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ABSTRACT

HYPERBOLICITY AND CERTAIN STATISTICAL PROPERTIES

OF CHAOTIC BILLIARD SYSTEMS

SEPTEMBER 2021

KIEN TRUNG NGUYEN

B.A., UNIVERSITY OF CAMBRIDGE

M.Sc., UNIVERSITY OF WARWICK

MASt., UNIVERSITY OF CAMBRIDGE

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor HongKun Zhang

In this thesis, we address some questions about certain chaotic dynamical systems.

In particular, the objects of our studies are chaotic billiards. A billiard is a dynamical

system that describes the motions of point particles in a table where the particles

collide elastically with the boundary and with each other.
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Among the dynamical systems, billiards have a very important position. They are

models for many problems in acoustics, optics, classical and quantum mechanics, etc..

Despite of the rather simple description, billiards of different shapes of tables exhibit

a wide range of dynamical properties from being complete integrable to chaotic. A

very important and also very interesting type of billiards is chaotic (or hyperbolic)

billiards. In a hyperbolic billiard system, two nearby trajectories in the phase space

can be separated exponentially fast in future.

In the first two Chapters, we prove the Central Limit Theorem and the Almost

Sure Invariance Principle for a class of billiard systems with flat points. They are two

among the important statistical properties for chaotic systems. In the last chapter,

we introduce a random perturbation to a wide class of billiards and prove that even

if the original system is completely integrable, the perturbed system can be chaotic

even under arbitrarily small random perturbation.
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C H A P T E R 1

INTRODUCTION

The mathematical area of dynamical systems studies models in which things

evolve over time and in a state space. The motivations of such models come from

many different fields, including mathematics, physics, chemistry, engineering, eco-

nomics, finance. Methods used for analysing these systems include but not limited

to analysis, geometry, probability and measure theory, numerical computation and

simulation.

Perhaps a dynamical system that is familiar to everyone is the weather. There are

many different variables considered when models are built to predict the temperature

or other conditions of the atmosphere in the future for any given location. However,

long-term prediction of the weather is nearly impossible. This is partly due to of

the huge number of variables involved that cannot be all included in a mathematical

model. Even within a fixed model, there are many small errors in measurements

and computations. These small differences in initial conditions at the beginning

could lead to very different outcomes in the future. This is an example of a chaotic

deterministic dynamical system. See [64] for a more detailed treatment.
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In this thesis, we address some problems about certain chaotic dynamical systems.

In particular, the objects of our studies are dynamical billiards. In the first 2 chapters,

we prove the Central Limit Theorem and the Almost Sure Invariance Principle for

billiards with zero curvature points on the boundary. In the last chapter, we introduce

a random perturbation to a wide class of billiards and prove that the perturbed

systems are chaotic, even if the random perturbation is arbitrarily small.

Before continuing, we need to introduce some notation to describe chaos in dy-

namical systems. In mathematics, a discrete-time dynamical system consists of phase

space M and a function F : M →M . We will assume that M is a complete separable

metric space. If we start from the initial state x, then at time 1 the new state is

x1 = F (x0), and similarly the state at time n is given by xn = F n(x). A mathe-

matical structure will be equipped to the set M depending on each problem. In our

setting, the set M and the map F are in the category of probability and measure

spaces, but usually also has other structures. There are many texts on introduction

to measure theory such as [66], [28]. We also include in this thesis a short appendix

on basic measure theory to fix notation.

Consider a σ-algebra B of subsets of M that contains the empty set ∅ and is closed

under complementation and countable unions, then the pair (M,B) is a measurable

space. If there is a function µ : B → [0,∞] such that µ(∅) = 0 and µ satisfies the

countable additivity condition then the triple (M,B, µ) is called a measure space.

Furthermore, if µ(M) = 1 then (M,B, µ) is a probability space; an element B in

B could be viewed as an event and µ(B) is the likelihood of that event. Given two

measurable spaces (M,B) and (G,G), a map f : (M,B)→ (G,G) is called measurable

2



if f−1(E) ∈ B, where f−1(E) = {x ∈M : f(x) ∈ E}, for any E ∈ G,

We consider a probability space (M,B, µ) and a measurable map F : (M,B) →

(M,B). Assume further that µ is F -invariant, that is if µ(F−1(B)) = µ(B) for any

B ∈ B. Then (M,B, µ, F ) is called a measure-preserving dynamical system.

For measure-preserving dynamical system, there are several properties to char-

acterise different levels of chaos, including hyperbolicity, ergodicity, weakly mixing,

mixing, multiple mixing, K-mixing, Bernoulli which represent the increasing degree

of chaos [[17] chapter 7]. However, we give in this thesis an example where the system

is ergodic but not hyperbolic. A great presentation on introduction to ergodic theory

is [65]. The dynamical system (M,B, µ, F ) is called ergodic if whenever F−1B = B

we must have that µ(B) is either 0 or 1. In an ergodic system, µ-almost every point

moving in M will eventually visit every set of positive measure. A stronger level

of chaos is called mixing. The map F is called mixing with respect to µ if for all

measurable sets A,B ∈ B,

lim
n→∞

|µ(F−n(A) ∩B)− µ(F−n(A))µ(B)| = 0. (1.1)

The mixing property says that for the event x ∈ B at present will become asymp-

totically independent on the event F n(x) ∈ A in the future at time n.

We denote by µ(f) the integral
∫
M
f(x)µ(dx) for any f : M → R any measurable

function (or also known as observable) that is integrable. Let L2
µ(M) be the space

of square integrable functions. The correlation function of any two square integrable

3



functions f and g on M are given by:

Cf,g(n) =

∫
M

f(x) · (g ◦ F n)(x)µ(dx)−
∫
M

f(x)µ(dx)

∫
M

g(x)µ(dx)

= µ(f · (g ◦ F n))− µ(f)µ(g).

(1.2)

It is very important to know rate of decay of the correlation for any f, g ∈ L2
µ(M) as

it characterises the mixing speed. The mixing condition (1.1) is in fact equivalent to

the convergence to 0 of the correlation as n → ∞ for every f, g ∈ L2
µ(M).[[17] page

302.]

Let f : M → R be any observable. The sequence Xn = f ◦ F n is a station-

ary stochastic process defined on (M,µ) [[17] Lemma 7.1] . The statistical proper-

ties of this process, such as the decay rate of correlations, Central Limit Theorem,

Invariance Principles and other limit theorems, display the similarity between the

dynamics given by (M,µ, F, f) and sequences of independent identically distributed

random variables. See [17], Chapter 7 for these definitions and a nice introduction

to statistical properties. A great article on this topic is [69].

The Birkhoff partial sum Sn of the process (Xn) is defined by:

Sn = X0 +X1 + · · ·+Xn−1. (1.3)

If the system is ergodic and the observables are integrable, then the process

(Xn)n≥0 satisfies the Birkhoff’s Ergodic Theorem:

lim
n→∞

Sn
n

= µ(f). (1.4)

We say that the process (Xn)n≥0 satisfies the Central Limit Theorem if we have:

lim
n→∞

µ

{
Sn − nµ(f)√

n

}
=

1√
2πσf

∫ z

−∞
e
− z2

2σ2
f dz. (1.5)
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for −∞ < z <∞. The constant σf ≥ 0 is given by the Green-Kubo equation:

σ2
f = Cf,f (0) + 2

∞∑
n=1

Cf,f (n) (1.6)

The next step in the study of the statistical properties of the sequence Xn = f◦F n

is the invariance principle. We say that the process (Xn)n≥0 satisfies the Almost Sure

Invariance Principle if there exists a standard Brownian motion W (·) on M with

respect to the measure µ so that for some λ > 0 we have:∣∣∣∣∣Sn − nµ(f)

σf
√
N

−W (
n

N
)

∣∣∣∣∣ = O(N−λ) (1.7)

for µ-almost every x ∈M , integers N ≥ 1 and 0 ≤ n ≤ N .

From a different viewpoint, a typical characteristic of a chaotic dynamical system

is its sensitivity to initial conditions. A chaotic system in this sense is also called a

hyperbolic system. To study hyperbolicity, we need to view the phase space M as

a compact Riemannian manifold and let F : M → M be a diffeomorphism on an

open dense subset of full measure in M , and also µ-preseving. The mathematical

tool to measure the senitivity to initial conditions of the system F : M → M is

the Lyapunov exponents. Their definition is given by the Oseledets’s multiplicative

ergodic theorem:

Theorem 1.1 (Oseledets) [17] Let M be a compact Riemannian manifold and F :

M →M a C2 diffeomorphism on an open dense subset of full measure, preserving a

Borel probability measure µ on M . Suppose that∫
M

log+ ‖DxF‖µ(dx) <∞ and

∫
M

log+ ‖DxF
−1‖µ(dx) <∞, (1.8)

5



where log+ = max{log, 0}. Then there exists an F -invariant set H ⊂ M of full

measure, on which all iterations of F are defined on H, such that and for each

x ∈ H there is a DF -invariant decomposition of the tangent space:

TxM = E1(x)⊕ · · · ⊕ Em(x) (1.9)

for some m depends on x, such that for each non-zero vector v ∈ Ei(x) the following

limit exists:

lim
n→∞

1

n
log ‖DxF

nv‖ = λi(x) (1.10)

where λ1(x) > · · · > λm(x).

Remark The Lyapunov exponents are invariant under the map F . If the map F

is ergodic with respect to µ then the Lyapunonv exponents are constant µ-almost

everywhere.

By (1.10), we can see that if λi > 0 then any non-zero tangent vector v ∈ Ei(x) will

grow with rate approximately λi(x) in the future. A point x is said to be hyperbolic

if λi(x) exists and 6= 0 for all i. The system F : M → M is said to be hyperbolic if

µ-almost every point in M is hyperbolic.

Among the dynamical systems, billiards have a very important position. They

are models for many problems in acoustics, optics, classical and quantum mechanics,

etc.. Billiards also appear in the study of Riemann surfaces. Inside a billiard, one or

more point particles move and collide with the boundary and with each other. The

collision is elastic: the pre-collisional angle of incidence equals to the post-collisional

angle of reflection. Despite of the rather simple description, billiards of different

6



shapes exhibit a wide range of dynamical properties from being complete integrable

to chaotic. Birkhoff showed that elliptic billiards are integrable. The collision space

M for the billiard map in an elliptic billiard is foliated by 1-dimensional invariant

manifolds. He also conjectured that the only strictly convex integrable billiards are

elliptic billiard. A nice discussion on Birkhoff’s theorem and Birkhoff’s conjecture is

in [63] chapter 5.

Figure 1. Phase space of a circular billiard

Figure 2. Phase space of an elliptic billiard
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The conjecture is still an open problem and attracts lots of interest. At the other

end of the spectrum, billiards with chaotic properties have been also studied for a

long time such as the Boltzmann hard balls models, Lorentz gas. But only until 1970

the mathematical theory of chaotic billiards was introduced by Sinai in [60]. In his

seminal paper, he constructed the dispersing billiards in which a wavefront of parallel

trajectories will disperse after colliding with the dispersing obstacles. Dispersing

billiards have strong chaotic properties: ergodic, mixing, Bernoulli, hyperbolic and

exponential decay of correlations [60] and thus satisfies limit theorems [[17], Lemma

7.60].

With exponential decay of correlations, the Central Limit Theorem is known to

be true [8]. Since then, the central limit theorem and other limit theorems have

been proved for various billiards, including ones with slow mixing rate. A common

assumption in these examples is that the observables are Hölder continuous and the

diffusion constant is given as an infinite series by the Green-Kubo formula in equation

(1.6).

By using the martingale approximation technique on induced systems, we proved

the Central Limit Theorem and the Almost Sure Invariance Principle billiards with

flat points. For the Central Limit theorem, the observables are assumed to be only

piecewise Hölder continuous functions and moreover, we are able to represent the

diffusion constants in an explicit and simple formula. With the Almost Sure Invari-

ance Principle, the observables are integrable but could be unbounded. However,

they provide good approximation for most regular observables.

Since the discover of dispersing billiards, many billiard models with focusing arcs

8



have been studied. Bunimovich discovered the elegant defocusing mechanism [7] in

billiards with focusing arcs and the hyperbolicity has been proved for many models.

After that, Wojtkowski, Markarian, Donnay and Bunimovich developed methods

to design hyperbolic billiards with focusing boundary components [67, 47, 26, 6].

The idea was to used the invariant cones or quadratic forms. Interesting billiards,

for instance the Lemon billiards [11, 10], were proved to be hyperbolic using this

invariant cones technique. However, there are still many classes of billiards whose

hyperbolicity or ergodicity is still not confirmed for example the Moon billiards [21].

In this methods, we have to construct a cone in the tangent space at each point on

either the collision space M or a subset of M . Then we need to show that the cones

will be at least eventually strictly invariant under iterations of the derivative map

DF or induced map if the cones are on a subset of M . In any case we have to keep

track of the dynamics of the cones along each trajectory. This is a problem for many

billiards as the task of choosing the right moment for the cones to shrink is rather

challenging.

Instead of keeping track of each individual and deterministic trajectory, we add a

small randomness into the systems, so that the image of points in M are determined

not just by the billiard map. In this new setting, the evolution of the system is

governed by a Markov transition function P (x,B), for each x ∈M and B ∈ B where

B is the Borel σ-algebra of M . For each point x ∈ M , it jumps to F (x) and then

perturbed to a nearby point according to the distribution P (x, ·). By iterating this

process, we obtain a Markov chain with values in M . If there is no perturbation,

any realisation of this Markov chain is a real orbit of a point in the phase space

9



M . By evaluating the derivative map DF along this Markov chain, we obtain a

stationary sequence of invertible matrices. It is shown in [44] that the Lyapunov

exponents λ1 ≥ λ2 exist for this process of matrices (there are at most two distinct

Lyapunov exponents for billiards since dimM = 2). Moreover, in [45] and later in

[1], a necessary condition for λ1 = λ2 is presented. If λ1 = λ2, a special measurability

condition must be satisfied [1, 45].

There has been several works on random billiards. The perturbation to the sys-

tem in these works also described by a Markov transition function on the phase

space. The randomness introduced into the systems may be due to external force

as in [15], the microscopic surface structures as in [31], [32], [30],[20], [49], change in

table configuration as in [61], [24]. Also the hyperbolicity of the random billiards are

not addressed in many cases. In our case, the random billiards have the same invari-

ant measure as the original ones, and this invariant measure is in fact the only one.

Hyperbolicity is also established for many random billiards. Two interesting exam-

ples are circular billiards and non-circular elliptic billiards. Their random versions

are all ergodic, but the random circular billiards still have zero Lyapunov exponent

at all point, while the random elliptic billiards have positive Lyapunov exponent for

any magnitude of the noise.

The thesis is organised as follows:

Chapter 2 is the paper [54]. This is a joint work with HongKun Zhang. We

proved the central limit theorem for billiards with flat points.

Chapter 3 is the paper [12]. This is a joint work with Jianyu Chen. We proved

the invariance principles for ergodic systems with slow α-mixing inducing base.

10



Chapter 4 is a joint work with Jinxin Xue and HongKun Zhang. We introduced a

perturbation to several classes of billiards and study the ergodicity and hyperbolicity

of the perturbed systems.

11



C H A P T E R 2

CENTRAL LIMIT THEOREM FOR BILLIARDS WITH

FLAT POINTS

2.1 Introduction to the main result

Billiards are natural models to many different physical problems, especially in

classical and statistical mechanics. They have a wide range of properties depending

on the shape of the tables. Sinai introduced in 1970 the so-called Sinai (or dispers-

ing) billiards where the boundary of the table is smooth and concave with positive

curvature. These billiards are strongly chaotic: they are ergodic, mixing and have

exponential decay of correlations. The central limit theorem is known to be true for

these systems, see [8]. Since then, the central limit theorem and other limit theorems

have been proved for various billiards, including ones with slow mixing rate. In many

This chapter is a slightly modified version of [54].

12



cases, the observables considered in those examples are Hölder continuous and the

diffusion constant is given as an infinite series by the Green-Kubo formula.

In their paper [18], Chernov and Zhang introduced a family of dispersing billiard

models. They were able to prove that the correlations for the collision map decay as

O(1/na) for any constant a ∈ (1,∞), by introducing an induced system together with

a first return time function. Instead of using the traditional methods, we constructed

a filtration generated by the first return time function. Then we are able to construct

a stationary martingale difference sequence to approximate the process adapted to

this filtration. With this new tool, we are going to the central limit theorem for this

billiard family for a class of piecewise Hölder continuous functions. One achievement

of our results is that we are able to represent the diffusion constants in an explicit

and simple formula, comparing to the infinite series using the Green Kubo formula.

Before we proceed to the main result, let us briefly recall some basic notions; more

detailed exposition can be found in, for example, [17].

The billiard table D considered in [18] is bounded by the curves y = |x|β + 1,

y = −(|x|β + 1) and some strictly inward convex curves with nowhere vanishing

curvature and no cusps. A point mass moves inside the table and bounces off its

boundary ∂D elastically.

Let M be the collision space of the billiard dynamics on D. We parameterize

∂D by arclength in the clockwise direction and thus each collision is determined

by its position r on ∂D and its angle of reflection −π/2 ≤ ϕ ≤ π/2 (that formed

with the inward normal vector). They are natural coordinates M and we can write

M = [0, |∂D|] × [−π/2, π/2], where |∂D| is the length of ∂D. The collision map

13



Figure 3. In either table, P and Q are the only flat points with zero curvature.

F :M→M preserves a smooth probability measure µ on M defined by:

dµ =
1

2|∂D|
cos(ϕ)drdϕ. (2.1)

Let f, g ∈ L2(M, µ) be two piecewise Hölder continuous with singularities coin-

cide with those of Fk for some k. The correlations of f and g are defined by:

Cn(f, g,F , µ) =

∫
M

(f ◦ Fn) · gdµ−
∫
M
fdµ

∫
M
gdµ. (2.2)

Chernov and Zhang proved in [18] that these correlations decay polynomially, that

is:

|Cn(f, g,F , µ)| ≤ C
(lnn)a+1

na
, (2.3)

where a = β+2
β−2

and C is some fixed constant.

For systems with slow rates of decay of correlations like this, it is typical to

study the dynamics on a subset of the phase space such that the induced system has

exponential decay of correlations, then extend the results to the original space.

14



Let M ⊂M be a subset ofM obtained by removing the collisions that happen in

an arbitrarily small neighbourhood of the flat points. The first return time function

R : M → N is defined almost everywhere by:

R(z) = inf{n ≥ 1 : Fn(z) ∈M}. (2.4)

Let Mn = {R = n} ⊂ M be the n-th level set of R, for each n ≥ 1. Moreover, for

n,m ≥ 1, we denote

pn,m :=
ν(F−1Mm ∩Mn)

ν(Mn)
(2.5)

The quantities pn,m can be thought of as the transition probability of going from cell

Mn to cell Mm in one iteration. It is important to note that everything in Mn with

n ≥ 3 must go to M1 if the neighbourhood is sufficiently small. From M2, although it

cannot go to cells of higher indices, it is possible, however, to go back to itself because

of the presence of period-four-orbit-like trajectories. There is a positive probability

to go from M1 to any cells.

Now consider the induced collision map F : M →M given by: F (z) = FR(z)(z).

The function F is discontinuous on the lines separating the cells Mn’s. Moreover, F

preserves the conditional measure ν onM , where for each B ⊂M , ν(B) := µ(B)
µ(M)

. The

map F : M →M is strongly hyperbolic and has exponential decay of correlations.

Since the set M is partitioned by the cells Mn’s, we also have a partition forM:

M = ∪∞n=1 ∪n−1
k=0 F

kMn.

An element z ∈ M can be represented by the pair (y, i) where Π(z) = y is the

projection onto the base M and z = F i(y) with 0 ≤ i ≤ R(y) − 1. Let FM0 be the

15
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σ-algebra generated by this partition ofM. We now state the main theorem of this

paper:

Theorem 2.1 Let D be the billiard table with flat points. Let f : M → R be a

bounded FM0 -measurable function and µ(f) = 0. Then we have:

lim
n→∞

µ

{
Snf√
n
≤ t

}
=

1√
2πσf

∫ t

−∞
e
− s2

2σ2
f ds. (2.6)

for all −∞ < t <∞. Here:

Snf = f + f ◦ F + · · ·+ f ◦ Fn−1.

Moreover, σ2
f =

σ2
f̃

ν(R)
, where σ2

f̃
is given in Theorem 2.3.

Remark Since R ∈ L2+δ with δ > 0 (see Lemma 2.2 below), the bounded condition

on f can actually be replaced by f ∈ L2+2/δ(M, µ), see [48].

16



2.2 Induced function

In order to prove Theorem 2.1, we will first prove that the induced function of f

also satisfies a central limit theorem. The induced function of f is given by:

f̃ := f + f ◦ F + · · ·+ f ◦ FR−1.

Lemma 2.2 We have that R ∈ L2+δ(M, ν) for any 0 < δ < a− 1.

Proof. The verification of this lemma is straightforward, since:

ν(R > n) ≤ C ′ · n−a−1 (2.7)

for every n ≥ 1 and some uniform constant C ′ (see [18]). We recall that a = β+2
β−2

> 1.

� �

Suppose that f(z) : M → R is FM0 -measurable. Then one can check that f̃ is

constant on each cell Mn and furthermore f̃ ∈ L2(M, ν) since f ∈ L∞(M, µ).

Theorem 2.3 (CLT for the induced function) Let f :M→ R be defined as in

Theorem 2.1 and f̃ its induced function on M . Then we have

lim
n→∞

ν

{
Snf̃ − nν(f̃)√

n
≤ t

}
=

1√
2πσf̃

∫ t

−∞
e
− s2

2σ2
f̃ ds. (2.8)

for all −∞ < t <∞, where

Snf̃ = f̃ + f̃ ◦ F + · · ·+ f̃ ◦ F n−1.

and

σ2
f̃

= Var(f̃)−2(E(f̃ |M1))2ν(M1)+2
p2,2

p1,2

E(f̃ |M2)ν(M2)
(
E(f̃ |M1)(p1,1−1)+E(f̃ |M2)p1,2−E(f̃◦F |M1)

)
.

17



An important special case of Theorem 2.3 is when f̃ is the return time function:

Corollary 2.4 Let f be defined by:

f(z) =


1 if z ∈M \M

1− ν(R) if z ∈M,

(2.9)

then f̃ = R−ν(R). Thus the (centralised) return time function R−ν(R) also satisfies

the central limit theorem, that is:

lim
n→∞

ν

{
SnR− nν(R)√

n
≤ t

}
=

1√
2πσR

∫ t

−∞
e
− s2

2σ2
R ds. (2.10)

for all −∞ < t <∞, with

σ2
R = Var(R)−2(1−ν(R))2ν(M1)+

p2,2

p1,2

(4−2ν(R))ν(M2)

(
p1,2−p1,3+ν(R)(1+p1,3)−E(R◦F |M1)

)
.

Assuming Theorem 2.3, we now show that the Theorem 2.1 is true. This standard

result is proved in several references, for example, [2] and [17]. For completeness, we

give a proof here. But before we go to the proof of this lemma, we need some basic

results.

Lemma 2.5 For each n ≥ 1, let nx(n) be the number of times the point mass comes

back to M during the first n iterations. Then for ν-a.e. x ∈M we have:

lim
n→∞

n

nx(n)
= ν(R).

Proof. We first note that, for ν-almost every x, nx(n)→∞ as n→∞. The set of x

such that the sequence {nx(n)} is bounded has measure 0: it is the countable union

of all preimages of the set {R =∞}.

18



The induced map F is ergodic and R ∈ L1(M, ν), therefore we have, by Birkhoff

ergodic theorem:

lim
n→∞

SnR

n
= ν(R)

for almost every x ∈ M . For such an x ∈ M , since Snx(n)R ≤ n < Snx(n)+1R, we

have that:

Snx(n)R

nx(n)
≤ n

nx(n)
≤
Snx(n)+1R

nx(n) + 1
· nx(n) + 1

nx(n)
.

Therefore we have for almost every x ∈M that

lim
n→∞

n

nx(n)
= ν(R). �

�

Corollary 2.6 We have:

lim
n→∞

ν

(
nx(n)− n/ν(R)√

n
≤ t

)
=

1√
2πσ

∫ t

−∞
e−

s2

2σ2 ds.

for all t ∈ (−∞,∞) and σ2 = σ2
R/(ν(R))3.

Lemma 2.7 Theorem 2.3 implies Theorem 2.1.

Proof.

In this proof, we will assume for simplicity that the function f is bounded. See

[33], Appendix A for a similar but longer proof of the more general case. Without

loss of generality, assume that µ(f) = 0 and therefore we also have ν(f̃) = 0. Let

m = m(n) = bn/ν(R)c. Corollary 2.6 implies that for any ε > 0, there exists Aε > 0

such that

ν(|nx −m| ≥ A
√
n) ≤ ε.
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First we prove that with respect to µ on M we have:

Snf ◦ Π√
n

=⇒ N(0, σ2
f ).

We have:

Snf√
n

=
Sn1 f̃√
n

+
Sn2 f̃ − Sn1 f̃√

n
+
Snf − Sn2 f̃√

n
.

The first term converges to N(0, σ2
f ) with respect to ν by our assumption and σ2

f =

σ2
f̃
/ν(R). The second and third terms converge to 0 in probability, by Birkhoff

ergodic theorem and the fact that f is a bounded function. Thus we have shown

that on (M, ν):

Snf√
n

=⇒ N(0, σ2
f ). (2.11)

We define a new probability measure ξ on M by dξ = R/ν(R)dν. Since ξ << ν,

the central limit theorem (2.11) also holds with respect to ξ. We have:∫
M
exp

(
it
Snf ◦ Π√

n

)
dµ =

∫
M

R exp

(
it
Snf√
n

)
dµ =

∫
M

R

ν(R)
exp

(
it
Snf√
n

)
dν.

(2.12)

This shows that on (M, µ):

Snf ◦ Π√
n

=⇒ N(0, σ2
f ).

To complete the prove of this lemma, we will show that Snf√
n
− Snf◦Π√

n
−→ 0 in proba-
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bility.

Snf(y, i)− Snf(y, 0) =
n−1∑
k=0

f ◦ Fk(y, i)−
n−1∑
k=0

f ◦ Fk(y, 0)

= −
i−1∑
k=0

f ◦ Fk(y, 0) +
n+i−1∑
k=n

f ◦ Fk(y, 0)

= −
i−1∑
k=0

f(y, k) +
i−1∑
k=0

f ◦ Fn(y, k).

Since |Snf(y, i)− Snf(y, 0)| ≤ 2 ‖f‖∞R, we have that

Snf√
n
− Snf ◦ Π√

n
−→ 0 in probability.

Thus we have shown that Theorem 2.3 implies Theorem 2.1. � �

2.3 Central limit theorem for the induced function

We devote this section to prove a central limit theorem on the induced system

(M,F, ν) of which Theorem 2.3 is a special case:

Theorem 2.8 Let X : M → R be an F0-measurable function such that X ∈

L2(M, ν) and E(X) = 0. Then

SnX√
n
⇒ N(0, σ2

X), (2.13)

where the variance σ2
X is given by formula (2.31).

There is a filtration of σ-algebras on M :

Fn = σ(R ◦ F k : −n ≤ k ≤ n) (2.14)
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for n ≥ 0 and Fn = {∅,M} for n < 0. Let Xn = X ◦ F n for n ≥ 0. Because F

preserves the probability measure ν, the sequence {Xn}n≥0 is a stationary stochastic

process adapted to the filtration {Fn}. By replacing X by X−E(X), we can assume

that E(X) = 0.

Our method in proving that SnX√
n

converges to a normal distribution as n → ∞

is to approximate the Birkhoff sum by a series of martingale differences for which a

central limit theorem is already proved, see [36]:

Lemma 2.9 Let {Zj : j ≥ 1} be a stationary ergodic sequence of martingale differ-

ences such that E(Z2
1) = σ2 <∞. Then we have

SnZ√
n

=⇒ N(0, σ2).

The convergence here is in distribution.

Our approximation is as follows. Fix any large integer k ≥ 1. Then for any n ≥ 1

we have a decomposition:

Xn = E(Xn|Fn−k) + hk ◦ F n−1 + ukn − vkn, (2.15)

where hk =
∑k

i=1

(
E(Xi|F1)− E(Xi|F0), vkn−1 = ukn and

ukn =
k−2∑
i=0

(E(Xn+i|Fn−1)− E(Xn+i|Fn−k+i)) . (2.16)

Therefore:

X0+· · ·+Xn−1 =
n−2∑
i=0

hk◦F i+E(X0+· · ·+Xk−1|F0)−vkn−1+
n−1∑
i=k

E(Xi|Fi−k). (2.17)
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Note that E(Xi|Fi−k) = E(Xk|F0) ◦ F i−k for i ≥ k, and vkn = vkk ◦ F n−k. We have:

lim sup
n→∞

n−1E
(
X0 + · · ·+Xn−1 −

n−2∑
i=0

hk ◦ F i
)2

= lim sup
n→∞

n−1E
(
E(X0 + · · ·+Xk−1|F0)− vkn−1 +

n−1∑
i=k

E(Xi|Fi−k)
)2

≤ 3 lim sup
n→∞

n−1E
( n−1∑
i=k

E(Xi|Fi−k)
)2

= 3 lim sup
n→∞

(
n− k
n

E
(
E(Xk|F0)

)2
+

2

n

n−k−1∑
i=1

(n− k − i)E
(
E(Xk|F0) · E(Xk|F0) ◦ F i

))
.

Since X : M → R is an F0-measurable function, we can compute the quantities

E(Xk|F0) rather explicitly.

Lemma 2.10 Let E(Xk|F0) =
∑∞

n=1 a
(k)
n χMn, where a

(k)
n = E(Xk|Mn) for n ≥ 1

and k ≥ 0. We have a recurrence relation:

a
(k+1)
i =

∞∑
m=1

a(k)
m pi,m for i = 1, 2, and a(k+1)

n = a
(k)
1 for k ≥ 0 and n ≥ 3. (2.18)

Moreover,

lim
k→∞

a
(k)
i = 0, for i = 1, 2. (2.19)

Proof. Suppose that E(Xk|F0) =
∑∞

n=1 a
(k)
n χMn . Then

E(Xk+1|F1) = E(Xk|F0) ◦ F =
∞∑
n=1

a(k)
n χF−1Mn

,

and thus:

E(Xk+1|F0) =
∞∑
n=1

E(E(Xk+1|F1)|Mn)χMn =
∞∑
n=1

( ∞∑
m=1

a(k)
m pn,m

)
χMn ,
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where we define pn,m as in (2.5). for n,m ≥ 1. It is straightforward that
∑∞

m=1 pnm =

1 for any n ≥ 1 since the cells Mn’s are disjoint and the map F is invertible. Suppose

that x ∈ Mn; that means the point mass will enter the neighbourhood of the flat

points and come out after n−1 collisions with the boundary. For n ≥ 3, by shrinking

the neighbourhood if necessary, once the point mass come out it will not come back

to the neighbourhood after at least 2 collisions with the good part of the boundary

of the table. That is to say F−1M1∩Mn = Mn, hence pn,1 = 1, for n ≥ 3. In essence,

we have a three-state Markov chain. Therefore we have that:

E(Xk+1|F0) =
( ∞∑
m=1

a(k)
m p1,m

)
χM1 +

( ∞∑
m=1

a(k)
m p2,m

)
χM2 + a

(k)
1

∞∑
n=3

χMn . (2.20)

Let zk = (a
(k)
1 , a

(k)
2 , a

(k−1)
1 )t, and

(Aij) =


p1,1 p1,2 1− p1,1 − p1,2

p2,1 1− p2,1 0

1 0 0

 . (2.21)

The recurrence can then be written in matrix form as:

zk+1 = Azk for k ≥ 1; z1 = (a
(1)
1 , a

(1)
2 , a

(0)
1 )t. (2.22)

We note that the first row of A is strictly positive, thus A is an irreducible, aperiodic

stochastic matrix and the unique stationary probability vector is π = (ν(M1), ν(M2), ν(Mn≥3)):

ν(M1)A12 = ν(M2)A21

ν(M1)A13 = ν(Mn≥3)
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It follows that limk→∞ a
(k)
i = π·z1 for i = 1, 2. Furthermore, π·z1 = E(E(X1|F0)) =

0. Thus we have:

lim
k→∞

a
(k)
i = 0, for i = 1, 2. �

�

Lemma 2.11

lim
k→∞

E(E(Xk|F0))2 = 0.

Proof. We recall that

E(Xk|F0) =
∑
n≥1

a(k)
n χMn = a

(k)
1 χM1 + a

(k)
2 χM2 + a

(k−1)
1 (1− χM1 − χM2).

Therefore:

E (E(Xk|F0))2 = (a
(k)
1 )2ν(M1) + (a

(k)
2 )2ν(M2) + (a

(k−1)
1 )2(1− ν(M1)− ν(M2)).

Thus we have:

lim
k→∞

E (E(Xk|F0))2 = 0. �

�

Lemma 2.12

lim
k→∞

∞∑
i=1

E
(
E(Xk|F0) · E(Xk|F0) ◦ F i

)
= 0.

Proof. As before we have

E(Xk|F0)·E(Xk+i|F0) = a
(k)
1 a

(k+i)
1 χM1 +a

(k)
2 a

(k+i)
2 χM2 +a

(k−1)
1 a

(k+i−1)
1 (1−χM1−χM2).
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Taking the expectation we have:

E(E(Xk|F0) · E(Xk+i|F0)) = a
(k)
1 a

(k+i)
1 ν(M1) + a

(k)
2 a

(k+i)
2 ν(M2)+

+ a
(k−1)
1 a

(k+i−1)
1 (1− ν(M1)− ν(M2))

= a
(k)
1 ν(M1)(a

(k+i)
1 − a(k+i−1)

1 ) + a
(k)
2 ν(M2)(a

(k+i)
2 − a(k+i−1)

1 ).

To deal with the last term, we have for n ≥ 2 that:

a
(n)
2 − a

(n−1)
1 = (a

(n−1)
2 − a(n−1)

1 )A22 (2.23)

a
(n−1)
2 − a(n−1)

1 =
a

(n)
1 − a

(n−1)
1

A12

+
(a

(n−1)
1 − a(n−2)

1 )A13

A12

. (2.24)

Thus the series
∑∞

i=1 E(E(Xk|F0) · E(Xk|F0) ◦ F i) is in fact a telescoping series

and noting that a
(k)
i → 0 as k →∞ for i = 1, 2, it must be the case that:

lim
k→∞

∞∑
i=1

E(E(Xk|F0) · E(Xk|F0) ◦ F i) = 0. �

�

Thus for any positive sequence εk → 0 as k →∞, there exists a sequence nk →∞

as k →∞ such that

lim sup
n→∞

n−1E
(
X0 + · · ·+Xn−1 −

n−2∑
i=0

hnk ◦ F i
)2
< εk.

The sequence {hnk ◦ F i}i≥0 is a stationary sequence of martingale differences

adapted to the filtration {Fi}. The CLT holds for this sequence:

n−1/2

n−1∑
i=0

hnk ◦ F i =⇒ N(0, σ2
k) (2.25)

where σ2
k = E(h2

nk
).
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Next, we show that the sequence {σk} converges to some limit as k →∞.

(σi − σj)2 ≤ E
(
hni − hnj

)2

= n−1E
( n−1∑
m=0

(hni − hnj) ◦ Fm
)2

≤ 2(εi + εj).

Therefore {σk} is a Cauchy sequence and hence σk → σX as k → ∞ for some

constant σX and

lim
n→∞

E

(
SnX√
n

)2

= σ2
X .

Finally, the variance σ2
X can be computed directly as below:

For any n ≥ 1:

Cov(X,X ◦ F n) = E (E(X ◦ F n|F0) ·X)

= E

((
a

(n)
1 χM1 + a

(n)
2 χM2 + a

(n−1)
1

∑
m≥3

χMm

)
·
∞∑
m=1

a(0)
m χMm

)

= a
(n)
1 a

(0)
1 ν(M1) + a

(n)
2 a

(0)
2 ν(M2) + a

(n−1)
1

∞∑
m=3

a(0)
m ν(Mm)

= (a
(n)
1 − a

(n−1)
1 )a

(0)
1 ν(M1) + (a

(n)
2 − a

(n−1)
1 )a

(0)
2 ν(M2).

In particular, for n = 1:

Cov(X,X ◦ F ) = (a
(1)
1 − a

(0)
1 )a

(0)
1 ν(M1) + (a

(1)
2 − a

(0)
1 )a

(0)
2 ν(M2) (2.26)

= (a
(1)
1 − a

(0)
1 )a

(0)
1 ν(M1) + (a

(0)
2 − a

(0)
1 )A22a

(0)
2 ν(M2). (2.27)
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For n ≥ 2, we have:

a
(n)
2 − a

(n−1)
1 = (a

(n−1)
2 − a(n−1)

1 )A22 (2.28)

a
(n−1)
2 − a(n−1)

1 =
a

(n)
1 − a

(n−1)
1

A12

+
(a

(n−1)
1 − a(n−2)

1 )A13

A12

. (2.29)

Therefore:

Cov(X,X ◦ F n) = (a
(n)
1 − a

(n−1)
1 )a

(0)
1 ν(M1)

+
(
a

(n)
1 − a

(n−1)
1 + (a

(n−1)
1 − a(n−2)

1 )A13

) A22

A12

a
(0)
2 ν(M2).

= (a
(n)
1 − a

(n−1)
1 )(a

(0)
1 ν(M1) +W ) + (a

(n−1)
1 − a(n−2)

1 )A13W,

where:

W =
A22

A12

a
(0)
2 ν(M2). (2.30)

We can then compute the variance of SnX√
n

as follows:

Var

(
SnX√
n

)
= Var(X) +

2

n

n−1∑
k=1

(n− k) Cov(X,X ◦ F k)

= Var(X) + 2
n−1∑
k=1

Cov(X,X ◦ F k)− 2

n

n−1∑
k=1

kCov(X,X ◦ F k).

The second term is:

n−1∑
k=1

Cov(X,X ◦ F k) = Cov(X,X ◦ F ) + (a
(n−1)
1 − a(1)

1 )(a
(0)
1 ν(M1) +W ) + (a

(n−2)
1 − a(0)

1 )A13W.

Taking limit as n → ∞, the third term converges to 0 by Kronecker’s lemma or

by direct verificaton. Thus we have:

σ2
X = lim

n→∞
Var

(
SnX√
n

)
= Var(X)− 2(a

(0)
1 )2ν(M1) + 2W

(
a

(0)
1 A11 + a

(0)
2 A12 − a(0)

1 − a
(1)
1

)
.

(2.31)
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Thus we have shown that SnX√
n

=⇒ N(0, σ2
X) in distribution and completed the

proof of Theorem 2.8.

Remark Our method also works for functions X that are Fm-measurable for any

m ≥ 0. The martingale approximation is virtually the same, and the estimations

of the errors are easily reduced to estimation of the case X is F0-measurable since

we are dealing with stationary stochastic sequences. Thus the central limit theorem

actually holds for a much larger class of observables than those considered in Theorem

2.1. However, a drawback is that a formula for the diffusion constant would be more

complicated.
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C H A P T E R 3

INVARIANCE PRINCIPLES FOR ERGODIC SYSTEMS

WITH SLOWLY α-MIXING INDUCING BASE

3.1 Introduction

As a functional generalization of the central limit theorems, the almost sure

invariance principle (ASIP) asserts the the partial sum of a random process can be

well approximated by a Brownian motion with an almost sure error. There has

been a great deal of work on the invariance principles in probability theory, such as

[55, 3, 29, 59, 68, 23], etc., as well as in the context of dynamical systems, for instance,

[9, 13, 69, 70, 56, 37, 62, 50, 14, 51, 34, 2, 25, 38], etc.. Three major approaches

are exploited in the proof of invariance principles: (1) the martingale approximation

method (e.g. [55, 14]); (2) the inducing and Young towers (e.g. [50, 51] ); (3) the

This chapter is a slightly modified version of [12].
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spectral method for transfer operators (e.g. [56, 34]).

In the paper, we study the almost sure invariance principle (ASIP) for a class

of ergodic dynamical systems with a slowly α-mixing inducing base. Our setting is

rather abstract, and does not have any smooth structures. Also, we assume very

low regularity for the observable that generates the stationary process, that is, the

observable is only integrable but could be unbounded. In this situation, we are able

to prove the ASIP for stationary processes that are generated by any adapted observ-

ables. Although adapted observables might be a quite narrowed class of functions,

they can provide good approximations for most regular observales.

This paper is organized as follows. In Section 3.2, we shall introduce Assumption

(H1) on the inducing base and Assumption (H2) for the first return time, and

state our main theorem. In Section 3.3, we deliver the proof of the ASIP in four

subsections. In Section 3.4, we apply our main result to intermittent maps and

billiards with flat points.

3.2 Statement of Results

Let T be an ergodic measure-preserving transformation on a standard probability

space (M,B, µ). We choose a subset M ⊂M of positive µ-measure, and denote the

first return time to M by

R(x) = inf{n ≥ 1 : T n(x) ∈M}, for any x ∈M.

Consider the induced base transformation T : (M,BM , ν) 	, where
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• T (x) = T R(x)(x) for any x ∈M ;

• BM := {B ∩M : B ∈ B};

• ν is the conditional measure of µ on M , i.e., ν(·) = µ(·| M).

By Poincaré recurrence and the ergodicity of T , we have

M =
∞⋃
n=1

{R = n} (mod ν), and M =
∞⋃
n=1

n−1⋃
k=0

T k{R = n} (mod µ).

Remark The induced map T must be ergodic, since the original map T is ergodic.

However, T may not be mixing, even if T is mixing.

We now impose the following assumptions.

(H1) T admits a generating partition ξ, i.e., F∞0 = BM (mod ν), where F ts :=

σ (T−sξ ∨ · · · ∨ T−tξ) . for any 0 ≤ s ≤ t ≤ ∞. Moreover, the family F := {F ts}0≤s≤t≤∞

is α-mixing with polynomial rate O(n−β) for some β > 2, that is,

αF(n) = sup
t≥0

sup
A∈Ft0

sup
B∈F∞t+n

|ν(A ∩B)− ν(A)ν(B)| = O(n−β). (3.1)

(H2) R ∈ Lp(M, ν) for some p > 2 satisfying 1
β

+ 1
p
< 1

2
, or equivalently,

ν{R > k} = O(k−p). (3.2)

Refining ξ if necessary, one may assume that {R = n} ∈ F0
0 for each n ≥ 1. We

then naturally lift the partition ξ to the partition ξ̃ on M, to be precise,

ξ̃ :=
{
A ⊂ T k{R = n} : T −kA ∈ ξ, n ≥ 1, 0 ≤ k ≤ n− 1

}
.
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It is clear that ξ̃ is a generating partition for T . We denote F̃ ts := σ
(
T −sξ̃ ∨ · · · ∨ T −tξ̃

)
for any 0 ≤ s ≤ t ≤ ∞.

A measurable function f : M → R (or f : M → R) is said to be an adapted

function if f is F̃ ts-measurable (or F ts-measurable) for some 0 ≤ s ≤ t < ∞. In

particular, the first return time R is adapted.

Our main result is the following.

Theorem 3.1 Let q > 2 be such that 1
β

+ 1
p

+ 1
q
< 1

2
. Suppose that f ∈ Lq(M, µ)

with Eµ(f) = 0, and f is an adapted function on M. Then the stationary process

Xf := {f ◦ T n}n≥0 satisfies an almost sure invariance principle (ASIP) as follows:

for any λ ∈
(

max
{

1
4
, 1
β

+ 1
p

+ 1
q

}
, 1

2

)
, enlarging to a richer probability space (M′, µ′)

if necessary, there exists a standard Brownian motion W (·) such that∣∣∣∣∣
n−1∑
k=0

f ◦ T k −W (nσ2)

∣∣∣∣∣ = O(nλ), µ′ − a.s. (3.3)

where σ = σ(f) is defined by (3.18) in Section 3.3.4.

It is obvious from (3.3) that σ = limn→∞
1
n
Eµ
(∑n−1

k=0 f ◦ T k
)2
. We shall provide

an alternative formula in (3.18) for σ from the induced system.

Remark We could easily extend Theorem 3.1 in the invertible case, with the only

modification on the families F ts and F̃ ts to be two sided, i.e., −∞ ≤ s ≤ t ≤ ∞.
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3.3 Proof of Theorem 3.1

3.3.1 The induced function f̂

For any measurable function f : M→ R, we define the induced function on M

by

f̂(x) :=

R(x)−1∑
k=0

f ◦ T k(x), x ∈M.

Lemma 3.2 Let f :M→ R be a function that satisfies Theorem 3.1. Then

(1) Eν(f̂) = 0;

(2) f̂ ∈ Lr(M, ν) for any r ∈
(

2, pq
p+q

)
;

(3) For each n ≥ 0, the function f̂ ◦ T n is adapted on M .

Proof. (1) By Kac formula, i.e.,
∫
M
f̂dµ =

∫
fdµ, and the fact that ν(·) = µ(·|M),

we have that Eν(f̂) = 0 if Eµ(f) = 0.

(2) Note that f̂ =
∑∞

k=0 f ◦ T k1{R>k}, then by Minkowski’s inequality, Hölder

inequality and T -invariance of µ, we have

‖f̂‖Lr(ν) ≤
∞∑
k=0

‖|f | ◦ T k1{R>k}‖Lr(ν)

= µ(M)−
1
r

∞∑
k=0

(∫
|f |r ◦ T k1{R>k}dµ

) 1
r

≤ µ(M)−
1
r

∞∑
k=0

‖f ◦ T k‖Lq(µ) (µ{R > k})1/r−1/q

= µ(M)−
1
q ‖f‖Lq(µ)

∞∑
k=0

(ν{R > k})1/r−1/q .
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The last summation is finite due to Condition (3.2), i.e.,

∞∑
k=0

(µ{R > k})1/r−1/q = 1 +O

(
∞∑
k=1

(
k−p
)1/r−1/q

)
<∞,

since p(1/r − 1/q) > 1. Therefore, ‖f̂‖Lr(ν) <∞ and thus f̂ ∈ Lr(M, ν).

(3) Since f is adapted, there are 0 ≤ s ≤ t < ∞ such that f is F̃ ts-measurable.

It is easy to see that f̂ is F ts-measurable. Moreover, we have that f̂ ◦ T n is F t+ns+n-

measurable for each n ≥ 0, since T−nF ts = F t+ns+n. �

We shall first study the induced process Xf̂ := {f̂ ◦ T n}n≥1 on (M, ν).

3.3.2 ASIP for the induced process Xf̂

In this subsection, we establish an ASIP for the induced process Xf̂ = {f̂◦T n}n≥1.

We first recall the following special case of an ASIP result by Shao and Lu [59].

Definition 3.3 Given a random process X = {Xn}n≥0 on (M, ν), we denote

Gnm(X) := σ {Xm, Xm+1, . . . , Xn}

for any 0 ≤ m ≤ n ≤ ∞. The α-mixing coefficient of the process is defined by

αX(n) = sup
k≥0

sup
A∈Gk0 (X)

sup
B∈G∞k+n(X)

|ν(A ∩B)− ν(A)ν(B)| .

Proposition 3.4 Let δ ∈ (0, 2] and r ∈ (2 + δ,∞]. If X = {Xn}n≥0 is a zero-mean

random process such that

(i) supn≥0 ‖Xn‖Lr <∞;

(ii)
∑∞

n=1 αX(n)
1

2+δ
− 1
r <∞;
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(iii) lim inf
n→∞

an
n
> 0, where an := Eν(

∑n−1
k=0 Xk)

2,

then for any ε > 0, enlarging to a richer probability space (M ′, ν ′) if necessary, there

exists a standard Brownian motion W (·) such that∣∣∣∣∣
n−1∑
k=0

Xk −W (an)

∣∣∣∣∣ = O
(
a

1
2+δ

+ε
n

)
, ν ′ − a.s.

We now directly apply Proposition 3.4 to adapted stationary processes on (M, ν).

Lemma 3.5 Let r > 2 be such that 1
β

+ 1
r
< 1

2
. Suppose that g ∈ Lr(M, ν) with

Eν(g) = 0, and g is an adapted function on M . Then the stationary process Xg =

{g◦T n}n≥0 satisfies an ASIP as follows: for any λ ∈
(

max
{

1
4
, 1
β

+ 1
r

}
, 1

2

)
, enlarging

to a richer probability space (M ′, ν ′) if necessary, there exists a standard Brownian

motion W (·) such that∣∣∣∣∣
n−1∑
k=0

g ◦ T k −W
(
nσ2

g

)∣∣∣∣∣ = O
(
nλ
)
, ν ′ − a.s. (3.4)

where σ2
g is given by

σ2
g :=

∞∑
n=−∞

Eν(g · g ◦ T n) =
∞∑

n=−∞

∫
g · g ◦ T n dν. (3.5)

Proof. In the degenerate case when σg = 0, it is well known that g is a coboundary,

i.e., there exists a measurable function h : M → R such that g = h− h ◦ T (see e.g.

[40], Theorem 18.2.2), and thus (3.8) is automatic.

We now consider the non-degenerate case when σg > 0, and check conditions in

Proposition 3.4 for the stationary process Xg := {g ◦ T n}n≥0 as follows.

As λ ∈
(

max
{

1
4
, 1
β

+ 1
r

}
, 1

2

)
, we pick a sufficiently small δ ∈

(
0, 1

λ
− 2
)

such

that 1
r
< 1

2+δ
− 1

β
. By T -invariance of ν, we have Eν(g ◦ T n) = Eν(g) = 0 for any
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n ≥ 0, that is, the process is of zero mean. Also, ‖g ◦ T n‖Lr(ν) = ‖g‖Lr(ν), and thus

Condition (i) in Proposition 3.4 holds.

For Condition (ii), we recall that Gnm(Xg) is the σ-algebra generated by g ◦

Tm, . . . , g ◦ T n, where 0 ≤ m ≤ n ≤ ∞. Since g is an adapted function, there

are some 0 ≤ s ≤ t < ∞ such that g is F ts-measurable. Therefore, g ◦ T n is F t+ns+n-

measurable, and hence Gnm(Xg) ⊂ F t+ns+m. Hence by (3.1),

αXg(n) ≤ αF(n+ s− t) = O
(
(n+ s− t)−β

)
= O

(
n−β

)
,

as n→∞, which immediately implies Condition (ii) since β
(

1
2+δ
− 1

r

)
> 1.

By the covariance inequality in Lemma 7.2.1 in [55], we have

|Eν(g · g ◦ T n)| ≤ 10αXg(n)1− 2
r ‖g‖Lr(ν)‖g ◦ T n‖Lr(ν)

≤ 10‖g‖2
Lr(ν)O

(
n−β(1− 2

r
)
)

=: O
(
n−β1

)
,

where we set β1 := β(1− 2
r
) > 2. Hence the series in (3.5) absolutely converges. We

now check Condition (iii).

an = Eν

(
n−1∑
k=0

g ◦ T k
)2

= nEν(g)2 + 2
n−1∑
k=1

(n− k)Eν(g · g ◦ T k)

= nσ2
g − n

∑
|k|≥n

Eν(g · g ◦ T k)− 2
n−1∑
k=1

kEν(g · g ◦ T k)

= nσ2
g +O(n

∑
|k|≥n

k−β1) +O

(
n−1∑
k=1

k1−β1

)
= nσ2

g +O(1),

Therefore, lim
n→∞

an
n

= σ2
g > 0.
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By Proposition 3.4, for any ε ∈ (0, λ − 1
2+δ

), enlarging to a richer probability

space (M ′, ν ′) if necessary, there exists a standard Brownian motion W (·) such that∣∣∣∣∣
n−1∑
k=0

g ◦ T k −W (an)

∣∣∣∣∣ = O
(
n

1
2+δ

+ε
)

= O(nλ), ν ′ − a.s. (3.6)

We recall the following property of standard Brownian motions: for any s ≥ 0

and t > 0, the increment W (s+ t)−W (s) has the same distribution as Z(t), where

Z(t) is normally distributed with mean 0 and variance t. Also, it is well known

that E |Z(t)|2` = t`(2` − 1)!! for any ` ∈ N, where the double factorial is defined by

(2`− 1)!! =
∏`

k=1(2k − 1). In particular, E |Z(t)|4 = 3t2. See e.g. [27] for details.

Now we compare W (an) and W
(
nσ2

g

)
as follows. Since an = nσ2

g + O(1), by

Markov’s inequality,

∞∑
n=1

ν ′
{∣∣W (an)−W

(
nσ2

g

)∣∣ ≥ nλ
}
≤

∞∑
n=1

Eν′
∣∣Z(|an − nσ2

g |)
∣∣4

n4λ

=
∞∑
n=1

n−4λ · 3
∣∣an − nσ2

g

∣∣2
= O

(
∞∑
n=1

n−4λ

)
<∞,

as λ > 1
4
. Then by Borel-Cantelli Lemma,

∣∣W (an)−W
(
nσ2

g

)∣∣ = O(nλ), ν ′ − a.s. (3.7)

Therefore, (3.4) immediately follows from (3.6) and (3.7). �

Applying Lemma 3.5 to the induced processes, we obtain

Lemma 3.6 The induced process Xf̂ = {f̂ ◦ T n}n≥0 satisfies an ASIP as follows:

for any λ ∈
(

max
{

1
4
, 1
β

+ 1
p

+ 1
q

}
, 1

2

)
, enlarging to a richer probability space (M ′, ν ′)
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if necessary, there exists a standard Brownian motion W (·) such that∣∣∣∣∣
n−1∑
k=0

f̂ ◦ T k −W
(
nσ2

f̂

)∣∣∣∣∣ = O(nλ), ν ′ − a.s. (3.8)

where σ2
f̂

is given by (3.5).

Proof. Recall that λ ∈
(

max
{

1
4
, 1
β

+ 1
p

+ 1
q

}
, 1

2

)
. Pick a sufficiently small δ ∈(

0, 1
λ
− 2
)
, and choose some r > 2 such that

1

p
+

1

q
<

1

r
< λ− 1

β
. (3.9)

By Lemma 3.2, f̂ ∈ Lr(M, r) and Eν(f̂) = 0, and f̂ is an adapted function on M .

Then (3.8) holds by Lemma 3.5. �

3.3.3 Comparison between Xf and Xf̂

We now regard ν as a probability measure onM, although it is not T -invariant.

Note that ν-a.s. x ∈ M belongs to the induced space M . In this subsection, we

shall show that the induced process Xf̂ = {f̂ ◦ T n}n≥1 on (M, ν) is comparable to

the original process Xf = {f ◦ T n}n≥1 on (M, ν).

For any point x ∈ M , or equivalently, for ν-a.s. x ∈ M, we define the following

time functions: for any n ≥ 1, there is a unique integer n̂ = n̂(x, n) such that

n̂ = n̂(x, n) := max

{
m ≥ 1 :

m−1∑
k=0

R ◦ T k(x) ≤ n

}
. (3.10)

We set n̂ = 0 if the above set is empty. Also, we let

ñ = ñ(x, n) := n−
n̂−1∑
k=0

R ◦ T k(x). (3.11)
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Lemma 3.7 For any ε > 0, we have

|n̂− nµ(M)| = O
(
n

1
2

+ε
)
, ν − a.s. (3.12)

Proof. We first apply Lemma 3.5 to the stationary process

XR := {R ◦ Tm − Eν(R)}m≥0 = {(R− Eν(R)) ◦ Tm}m≥0

on the probability space (M, ν). Indeed, R − Eν(R) ∈ Lp(ν) and it is of zero mean.

Furthermore, R is F0
0 -measurable, and so is R − Eν(R). Hence by Lemma 3.5,

enlarging to a richer probability space (M ′, ν ′) if necessary, there exists a standard

Brownian motion W1(·) such that∣∣∣∣∣
m−1∑
k=0

R ◦ T k −mEν(R)−W1

(
m σ2

R−Eν(R)

)∣∣∣∣∣ = O
(
m

1
2

)
, ν ′ − a.s. (3.13)

By Kac formula, we have Eν(R) = 1
µ(M)

. It is well known (or use Borel-Cantelli

Lemma) that for any ε > 0, W1

(
m σ2

R−Eν(R)

)
= O

(
m

1
2

+ε
)

, ν ′-a.s.. Hence (3.13)

implies that
m−1∑
k=0

R ◦ T k =
m

µ(M)
+O

(
m

1
2

+ε
)
, ν − a.s. (3.14)

By the definitions in (3.10) and (3.11), we have

|ñ| =

∣∣∣∣∣n−
n̂−1∑
k=0

R ◦ T k
∣∣∣∣∣ ≤ R ◦ T n̂ = O

(
n̂

1
p

+ε
)

= O
(
n̂

1
2

)
, ν − a.s. (3.15)

where we use that R ∈ Lp(ν) and p > 2. Hence by (3.14) and (3.15),

n =
n̂

µ(M)
+O

(
n̂

1
2

+ε
)
,

40



for ν-a.s. x ∈ M . In particular, it follows that n̂ → ∞ a.s. if and only if n → ∞,

and n̂ = O(n). Therefore,

n =
n̂

µ(M)
+O

(
n

1
2

+ε
)
, ν − a.s.

from which (3.12) holds. �

To compare the partial sums of Xf and Xf̂ , we consider

∆n(x) :=
n−1∑
k=0

f ◦ T k(x)−
n̂−1∑
j=0

f̂ ◦ T j(x) =
ñ−1∑
k=0

f ◦ T k(T n̂(x)). (3.16)

for ν-a.s. x ∈M .

Set h = |f |, and let ĥ be its induced function on M . Let λ be given by Theo-

rem 3.1. We choose r as in (3.9) and pick a sufficiently small ε > 0 such that 1
r
+ε < λ.

Since h = |f | ∈ Lq(M, µ), by the same argument in the proof of Lemma 3.2 (2),

ĥ ∈ Lr(M, ν). By Lemma 3.7 and the expression in (3.16), we get

|∆n| ≤ ĥ ◦ T n̂ = O
(
n̂

1
r

+ε
)

= O
(
nλ
)
, ν − a.s. (3.17)

3.3.4 ASIP for the original process

We set

σ = σ(f) := σf̂
√
µ(M). (3.18)

where σf̂ is given by (3.5) (in which we let g = f̂).

Lemma 3.8 For any ε > 0 and any standard Brownian motion W (·) on (M, µ),∣∣∣W (
nσ2
)
−W

(
n̂σ2

f̂

)∣∣∣ = O(n
1
4

+ε), a.s., (3.19)
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Proof. Pick a positive integer ` > 1/ε. By the basic property of standard Brownian

motions, as well as Markov’s inequality, Lemma 3.7 and (3.18),

∞∑
n=1

µ
{∣∣∣W (

nσ2
)
−W

(
n̂σ2

f̂

)∣∣∣ ≥ n
1
4

+ε
}
≤

∞∑
n=1

Eµ
∣∣∣Z (∣∣∣nσ2 − n̂σ2

f̂

∣∣∣)∣∣∣2`
n2`( 1

4
+ε)

=
∞∑
n=1

n−2`( 1
4

+ε) · (2`− 1)!!
∣∣∣nσ2 − n̂σ2

f̂

∣∣∣`
= O

(
∞∑
n=1

n−`ε

)
<∞.

Here again Z(t) denotes the normal distribution with mean 0 and variance t. Then

(3.19) follows from the Borel-Cantelli Lemma. �

Let λ be given by Theorem 3.1. Again we regard ν as a probability measure on

M, and we show that the original process {f ◦ T k}n≥0 satisfies an ASIP with rate

O(nλ) with respect to the measure ν.

Note that the almost sure bound for |∆n| in (3.17) also holds with respect to

ν since ν is absolutely continuous with respect to µ. Then by Lemmas 3.6, 3.7

and 3.8, enlarging (M, ν) to a richer probability space (M′, ν ′) if necessary, there is

a standard Brownian motion W (·) such that∣∣∣∣∣
n−1∑
k=0

f ◦ T k −W
(
nσ2
)∣∣∣∣∣

≤

∣∣∣∣∣
n−1∑
k=0

f ◦ T k −
n̂−1∑
j=0

f̂ ◦ T j
∣∣∣∣∣+

∣∣∣∣∣
n̂−1∑
j=0

f̂ ◦ T j −W
(
n̂σ2

f̂

)∣∣∣∣∣+
∣∣∣W (

n̂σ2
f̂

)
−W

(
nσ2
)∣∣∣

= O(nλ) +O(n̂λ) +O(n
1
4

+ε) = O(nλ), ν ′ − a.s.

Finally, we need to show the ASIP for the original process {f ◦ T k}n≥0 with respect

to the original measure µ, as the Brownian motion W (·) is not defined in a richer
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space of (M, µ). Nevertheless, this issue is recently solved by Korepanov[42] and

Gouëzel[35]. Here we quote and state Cororally 1.3 in [35] for the our ergodic system

T : (M, µ)→ (M, µ) with respect to the two measures ν and µ.

Proposition 3.9 If the ASIP holds for the process {f ◦T k}n≥0 with rate O(nλ) with

respect to ν, and f ◦ T n = O(nλ) a.s., with respect to both µ and ν, then the ASIP

holds for {f ◦ T k}n≥0 with the same rate O(nλ) with respect to µ.

Applying this proposition, we finish the proof of Theorem 3.1 by confirming

f ◦ T n = O(nλ). This is due to the fact that f ∈ Lq and that λ > 1
q
.

3.4 Applications

3.4.1 Intermittent maps

A classical example of one-dimensional intermittent maps is provided by the

Manneville-Pomeau map Tα : [0, 1]→ [0, 1] defined by

Tα(x) = x+ x1+α (mod 1),

for any α ∈ (0, 1). It was shown in [46, 70, 58, 39] that bounded Lipschitz observables

has the correlation decay in rate O
(
n1− 1

α

)
, and satisfies the central limit theorem

for α ∈ (0, 1/2). In [56], Pollicott and Sharp proved the weak invariance principle

for α ∈ (0, 1/3).

We consider the case when α ∈ (0, 1
2
). We obtain the induced map Tα on M =

[c, 1], where c ∈ (0, 1) is such that Tα(c) = 0. It is well known that the first return
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time R ∈ L1/α, and the natural partition ξ := {[R = n]}n≥1 is α-mixing with

exponential rate. An observable f is adapted if there are 0 ≤ s ≤ t < ∞ such that

f is constant on each element of T−sα ∨ · · · ∨ T−tα . By Theorem 3.1, the ASIP holds

for any Lq adapted function with q > α
1−2α

.

Remark Of course, here we do not improve results in [56], since we only deal with

adapted functions. Nevertheless, we do include some important functions, such as

the first return time R itself, and thus our theorem provides an advanced result on

the return time distribution.

3.4.2 Billiards with flat points

For the basics of chaotic billiards, we refer the reader to [16].

Chernov and Zhang [18] introduced a family of semi-dispersing billiards, for which

the decay of correlations for the collision map T is of orderO(n−a) for any a ∈ (1,∞).

By carefully choosing an inducing domain M , they obtained a generating partition

ξ of M given by the first return time R ∈ L1+a. Also, the two-sided σ-filtration

exhibits α-mixing with exponential rate. By Remark , our main theorem implies

that the ASIP holds for any Lq adapted function with q > 2a+1
a−1

.
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C H A P T E R 4

LYAPUNOV EXPONENTS OF RANDOM BILLIARD

SYSTEMS

4.1 Introduction

One of the important problems in the area of smooth dynamics is to show that a

certain system is hyperbolic. A hyperbolic system is very sensitive to initial condi-

tions. A main tool in the studies of these systems is the Lyapunov exponents; they

gives us information about the stability of the dynamics if there is a small change in

the initial conditions. Let M be the collision space of the billiard and F : M →M the

billiard map on M . The map F is a diffeomorphism on an open dense subset of M .

We also have that F preserves a natural probability measure µ on M . By Oseledet’s

theorem [[17] Theorem 3.1], under some integrability conditions and boundedness

of the curvature of the boundary, the Lyapunov exponents λ1(x) ≥ λ2(x) exist for

µ-almost every point in M .

A point x is called hyperbolic if its Lyapunov exponents are nonzero and the map

F is called hyperbolic if µ-almost every point in M is hyperbolic.
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For the billiards we are considering in this chapter, the two Lyapunov exponents

are of opposite sign [[17] Lemma 3.9], so a point is hyperbolic if its largest exponent

λ1(x) is positive and thus there is a direction with strong expansion (and strong

contraction in a different direction) at this point. The standard method to prove

positivity of Lyapunov exponent is to establish the existence of a strictly invariant

cone field on the tangent space level [26]. However, it is difficult to verify this

property for many billiard systems, such as the moon billiards in [21].

One approach to the problem is to add random perturbations to a billiard and

study the desired properties on the corresponding stochastic version. Even if this

method might not actually solve the deterministic problem, but it still gives us insight

on how the system behave under small random perturbation. There are several works

in literature on stochastic perturbation to billiards: [15], [31], [32], [30],[20], [49], [61],

[24]. However, the invariant measure of the perturbed systems in these works is not

the natural measure of the deterministic billiard map as in our situation. Also the

Lyapunov exponent is not proved to be positive in those works. Our work perhaps

is closest to [49] by Markarian et al. and [4] by Blumenthal, Xue and Young. In [4],

the authors considered a random perturbation to a dynamical system such that the

perturbed system also has the same invariant measure with the unperturbed one.

However, the system considered there is the Chirikov standard map, the phase space

is a torus and the perturbation is also a bit different.

We will show in this chapter that by adding a small noise, which refers to a

distribution, to a system at each iteration, it is possible to obtain the positivity of the

largest Lyapunov exponent if there is some source of hyperbolicity at the beginning.
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Even with some systems that have zero Lyapunov exponents in a full measure set,

the presence of the noise makes the Lyapunov exponent to be positive no matter how

small the noise is. On the other hand, we show that the circular billiards cannot have

positive Lyapunov exponent even with large perturbations. This is because the noise

is added independently of the points, so practically we do not perturb the derivative,

whereas the original circular billiard is linear with zero Lyapunov exponent. On the

other hand, in the case of non-circular elliptic billiards, we have positive Lyapunov

exponents although the systems are also completely integrable just as for circles.

The difference here is that in an elliptic billiard, there is a hyperbolic periodic point

and it serves as a source of hyperbolicity. We conjecture that circular billiards are

the only smooth and convex billiards that are not hyperbolic after the perturbation

added.

In the first section of the chapter, we will collect some important background on

Markov processes. The perturbation on the billiard map defines a Markov transi-

tion function on the collision space. Because of this, in the perturbed system, each

trajectory is a realisation path of a Markov process. In the following section we will

define the Lyapunov exponent for a stationary sequence of matrices along a stochas-

tic process. We conclude the section with a necessary condition for the Lyapunov

exponents to be zero. In the last part of the chapter, we give a detail description

of the perturbation to several classical billiards. We show for these billiards that

the perturbed systems are ergodic. We also establish the hyperbolicity for many

billiards, and show that the random circular billiards are ergodic but not hyperbolic.
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4.2 Preliminaries on on Markov processes

In this section, we gather some background on Markov processes. For conve-

nience, basic facts in measure theory can be found in the appendix. Some useful

texts on the measure theory and Markov processes are [65], [66], [52], [28], [41].

Let M be a complete separable metric space and B its Borel σ-algebra.

Definition 4.1 A Markov transition function on M is a function P : M×B → [0, 1]

such that:

1. for each x ∈M , the map P (x, ·) : B 7→ P (x,B) is a probability measure on B;

2. for each B ∈ B, the map P (·, B) : x 7→ P (x,B) is a measurable function on

(M,B).

Definition 4.2 Let P be a transition function on M . The Ruelle transfer operator

L associated to P is a map L : P(M) → P(M) on the set P(M) of probability

measures on M , and is defined by:

Lµ(B) =

∫
M

P (x,B)µ(dx) (4.1)

for any probability measure µ ∈ P(M) and B ∈ B.

For any x ∈ M , let δx be the Dirac probability measure at x. That is: for every

B ∈ B we have:

δx(B) =


1 if x ∈ B,

0 if x /∈ B.
(4.2)
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Then we can apply the transfer operator L to δx to have:

Lδx(B) =

∫
M

P (y,B)δx(dy)

= P (x,B)

(4.3)

for every B ∈ B. Thus the one-step image Lδx of the Dirac measure δx via the

transfer operator L is equal to the probability measure P (x, ·).

We can thus define the nth power P n, n ≥ 0 and n 6= 1, of the transition function

P by setting:

P n(x,B) := Lnδx(B) (4.4)

for any x ∈ M and B ∈ B. By a straightforward induction we have the following

proposition:

Proposition 4.3 We have the following recursion relation:

P n(x,B) =

∫
M

P n−1(y,B)P (x, dy) (4.5)

for any x ∈M and B ∈ B.

Definition 4.4 Let (Ω,A,P) be a probability space. A stochastic process defined on

(Ω,A,P) with values in M is a sequence (Xn)n≥0 of random variables:

Xn : (Ω,A)→ (M,B).

We are going to construct a stochastic process (Xn)n≥0 on M with the property

that at any time n ≥ 0, if Xn = x then the distribution of Xn+k is given by Lkδx for

any k ≥ 1. We have the following definition:
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Definition 4.5 The stochastic process (Xn)n≥0 is called a time-homogeneous Markov

process with transition probability P and initial distribution µ0 if for every finite

sequence of integers 0 = t0 < t1 < · · · < tn and measurable functions f0, . . . , fn:

EP(
n∏
i=0

fi(Xti)) =

∫
M

µ0(dx0)f0(x0)

∫
M

P t1(x0, dx1)f1(x1) . . .∫
M

P tn−tn−1(xn−1, dxn)fn(xn).

(4.6)

Note that the left-hand side of equation (4.6) is the expectation of the product∏n
i=0 fi(Xti) with respect to the probability measure P. Suppose that B0, B1, . . . , Bn

is a sequence of measurable sets in B. If we choose, for 0 ≤ i ≤ n, fi = 1Bi the

indicator function on Bi, then:

P(X0 ∈ B0, Xt1 ∈ B1, . . . , Xtn ∈ Bn) =

∫
B0

µ0(dx0)

∫
B1

P t1(x0, dx1) . . .∫
Bn

P tn−tn−1(xn−1, dxn).

(4.7)

Proposition 4.6 Let (Xn)n≥0 be a Markov process with transition function P . Then:

P(Xk ∈ B|X0 = x) = P k(x,B).

for any integer k ≥ 1 and B ∈ B.

Proof. The probability P(Xk ∈ B|X0 = x) is the probability of the event Xk ∈ B

in future, given that at present X0 = x. Thus it can be viewed as the probability

of the event Xk ∈ B when the Markov process (Xn)n≥0 is equipped with the initial

distribution the Dirac measure δx at x. The proposition is then a direct application
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of equation (4.7):

P(Xk ∈ B|X0 = x) = P(X0 ∈M,Xk ∈ B) =

∫
M

δx(dx0)

∫
B

P k(x0, dx1)

= P k(x,B).

(4.8)

�

Given a transition function P : M × B → [0, 1] and probability measure µ0 on

M , we now construct a concrete Markov process with transition function P and

initial probability measure µ0. We can achieve this using Kolmogorov’s Extension

Theorem, see Theorem 12.8 in [41].

Let Ω = MN be the Cartesian product space of copies of M indexed by the set of

non-negative integers N. Each element ω ∈ Ω is a sequence ω = (x0, x1, . . . ), where

x0, x1, . . . are in M . For each n ≥ 0, let Xn be the coordinate map Xn : Ω → M

defined by:

Xn(ω) = Xn(x0, x1, . . . ) = xn.

A cylinder A is a subset of Ω the form:

A = {ω ∈ Ω : X0(ω) ∈ B0, X1(ω) ∈ B1, . . . , Xn(ω) ∈ Bn} (4.9)

for some n ≥ 0 and finite sequence of sets B0, B1, . . . , Bn in B. Let A =
⊗

N B be

the σ-algebra generated by these cylinders of Ω. We equip Ω with this σ-algebra.

Then the coordinate maps Xn : Ω→M are in fact A-measurable functions and thus

form a stochastic process (Xn)n≥0 defined on Ω with values in M .

Given any initial probability measure µ0 on M , we define a probability measure
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µn+1 on Mn+1 for each n ≥ 0 by setting:

µn+1(B0, · · · , Bn) =

∫
B0

µ0(dx0)

∫
B1

P (x0, dx1) · · ·∫
Bn−1

P (xn−2, dxn−1)P (xn−1, Bn).

(4.10)

for any sequence of sets B0, B1, . . . , Bn in B.

By Kolmogorov’s Extension Theorem, there exists a unique probability measure

Pµ0 on (Ω,A) whose restriction to Mn is equal to µn. A statement of the theorem

is Theorem A.3.1 in [28].

With the probability measure Pµ0 equipped on the measurable space (Ω,A),

the process (Xn)n≥0 becomes a Markov process defined on the probability space

(Ω,A,Pµ) with values in M . The transition function of (Xn)n≥0 is given by P and

the initial distribution is µ0.

We define a shift map: θ : Ω→ Ω such that

θ(x0, x1, . . . ) = (x1, x2, . . . ). (4.11)

Note that we have Xn+1 = Xn ◦ θ = X0 ◦ θn for any n ≥ 0.

Definition 4.7 Let P be a transition function on M . A probability measure µ on

M is called invariant with respect to P if Lµ = µ. That means:

µ(B) =

∫
M

P (x,B)µ(dx) (4.12)

for any B ∈ B.

Lemma 4.8 Let µ ∈ P(M) be an invariant measure with respect to the transition

function P . Then the shift map θ : Ω→ Ω preserves the measure Pµ. Equivalently,

Pµ(θ−1(A)) = Pµ(A) for any set A ∈ A.
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Proof. We can see that this is true by consider the case where A is a cylinder first,

then use the fact that the σ-algebra A is generated by these cylinders. �

We can thus think of (Ω,A,Pµ, θ) as a measure-preserving dynamical system.

The system is called ergodic if for any A ∈ A such that θ−1(A) = A then Pµ(A) is

either 0 or 1. The system is mixing if for any A,B ∈ A we have:

Pµ(θ−nA ∩B) = Pµ(A)Pµ(B). (4.13)

Definition 4.9 Suppose that µ is an invariant measure with respect to the transition

function P .

We say that µ is ergodic with respect to P if (Ω,A,Pµ, θ) is an ergodic measure-

presrving dynamical system.

We say that µ is mixing with respect to P if (Ω,A,Pµ, θ) is mixing.

4.3 Lyapunov exponents of stationary sequences of matrices

4.3.1 Existence of the Lyapunov exponents

In this section, we will collect some background information on the Lyapunov

exponents of a stationary sequence of matrices. Most of the materials in this section

can be found in [44] and [45].

Let (Ω,A,P) be a probability space and θ : (Ω,A) → (Ω,A) a measurable map

that preserves the probability measure P. We denote by GL(2,R) the group of 2×2

real invertible matrices. When viewed as a measurable space, the group GL(2,R)
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is equipped with its Borel σ-algebra. Let A : Ω → GL(2,R) be a measurable map.

Let An = A ◦ θn. Then the sequence (An)n≥0 is a stochastic process defined on the

underlying probability space (Ω,A,P) with values in GL(2,R). In fact, (An)n≥0 is

stationary stochastic process because of the invariance of the measure P under the

map θ.

We construct another sequence (A(n))n≥1 of matrices by:

A(n)(ω) := An−1(ω) · An−2(ω) · · ·A(ω) (4.14)

for any n ≥ 1.

Definition 4.10 Let (Ω,A,P, θ, A) be as above. The Lyapunov exponent at ω of the

sequence (An(ω))n≥0 is defined to be:

λ(ω) = lim
n→∞

1

n
log
∥∥A(n)(ω)

∥∥ (4.15)

if the limit exists. Here the norm ‖·‖ is the operator norm of a linear map R2 → R2.

By the subadditivity of the sequence (‖A(n)(x)‖)n≥0 and stationarity of the sequence

(An)n ≥ 0, we have the following lemma:

Lemma 4.11 For P-almost every ω, the Lyapunov exponent at ω of the sequence

(An)n≥0 exists in R ∪ {−∞}.

Lemma 4.12 ([44] Proposition 1.1) Let (Ω,A,P, θ, A) be as defined above. Sup-

pose that: ∫
Ω

log+ ‖A(ω)‖P(dω) <∞, (4.16)
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where log+ = max(log, 0). Then the following two limits

lim
n→∞

1

n

∫
Ω

log
∥∥A(n)(ω)

∥∥P(dω) (4.17)

and

lim
n→∞

1

n

∫
Ω

log | detA(n)(ω)|P(dω) (4.18)

exist in the extended real line R ∪ {−∞}.

Definition 4.13 Under the conditions of Lemma 4.12, let λ1 and λ2 be real numbers

such that:

lim
n→∞

1

n

∫
Ω

log
∥∥A(n)(ω)

∥∥P(dω) = λ1 (4.19)

and

lim
n→∞

1

n

∫
Ω

log | detA(n)(ω)|P(dω) = λ1 + λ2. (4.20)

We set λ1 or λ2 to be −∞ if the first or second limit is −∞. We call the numbers

λ1 and λ2 the Lyapunov exponents of the stationary process (An)n≥0.

We recall that any real square matrix A can always be decomposed as A = UΣV T

where U and V T are orthogonal matrices and Σ =

σ1(A) 0

0 σ2(A)

 is a diagonal

matrix with σ1(A) ≥ σ2(A) ≥ 0. This is called the Singular Value Decomposition of

the matrix A. This decomposition tells us that geometrically a linear transformation

is a composite of a rotation, a scaling and another rotation. The number σ1(A) is the

larger scaling factor among σ1(A) and σ2(A). The columns of V and U tell us the

directions in R2 in which we will see the largest and the smallest scaling, and where
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those directions move to after the transformation. The following lemma allows us to

write the Lyapunov exponents in terms of the scaling factors.

Lemma 4.14 Under the same conditions as in Lemma 4.12, we have that:

λi = lim
n→∞

1

n

∫
Ω

log σi(A
(n)(ω))P(dω) (4.21)

for i = 1, 2. It is then clear that λ1 ≥ λ2.

In fact, since we have that

detA(n)(ω) := detAn−1(ω) · detAn−2(ω) · · · detA(ω)

and that the map θ : Ω → Ω preserves the measure P, which implies that the

sequence (An)n≥0 is stationary, we could drop a limit sign to have:

λ1 + λ2 = lim
n→∞

1

n

∫
Ω

log | detA(n)(ω)|P(dω) (4.22)

=

∫
Ω

log | det(A(ω))|P(dω) (4.23)

The Lyapunov exponent λ(ω) at ω in Definition 4.10 of the sequence (An(ω))n≥0

can be viewed as the logarithm of the rate of expansion (or contraction) of vectors

along the path starting from ω. If the underlying dynamical system is ergodic, they

are constant P-almost everywhere:

Theorem 4.15 ([44] Theorem 2.6) Let (Ω,A,P, θ) be an ergodic system, A :

Ω→ GL(2,R) a measurable map such that:∫
Ω

log+ ‖A(x)‖P(dω) <∞. (4.24)
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Let λ1 ≥ λ2 be the Lyapunov exponents of the stationary process (An)n≥0. Then we

have:

λ1 = lim
n→∞

1

n
log
∥∥A(n)(ω)

∥∥ P− a.s. (4.25)

and

λ1 + λ2 = lim
n→∞

1

n
log | detA(n)(ω)| P− a.s. (4.26)

We have a straightforward corollary of the Theorem 4.15 in the case the function A

takes values in the set of matrices with determinant equals 1. Let SL(2,R) denote

the set of 2× 2 real matrices with determinant 1.

Corollary 4.16 Let (Ω,A,P, θ) be an ergodic system and A : Ω → SL(2,R) a

measurable map such that∫
Ω

log max(‖A(ω)‖ ,
∥∥A(ω)−1

∥∥)P(dω) <∞.

Then both λ1 and λ2 are finite and moreover, λ1 + λ2 = 0.

We are interested in the necessary conditions to have λ1 = λ2. Later we will use

these criteria to show that λ1 6= λ2 for certain systems by way of contradiction. The

idea behind these necessary conditions is that if the two Lyapunov exponents are

equal then a very special condition on measurability must be satisfied. Avila and

Viana in [1] discussed this phenomenon in a more general setting.

Let P1 be the projective space of dimension 1. Elements in P1 are equivalence

classes of the vectors in R2 where two nonzero vectors v and w are said to be

equivalent if they are parallel. For any nonzero vector v ∈ R2 we denote by [v] its

equivalent class. For any ω ∈ Ω, we have A(ω) is a matrix in GL(2,R). The matrix
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A(ω) is a linear transformation on the vector space R2 and hence induces a map on

P1:

A(ω)([v]) = [A(ω)(v)] for any [v] ∈ P1. (4.27)

Let Ω̂ = Ω× P1 and define a map θ̂ : Ω× P1 → Ω× P1 by:

θ̂(ω, v̂) = (θ(ω), A(ω)(v̂)).

Let π1 : Ω̂ → Ω be the projection map onto the first component. Any probability

measure ξ on Ω̂ such that π1∗ξ = P can be disintegrated into a family {ξω : ω ∈ Ω}

of probability measures on P1 such that the function ω 7→ ξω is A-measurable. This

family is essentially unique and each ξω is supported on the fibre p−1
1 ({ω}) ∼= P1. We

only consider measures ξ that projects to P.

We have the following theorem of Ledrappier:

Theorem 4.17 ([45] Theorem 1) Let (Ω,A,P, θ) be a measure-preserving dynam-

ical system, not necessarily ergodic. Let A : Ω→ GL(2,R) be a measurable function

such that ∫
Ω

log max(‖A(ω)‖ ,
∥∥A(ω)−1

∥∥)P(dω) <∞.

Let A0 ⊂ A be a sub σ-algebra such that both θ and A are A0-measurable and that

A can be generated by all the iterates θn(A0) of A0, n ∈ Z.

Suppose that λ1 = λ2. Then any disintegration of a θ̂-invariant measure ξ is

A0-measurable (modulo null sets).
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4.3.2 Lyapunov exponents of a stationary sequence of matrices along a Markov

process

Let M be a complete separable metric space and B its Borel σ-algebra. Let P be

a transition function on M and µ an invariant measure for the corresponding transfer

operator L. Consider a Markov process (Xn)n≥0 with transition function P and take

values in M with initial probability measure µ. Let (Ω,A,Pµ) be the canonical

underlying probability space for (Xn)n≥0 constructed as in section 4.2. Recall that

an element ω ∈ Ω is of the form ω = (x0, x1, . . . ) and the random variables Xn’s are

coordinate maps:

Xn(ω) = xn for n ≥ 0.

The shift map θ on Ω is:

θ(x0, x1, . . . ) = (x1, x2, . . . ).

Since µ is invariant for L, the shift map θ preserves the measure Pµ and thus (Xn)n≥0

is a stationary Markov process.

Let A : M → SL(2,R) be a measurable map satisfying the condition:

(H1)

∫
M

log max(‖A(x)‖ ,
∥∥A(x)−1

∥∥)µ(dx) <∞, (4.28)

With a slight abuse of notation, we define a function A : Ω→ SL(2,R) by setting:

A(ω) := A(x0)

for any ω = (x0, x1, . . . ) ∈ Ω.

As defined in definition 4.13, let λ1 ≥ λ2 be the Lyapunov exponents for the

process (An = A ◦ θn)n≥0. By corollary 4.16 we know that λ1 + λ2 = 0.
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Lemma 4.18 ([45] Corollary 2) If λ1 = 0 then there exists a measurable family

{ξx : x ∈M} of probability measures on P1 such that for µ-almost every x ∈M :

ξy = (A(x))∗ξx (4.29)

for P (x, .)-almost every y.

4.4 Ergodicity and hyperbolicity of randomly perturbed billiards

In this section, we consider a random perturbation to certain dynamical billiards

and prove the ergodicity and hyperbolicity of the perturbed systems. Let us first re-

call some basic information about billiards. There are several introductory references

to billiards including, but not limited to: [17], [43], [63].

Consider a billiard table D such that the interior D0 is a compact and connected

open domain in R2, and that the boundary ∂D satisfies the assumption (HB). We

call such model a classical billiard.

Assumption (HB): the boundary ∂D consists of finitely many piecewise C3 simple

closed curves:

∂D = Γ1 ∪ Γ2 · · · ∪ Γn, , n ≥ 1. (4.30)

Each curve Γi is given by a piecewise C3 map γi : [ai, bi] → R2, which is injective

on [ai, bi) and satisfies γi(ai) = γi(bi). Assume further that the intervals (ai, bi),

i = 1, . . . , n, are disjoint.

Fix an orientation on each component Γi so that the interior of the table lies on

the left-hand side of Γi. We parametrised the Γi’s by their arclengths.
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A point particle is moving inside D and colliding with the boundary ∂D. Let

q(t) ∈ D be the position and v(t) ∈ R2 the velocity of the particle at time t ∈ R.

Between two collisions with the boundary, q ∈ D0, the particle moves in the interior

with constant velocity. At a collision with the smmooth part of the boundary, q ∈

∂D, let v− and v+ denote the pre-collisional and post-colllisional velocity vectors,

respectively, and let n be the unit normal vector to the boundary at q pointing inward

the table. Then we have:

v+ = v− − 2(v−, n)n. (4.31)

Figure 4. Example of a collision in a billiard table

Let M be the collision space of the billiard map on D. Every point x ∈ M is

a pair of its position q and post-collisional velocity vector v. The boundary ∂D is

parametrised by the arc-length parameter r in the chosen direction. For each point

x ∈M, the angle of reflection ϕ is the directional angle from v to the inward normal

vector n. Note that −π/2 ≤ ϕ ≤ π/2. Thus we have a coordinate system r, ϕ onM.

For each i = 1, 2, . . . , n, let Mi be the collision space for collisions that happen

on Γi, then:

M =M1 ∪ · · · ∪Mn. (4.32)
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For each Γi, since it is parametrised by arclength, we assume that it has length

|Γi| = bi − ai. Let Ri = [ai, bi] × [−π/2, π/2]. Then Mi is a cylinder obtained by

identify the two edges {r = ai} and {r = bi} of Ri with each other.

Let F :M→M be the billiard map. It sends a point (r, ϕ) ∈M to (r1, ϕ1) ∈M

at the next collision. Let |∂D| be the length of ∂D. By Lemma 2.35 in [17], the

collision map F :M→M preserves a probability measure µ on M defined by:

dµ =
1

2|∂D|
cos(ϕ)drdϕ. (4.33)

In this section, however, we will use the coordinate system given by r and s,

where s = sin(ϕ). For each i = 1, 2, . . . , n, let Ri = [ai, bi] × [−1, 1] and Mi the

cylinder obtained by identify two edges {r = ai} and {r = bi} of the rectangle Ri

with each other. The collision space in this setting is M = M1 ∪ · · · ∪Mn and the

billiard map is now denoted by F : M →M .

Let S1 be the set of x ∈M such that the corresponding trajectory on the billiard

table will hit the corners, or tangential to a dispersing wall. The billiard map F is a

C2 diffeomorphism from M \S1 onto its image and S1 is considered as the singularity

of F .

Let x = (r, sin(ϕ)) be any point in M and x1 = F (x) = (r1, sin(ϕ1)) be the next

collision, where (r1, ϕ1) = F(r, ϕ). We denote by K and K1 the curvatures of the

boundary at the collision points for x and x1, respectively, and by τ the distance of

between those 2 collision points in the table. The differential of the billiard map, in
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the coordinates r and s = sin(ϕ), is given by the formula:

DF (x) =

1 0

0 cos(ϕ1)

 −1

cos(ϕ1)

 −τK + cos(ϕ) τ

τKK1 −K cos(ϕ1)−K1 cos(ϕ) −τK1 + cos(ϕ1)


1 0

0 1
cos(ϕ)


(4.34)

Note that det(DF (x)) = 1 and thus the billiard map preserves the multiple of

the Lebesgue measure dm = 1
2|∂D|drds on M . We are interested in the Lyapunov

exponents of billiard map F . By Oseledets’s theorem, we know that the Lyapunov

exponents exist at m-almost every point x ∈M .

Theorem 4.19 ([17] Theorem 3.1) Let M be a 2-dimensional compact Rieman-

nian manifold and F : M → M a C2 diffeomorphism preserving a Borel probability

measure m on M . Suppose that∫
M

log+ ‖DF (x)‖m(dx) <∞ and

∫
M

log+ ‖DF−1(x)‖m(dx) <∞, (4.35)

where log+ = max{log, 0}. Then there exists an F -invariant set H ⊂ M of full

measure, on which all iterations of F are defined on H such that for each x ∈ H

there is a DF -invariant decomposition of the tangent space:

TxM = E1(x)⊕ · · · ⊕ Ek(x) (4.36)

for some k = k(x), such that for each non-zero vector v ∈ Ei(x) the following limit

exists:

lim
n→∞

1

n
log ‖DF n(x)v‖ = λi(x) (4.37)

where λ1(x) > · · · > λk(x).
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The Lyapunov exponents tell us how nearby trajectories will be separated from

each other as the system evolves in time. In our case, k(x) is either 1 or 2. Let

λ1(x) ≥ λ2(x) be its Lyapunov exponents then by Lemma 3.9 in [17]: λ1(x)+λ2(x) =

0. A point x ∈ M is hyperbolic if λ1(x) > 0: nearby trajectories are separated

exponentially fast in the future. There are many billiards in which the Lyapunov

exponents are zero. For example, the Lyapunov exponents for any circular billiard

are 0 at all points: the trajectories are separated at most linearly. Other similar

examples are elliptic billiards. In each of these billiard models, the systems are

completely integrable and their collision spaces are foliated by invariant curves.

In what follows, we are going to add some noise each time there is a collision.

In the deterministic setting, a point x is mapped to F (x). With the noise added,

now the image of x could be in some open neighbourhood of F (x). In this way, a

point can escape a region with slow or no expansion even if it needs many iterations

depending on the added noise is.

Fix an ε > 0. We denote by Bε(x) the ball of radius ε and centred at a point

x ∈ R2. Consider a probability measure νε on R2 such that dνε = ρdm for some

measurable density function ρ, here m is the Lebesgue measure on R2. Suppose that

the support of ρ contains Bε(0, 0).

Recall that each cylinder Mi is obtained by taking the rectangle Ri and identifying

the two vertical edges. The system is randomly perturbed as follows: take a point

x = (r, s) ∈ Mi, then perturb this point to another point in Mi with a distribution
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law given by:

ηxε (B) = νε
{
u ∈ R2 : u+ x ∈ B mod Z∂Ri

}
= C

∫
B

∑
v∈Z∂Ri

ρ(u− x− v)m(du)
(4.38)

for any measurable set B ⊂ Mi. The set Z∂Ri consists of vectors v such that

1
n
v ∈ ∂Ri for some n ∈ Z; the constant C is the normalising constant.

Example 1 Let ρ = 1
πε2

on Bε(0, 0) and = 0 elsewhere. A point x goes to F (x) and

then jump randomly to a point in a disc of radius ε centred at F (x) following the

distribution η
F (x)
ε . If any part of the disc lies above or below Mi then this part will

cut and translated back to Mi by a constant in Z∂Ri.

Figure 5. Random perturbation when F (x) is far from the boundary

Definition 4.20 Given a vector u ∈ R2, we define a function Fu : M →M by:

Fu(x) = F (x) + u. (4.39)

The function Fu is called the perturbed billiard map with u.
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Figure 6. Random perturbation when F (x) is near the boundary

For any sequence of vectors u = (u0, u1, . . . ), the compositions of perturbed map

with noise given by u is defined by:

F n
u = Fun−1 ◦ Fun−2 ◦ · ◦ Fu0 (4.40)

for any n ≥ 1.

Let Υ = (R2)N be the space of all sequences of vectors in R2, equipped with

the probability measure νNε . This is our sample space for the noise. Let Un be the

coordinate mapping:

Un(u) = Un(u0, u1, . . . ) = un (4.41)

for any u = (u0, u1, . . . ) ∈ Υ and n ≥ 0.

It is easy to see that the process U = (Un)n≥0 is a sequence of independent and

identically distributed random variables taking values in R2 with distribution given

by the probability measure νε.
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We consider a sequence of random variables (Xn)n≥0 defined on Υ with values in

M such that:

• X0 is a random variable with values in M and some distribution µ0,

• for each n ≥ 1, Xn is defined by the recurrence relation:

Xn(u) = F (Xn−1(u)) + Un−1(u). (4.42)

Remark If ε = 0 and there is no perturbation, then νε = δ(0,0) and νNε is the Dirac

measure at the sequence 0 of zero vectors. In this case, the recurrence relation (4.42)

is the deterministic billiard map and we obtain a trajectory in the phase space given

by the unperturbed billiard map, starting from some point X0(0) ∈M .

Let u = (u0, u1, . . . ) ∈ Υ be a realisation of the process U . Let xn = Xn(u). We

have:

• X0(u) = x0 is some point in M

• for each n ≥ 1 we have:

xn = F (xn−1) + un−1 = Fun−1(xn−1)

= F n
u (x0)

(4.43)

Lemma 4.21 Let P : M × B → [0, 1] be a function defined by:

P (x,B) = ηF (x)
ε (B) (4.44)

for m-almost every x ∈ M and B ∈ B. Then P is a Markov transition function on

M .
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Proof. It is clear from the definition of the perturbation in (4.38). �

Lemma 4.22 The process (Xn) defined by equation (4.42) is a Markov process with

Markov kernel given by the function P with initial distribution µ0.

Proof. It is straightforward from the definition of the process (Xn)n≥0 in (4.42). �

Example 2 Suppose that µ0 = δx for some x ∈ M . The distribution of Xn tells us

all possible images of x under n iterations of the randomly perturbed billiard map.

Lemma 4.23 For any vector u ∈ R2, the map Fu preserves the measure m.

Proof. The map Fu is the composite of the billiard map F with the translation

by u. The measure m is F -invariant and also translation-invariant, therefore it is

Fu-invariant. �

Lemma 4.24 The natural measure m on M is an invariant measure with respect to

the Markov transition function P defined in Lemma 4.21.
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Proof. For every B ∈ B we have:

Lm(B) =

∫
M

P (x,B)m(dx)

=

∫
M

νε(u : F (x) + u ∈ B)m(dx)

=

∫
M

∫
R2

1{Fu(x)∈B}(u, x)νε(du)m(dx)

=

∫
R2

∫
M

1{Fu(x)∈B}(u, x)m(dx)νε(du)

=

∫
R2

m(B)νε(du)

= m(B).

Therefore we have Lm = m. �

Theorem 4.25 Let D be a classical billiard such that the table’s boundary satisfies

Assumption (HB). Consider a random perturbation to the system as described in

(4.38). Then the resulting random billiard is ergodic.

Proof. By Lemma 4.22, we know that the process (Xn) defined by the composition

of the perturbed billiard map is a Markov chain with Markov kernel:

P (x,B) = ηF (x)
ε (B)

for x ∈ M and B ∈ B. We need to prove that the measure m on M is ergodic for

this Markov process.

By Lemma 4.24, the measure m is an invariant probability measure for this

Markov process. We will now show that this is in fact the unique invariant measure.
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Since the transition probability has a density function, we observe that if B ∈ B

such that m(B) = 0 then P (x,B) = 0 as functions of x. Thus the support of every

invariant measure for L is also has positive measure with respect to the measure m.

Thus there can be at most countably many of invariant measures for L.

Recall that such that for any x ∈ M , the density function of the transition

probability P (x, dy) is positive on Bε(F (x)). This condition means that if we start

from x then in next step of the process we are allowed to go to anywhere in a ball

of radius ε centred at the point F (x). Under this condition, there can be almost

countably many ergodic invariant measures with respect to P .

Two nearby points are in the same ergodic components due to the perturbation.

Because two distinct ergodic measures are either coincide or mutually singular, the

Lebesgue measure must be the only ergodic measure. In fact, this implies that it is

the only invariant measure with respect to P .

�

Theorem 4.26 Let D be a classical billiard such that the table’s boundary satis-

fies Assumption (HB). Consider a random perturbation to the system given by

the transition function P as defined in Lemma 4.21. Assume that the derivative

DF : M → SL(2,R) satisfies one of the two hypotheses (H2) and (H3):

(H2): there exist non-empty open sets U and V in M such that DF has distinct

eigenvalues on U and only complex eigenvalues on V .

(H3): there exist non-empty open sets U and V in M such that DF has distinct

eigenvalues on U and V but the eigenvectors on U are different from those on V .
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Let (Xn)n≥0 be the Markov process with transition P and initial distribution m.

Let λ1 ≥ λ2 be the Lyapunov exponents associated to the Markov process (Xn)n≥0

and the derivative map DF . Then λ1 > 0.

Proof. Suppose to the contrary that λ1 = 0. The billiard map satisfies the condition

(H1) in Lemma 4.18 as shown in Lemma 3.6 of [17]. Therefore there exists a mea-

surable family ξ : x 7→ ξx of probability measures on P1 indexed by M such that for

m-almost every x ∈M :

ξy = (DF (x))∗ξx (4.45)

for P (x, .)-almost every y.

For any x ∈ M the support of P (x, .) contains a ball Bε(F (x)) of radius ε > 0

and centred at F (x). Consider a partition of M by squares of size ε/2. Since F is

an invertible map, ξ is constant on the union of any 4 adjacent squares and hence

m-almost everywhere on M . So there exists a subset S ⊂ M with m(S) = 1 such

that ξ is constant at every point in S. From now on, we will also use ξ to denote the

measure ξ(x) of any x ∈ S.

Let x ∈ S, we have that ξ = (DF (x))∗ξ. By iterating the matrix DF (x) we have

ξ = (DF (x))n∗ξ

for every n ≥ 1.

Suppose that DF (x1) has distinct real eigenvalues α1 and α2 for some x1 ∈ S.

As detDF (x1) = 1, we can assume that |α1| > 1 > |α2|. Let vi ∈ R2 be a unit

eigenvector for αi, i = 1, 2. Let v ∈ R2 be any nonzero vector such that v 6= v2 and
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consider the sequence of unit vectors:

un =
DF (x1)n(v)

‖DF (x1)n(v)‖
.

As n → ∞, the angle between un and v1 converges to 0 or π. Therefore the

probability measure ξ must be concentrated only on the direction of v1 and v2. In

other words, we must have that ξ = c1δ[v1] + c2δ[v2] for some constants c1 and c2.

Let x2 ∈ S such that DF (x2) has complex eigenvalues. By a change of coordi-

nates, DF (x2) becomes a rotation matrix. We could assume that DF (x2)’s rotational

angle is an irrational multiple of 2π as the rotational angle varies continuously wher-

ever the billiard map is C2. If the rotational angle is an irrational multiple of 2π

then the probability measure ξ must be the Lebesgue measure on P1. This is a

contradiction to the fact that ξ is discrete.

Let x3 ∈ S such that DF (x3) has distinct real eigenvalues and eigenvectors w1

and w2, such that {[w1], [w2]} ∩ {[v1], [v2]} = ∅. Then ξ = d1δ[w1] + d2δ[w2] for some

constants d1 and d2. But this contradicts the fact that ξ = c1δ[v1] + c2δ[v2].

�

4.4.1 Random non-circular elliptic billiards

Theorem 4.27 Let D be any non-circular elliptic billiard table. Consider any ran-

dom perturbation to the billiard map on D as defined in (4.38). The resulting random

billiard is ergodic and hyperbolic.

Proof. Let F : M → M be the billiard map with coordinates r and s = sin(φ) as

usual. The derivative map DF in the coordinates r and s = sin(ϕ) is given by
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DF (x) =

1 0

0 cos(ϕ1)

 −1

cos(ϕ1)

 −τK + cos(ϕ) τ

τKK1 −K cos(ϕ1)−K1 cos(ϕ) −τK1 + cos(ϕ1)


1 0

0 1
cos(ϕ)


We have det(DF (x)) = 1 and

trace(DF (x)) =
τK − cos(ϕ)

cos(ϕ1)
+
τK1 − cos(ϕ1)

cos(ϕ)
. (4.46)

At the point x1 ∈M corresponding to u = a, v = 0, ϕ = ϕ1 = 0, we have τ = 2a,

K = K1 = a
b2

and therefore trace(DF (x1)) = 4a2

b2
− 2 > 2.

At the point x2 ∈ M corresponding to u = 0, v = b, ϕ = ϕ1 = 0, we have

τ = 2b, K = K1 = b
a2

and therefore trace(DF (x2)) = 4b2

a2
− 2. It’s clear that

|trace(DF (x2))| < 2.

Since the derivative is a smooth function, trace(DF (x)) > 2 for any x sufficiently

close to x1 and similarly |trace(DF (x))| < 2 for x sufficiently close to x2. Among

those x such that DF (x) has complex eigenvalues, there is a subset of them with

positive measure such that at those points the derivative corresponds to irrational

rotations. Because of this mixture of real and complex eigenvalues, there cannot be

any probability measure on P1 that is invariant under DF (x) for m-almost every x.

�

4.4.2 Random circular billiards

Theorem 4.28 Let D be any circular billiard table of radius R > 0. Consider any

random perturbation to the billiard map on D as defined in (4.38). The resulting

random billiard is ergodic, but the Lyapunov exponents are always 0.
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Proof. The derivative of the billiard map in this case is:

DF (x) =

1 −2R√
1−s2

0 1

 =

1 −2R
cos(ϕ)

0 1

 (4.47)

=

1 0

0 cos(ϕ)


1 −2R

0 1


1 0

0 1
cos(ϕ)

 . (4.48)

Let (Xn)n≥0 be the Markov process with transition P given in Lemma 4.21 and initial

distribution m. By Theorem 4.25, the dynamical system (Ω,A,Pm, θ) associated to

(Xn)n≥0 is ergodic, and thus the largest Lyapunov exponent in this case is:

λ1 = lim
n→∞

1

n
log

∥∥∥∥∥∥∥
1 −2R

(
1

cos(ϕ0)
+ · · ·+ 1

cos(ϕn−1)

)
0 1


∥∥∥∥∥∥∥ (4.49)

= lim
n→∞

1

n
log

(
2R

(
1

cos(ϕ0)
+ · · ·+ 1

cos(ϕn−1)

))
. (4.50)

for Pm-almost every sequence ω = (x0, x1, . . . ). In the above equality, we used the

max norm for the matrices.

Recall that any point x ∈M has two coordinates r and s = sin(ϕ). Let g : M →

[1,∞) be the function defined by:

g(r, s) =
1

cos(ϕ)
,

where s = sin(ϕ). We have that:∫
M

g(x)m(dx) =
1

2|∂D|

∫
M

1

cos(ϕ)
dsdr (4.51)

=
1

2|∂D|

∫ π/2

−π/2
dϕ

∫
∂D
dr (4.52)

=
π

2
. (4.53)
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Therefore, by the Birkhoff’s Ergodic Theorem, we have:

lim
n→∞

1

n

(
1

cos(ϕ0)
+

1

cos(ϕ1)
+ · · ·+ 1

cos(ϕn−1)

)
=
π

2
. (4.54)

for Pm-almost every sequence ω = (x0, x1, . . . ).

Let ω = (x0, x1, . . . ) be a sequence such that both Eq. (4.49) and (4.54) hold for

ω. Then there exists an integer N > 0 large enough such that for every n ≥ N we

have:

π

3
≤ 1

n

(
1

cos(ϕ0)
+

1

cos(ϕ1)
+ · · ·+ 1

cos(ϕn−1)

)
≤ π.

Therefore:

λ1 ≤ lim
n→∞

1

n
(log(2R) + log(nπ)) = 0. (4.55)

This implies that for 0 ≤ λ1 ≤ 0, therefore λ1 = 0.

�

4.5 Mixing property of randomly perturbed smooth and convex

billiards

In this section, we consider smooth and convex billiards with random pertur-

bation. Markarian et al. proved in [49] the exponential convergence to the unique

invariant measure. Although the random perturbation considered there is different

from the perturbation defined in (4.38), the same proof still works in our case.
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Lemma 4.29 ([49], Theorem 1) Let D be a smooth and convex billiard table whose

boundary is C3. Consider any random perturbation to the billiard map on D as de-

fined in (4.38). There exist γε > 0 such that, for any probability measure µ on B the

Borel σ-algebra on M and n ∈ N, we have:

‖Lnµ−m‖ ≤ e−γεn, (4.56)

where for any probability measures µ and ν on B:

‖µ− ν‖ = sup
A∈B
|µ(A)− ν(A)|.

Theorem 4.30 Let D be a smooth (C3) and convex billiard. Consider a random

perturbation to the system given by the transition function P as defined in Lemma

4.21.

Let (Xn)n≥0 be the Markov process with transition P and initial distribution m.

Then the process (Xn)n≥0 is exponential mixing.

Proof. Let B0 ∈ B be a measurable set on M with m(B0) 6= 0, and consider the

probability measure µ on B such that:

µ(A0) =
m(A0 ∩B0)

m(B0)
(4.57)

for any A0 ∈ B. Then for n ≥ 0:

Pm(Xn ∈ A0, X0 ∈ B0) = Pm(Xn ∈ A0|X0 ∈ B0)Pm(X0 ∈ B0)

= (Lnµ)(A0)m(B0)

(4.58)

By Lemma 4.29, limn→∞ ‖Lnµ−m‖ = 0 with exponential rate, we also have that:

lim
n→∞

Pm(Xn ∈ A0, X0 ∈ B0) = m(A0)m(B0) (4.59)
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with exponential rate.

To prove that the Markov process (Xn)n≥0 is mixing, it suffices to verify the

mixing property for the elementary cylinders. Consider two elementary cylinders

A = {ω = (x0, x1, . . . ) : xi ∈ Ai, i = 0, . . . , k}

and

B = {ω = (x0, x1, . . . ) : xi ∈ Bi, i = 0, . . . , l}

for some integers k, l ≥ 0 and sequences A1, A2, . . . , Ak and B0, B1, . . . , Bk in B.

For n > l:

Pm(θ−nA ∩B) = Pm(Xn+k ∈ Ak, . . . , Xn ∈ A0, Xl ∈ Bl, . . . , X0 ∈ B0)

= Pm(Xn+k ∈ Ak, . . . , Xn ∈ Ak|Xl ∈ Bl, . . . , X0 ∈ B0)Pm(Xl ∈ Bl, . . . , X0 ∈ B0)

= Pm(Xn+k ∈ Ak|Xn+k−1 ∈ Ak−1) · · ·Pm(Xn+1 ∈ A1|Xn ∈ A0)×

×Pm(Xn ∈ A0|Xl ∈ Bl)Pm(B)

= Pm(Xk ∈ Ak|Xk−1 ∈ Ak−1) · · ·Pm(X1 ∈ A1|X0 ∈ A0)×

×Pm(Xn−l ∈ A0|X0 ∈ Bl)Pm(B).

(4.60)

By (4.59), we have that

lim
n→∞

Pm(Xn−l ∈ A0|X0 ∈ Bl) = m(A0). (4.61)
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Therefore

lim
n→∞

Pm(Xk ∈ Ak|Xk−1 ∈ Ak−1) · · ·Pm(X1 ∈ A1|X0 ∈ A0)Pm(Xn−l ∈ A0|X0 ∈ Bl)

= Pm(Xk ∈ Ak|Xk−1 ∈ Ak−1) · · ·Pm(X1 ∈ A1|X0 ∈ A0)m(A0)

= Pm(Xk ∈ Ak, . . . , X0 ∈ A0)

= Pm(A).

(4.62)

Substitute this into (4.60), we have that:

lim
n→∞

Pm(θ−nA ∩B) = Pm(A)Pm(B) (4.63)

and the rate of convergence is exponential.

Thus we have proved that the Markov process (Xn)n≥0 is exponential mixing. �
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A P P E N D I X A

Measure theory

Let E be any set. A σ-algebra E on E is a collection of subsets of E such that it

contains the empty set ∅ and satisfies the following two conditions:

1. If A ∈ E then its complement Ac ∈ E

2. If (An)n≥0 is a sequence in E then
⋃
n≥0An ∈ E .

We call the pair (E, E) a measurable space and elements in E measurable sets.

A measure µ on the pair E is a function µ : E → [0,∞] such that µ(∅) = 0 and if

(An)n≥0 is a sequence of disjoint elements in E then

µ(
⋃
n≥0

An) =
∑
n≥0

µ(An).

We call the triple (E, E , µ) a measure space. When µ(E) = 1, it is also called

a probability measure and (E, E , µ) is called a probability space. Depending on the

context, we could understand the number µ(A), for a measurable set A, as a sort of

size of A, or as the probability of event A happening if µ is a probability measure.
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Let (E, E) and (G,G) be 2 measurable spaces. A function f : (E, E) → (G,G)

between the 2 spaces is measurable if for any B ∈ G, its inverse image f−1(B) ∈ E .

Let µ be a measure on E then the pushforward measure of µ is a probability measure

f∗µ = µ ◦ f−1 on G and defined by:

f∗µ(B) = µ(f−1(B)).

Let (Ω,A,P) be a probability space and (E, E) a measurable space. A measurable

function X : (Ω,A) → (E, E) is called a random variable with values in E. The

pushfoward measure µX = P ◦X−1 is called the distribution of X in E.
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[34] S. Gouëzel. Almost sure invariance principle for dynamical systems by spectral
methods, Ann. Probab. 38, no. 4, 1639–1671, 2010.
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