4,281 research outputs found

    Introducing symplectic billiards

    Full text link
    In this article we introduce a simple dynamical system called symplectic billiards. As opposed to usual/Birkhoff billiards, where length is the generating function, for symplectic billiards symplectic area is the generating function. We explore basic properties and exhibit several similarities, but also differences of symplectic billiards to Birkhoff billiards.Comment: 41 pages, 16 figure

    Estimating Lyapunov exponents in billiards

    Full text link
    Dynamical billiards are paradigmatic examples of chaotic Hamiltonian dynamical systems with widespread applications in physics. We study how well their Lyapunov exponent, characterizing the chaotic dynamics, and its dependence on external parameters can be estimated from phase space volume arguments, with emphasis on billiards with mixed regular and chaotic phase spaces. We show that in the very diverse billiards considered here the leading contribution to the Lyapunov exponent is inversely proportional to the chaotic phase space volume, and subsequently discuss the generality of this relationship. We also extend the well established formalism by Dellago, Posch, and Hoover to calculate the Lyapunov exponents of billiards to include external magnetic fields and provide a software implementation of it

    Stickiness in mushroom billiards

    Full text link
    We investigate dynamical properties of chaotic trajectories in mushroom billiards. These billiards present a well-defined simple border between a single regular region and a single chaotic component. We find that the stickiness of chaotic trajectories near the border of the regular region occurs through an infinite number of marginally unstable periodic orbits. These orbits have zero measure, thus not affecting the ergodicity of the chaotic region. Notwithstanding, they govern the main dynamical properties of the system. In particular, we show that the marginally unstable periodic orbits explain the periodicity and the power-law behavior with exponent Îł=2\gamma=2 observed in the distribution of recurrence times.Comment: 7 pages, 6 figures (corrected version with a new figure

    Dynamical tunneling in mushroom billiards

    Full text link
    We study the fundamental question of dynamical tunneling in generic two-dimensional Hamiltonian systems by considering regular-to-chaotic tunneling rates. Experimentally, we use microwave spectra to investigate a mushroom billiard with adjustable foot height. Numerically, we obtain tunneling rates from high precision eigenvalues using the improved method of particular solutions. Analytically, a prediction is given by extending an approach using a fictitious integrable system to billiards. In contrast to previous approaches for billiards, we find agreement with experimental and numerical data without any free parameter.Comment: 4 pages, 4 figure

    Unbounded Orbits for Outer Billiards

    Full text link
    Outer billiards is a basic dynamical system, defined relative to a planar convex shape. This system was introduced in the 1950's by B.H. Neumann and later popularized in the 1970's by J. Moser. All along, one of the central questions has been: is there an outer billiards system with an unbounded orbit. We answer this question by proving that outer billiards defined relative to the Penrose Kite has an unbounded orbit. The Penrose kite is the quadrilateral that appears in the famous Penrose tiling. We also analyze some of the finer orbit structure of outer billiards on the penrose kite. This analysis shows that there is an uncountable set of unbounded orbits. Our method of proof relates the problem to self-similar tilings, polygon exchange maps, and arithmetic dynamics.Comment: 65 pages, computer-aided proof. Auxilliary program, Billiard King, available from author's website. Latest version is essentially the same as earlier versions, but with minor improvements and many typos fixe

    The dynamics of digits: Calculating pi with Galperin's billiards

    Get PDF
    In Galperin billiards, two balls colliding with a hard wall form an analog calculator for the digits of the number π\pi. This classical, one-dimensional three-body system (counting the hard wall) calculates the digits of π\pi in a base determined by the ratio of the masses of the two particles. This base can be any integer, but it can also be an irrational number, or even the base can be π\pi itself. This article reviews previous results for Galperin billiards and then pushes these results farther. We provide a complete explicit solution for the balls' positions and velocities as a function of the collision number and time. We demonstrate that Galperin billiard can be mapped onto a two-particle Calogero-type model. We identify a second dynamical invariant for any mass ratio that provides integrability for the system, and for a sequence of specific mass ratios we identify a third dynamical invariant that establishes superintegrability. Integrability allows us to derive some new exact results for trajectories, and we apply these solutions to analyze the systematic errors that occur in calculating the digits of π\pi with Galperin billiards, including curious cases with irrational number bases.Comment: 30 pages, 13 figure
    • …
    corecore