
    Advances in wireless technology and portable computing along with demands for high user mobility have provided a major promotion toward the development of ad hoc networks. Mobile ad hoc networks feature dynamic topology, self-organization, limited bandwidth and battery power of a node. They do not rely on specialized routers for path discovery and traffic routing. Research on ad hoc networks has been extensively investigated in the past few years and related work has focused on many of the layers of the communications architecture. This research intends to investigate applications of MANET for intelligent systems, including intelligent transportation system (ITS), sensor network and mobile intelligent robot network, and propose some approaches to topology management, link layer multiple access and routing algorithms. Their performance is evaluated by theoretical analysis and off-the-shelf simulation tools. Most current research on ad hoc networks assumes the availability of IEEE 802.11. However, the RTS/CTS protocol of 802.11 still leads to packet collision which in turn decreases the network throughput and lifetime. For sensor networks, sensors are mostly battery operated. Hence, resolving packet collision may improve network lifetime by saving valuable power. Using space and network diversity combination, this work proposes a new packet separation approach to packet collision caused by masked nodes. Inter-vehicle communication is a key component of ITS and it is also called vehicular ad hoc network. VANET has many features different from regular MANETs in terms of mobility, network size and connectivity. Given rapid topology changes and network partitioning, this work studies how to organize the numerous vehicular nodes and establish message paths between any pair of vehicular nodes if they are not apart too far away. In urban areas, the inter-vehicle communication has different requirements and constraints than highway environments. The proposed position-based routing strategy for VANETs utilizes the traffic pattern in city environments. Packets are forwarded based on traffic lights timing sequence and the moving direction of relaying vehicles. A multicast protocol is also introduced to visualize the real time road traffic with customized scale. Only vehicles related to a source node\u27s planned trajectory will reply the query packet. The visualized real time traffic information therefore helps the driver make better decision in route planning when traffic congestion happens. Nowadays robots become more and more powerful and intelligent. They can take part in operations in a cooperative manner which makes distributed control necessary. Ad hoc robot communication network is still fresh field for researchers working on networking technology. This work investigates some key issues in robot ad hoc network and evaluate the challenges while establishing robot ad hoc networks

    Opinions and Outlooks on Morphological Computation

    Get PDF
    Morphological Computation is based on the observation that biological systems seem to carry out relevant computations with their morphology (physical body) in order to successfully interact with their environments. This can be observed in a whole range of systems and at many different scales. It has been studied in animals – e.g., while running, the functionality of coping with impact and slight unevenness in the ground is "delivered" by the shape of the legs and the damped elasticity of the muscle-tendon system – and plants, but it has also been observed at the cellular and even at the molecular level – as seen, for example, in spontaneous self-assembly. The concept of morphological computation has served as an inspirational resource to build bio-inspired robots, design novel approaches for support systems in health care, implement computation with natural systems, but also in art and architecture. As a consequence, the field is highly interdisciplinary, which is also nicely reflected in the wide range of authors that are featured in this e-book. We have contributions from robotics, mechanical engineering, health, architecture, biology, philosophy, and others

    Neuronal oscillations, information dynamics, and behaviour: an evolutionary robotics study

    Get PDF
    Oscillatory neural activity is closely related to cognition and behaviour, with synchronisation mechanisms playing a key role in the integration and functional organization of different cortical areas. Nevertheless, its informational content and relationship with behaviour - and hence cognition - are still to be fully understood. This thesis is concerned with better understanding the role of neuronal oscillations and information dynamics towards the generation of embodied cognitive behaviours and with investigating the efficacy of such systems as practical robot controllers. To this end, we develop a novel model based on the Kuramoto model of coupled phase oscillators and perform three minimally cognitive evolutionary robotics experiments. The analyses focus both on a behavioural level description, investigating the robot’s trajectories, and on a mechanism level description, exploring the variables’ dynamics and the information transfer properties within and between the agent’s body and the environment. The first experiment demonstrates that in an active categorical perception task under normal and inverted vision, networks with a definite, but not too strong, propensity for synchronisation are more able to reconfigure, to organise themselves functionally, and to adapt to different behavioural conditions. The second experiment relates assembly constitution and phase reorganisation dynamics to performance in supervised and unsupervised learning tasks. We demonstrate that assembly dynamics facilitate the evolutionary process, can account for varying degrees of stimuli modulation of the sensorimotor interactions, and can contribute to solving different tasks leaving aside other plasticity mechanisms. The third experiment explores an associative learning task considering a more realistic connectivity pattern between neurons. We demonstrate that networks with travelling waves as a default solution perform poorly compared to networks that are normally synchronised in the absence of stimuli. Overall, this thesis shows that neural synchronisation dynamics, when suitably flexible and reconfigurable, produce an asymmetric flow of information and can generate minimally cognitive embodied behaviours
    corecore