8 research outputs found

    Dynamical mechanism for sharp orientation tuning in an integrate-and-fire model of a cortical hypercolumn

    Get PDF
    Orientation tuning in a ring of pulse-coupled integrate-and-fire (IF) neurons is analyzed in terms of spontaneous pattern formation. It is shown how the ring bifurcates from a synchronous state to a non-phase-locked state whose spike trains are characterized by clustered but irregular fluctuations of the interspike intervals (ISIs). The separation of these clusters in phase space results in a localized peak of activity as measured by the time-averaged firing rate of the neurons. This generates a sharp orientation tuning curve that can lock to a slowly rotating, weakly tuned external stimulus. Under certain conditions, the peak can slowly rotate even to a fixed external stimulus. The ring also exhibits hysteresis due to the subcritical nature of the bifurcation to sharp orientation tuning. Such behavior is shown to be consistent with a corresponding analog version of the IF model in the limit of slow synaptic interactions. For fast synapses, the deterministic fluctuations of the ISIs associated with the tuning curve can support a coefficient of variation of order unity.<br/

    Illusions in the Ring Model of visual orientation selectivity

    Full text link
    The Ring Model of orientation tuning is a dynamical model of a hypercolumn of visual area V1 in the human neocortex that has been designed to account for the experimentally observed orientation tuning curves by local, i.e., cortico-cortical computations. The tuning curves are stationary, i.e. time independent, solutions of this dynamical model. One important assumption underlying the Ring Model is that the LGN input to V1 is weakly tuned to the retinal orientation and that it is the local computations in V1 that sharpen this tuning. Because the equations that describe the Ring Model have built-in equivariance properties in the synaptic weight distribution with respect to a particular group acting on the retinal orientation of the stimulus, the model in effect encodes an infinite number of tuning curves that are arbitrarily translated with respect to each other. By using the Orbit Space Reduction technique we rewrite the model equations in canonical form as functions of polynomials that are invariant with respect to the action of this group. This allows us to combine equivariant bifurcation theory with an efficient numerical continuation method in order to compute the tuning curves predicted by the Ring Model. Surprisingly some of these tuning curves are not tuned to the stimulus. We interpret them as neural illusions and show numerically how they can be induced by simple dynamical stimuli. These neural illusions are important biological predictions of the model. If they could be observed experimentally this would be a strong point in favour of the Ring Model. We also show how our theoretical analysis allows to very simply specify the ranges of the model parameters by comparing the model predictions with published experimental observations.Comment: 33 pages, 12 figure

    Bifurcation of hyperbolic planforms

    Get PDF
    Motivated by a model for the perception of textures by the visual cortex in primates, we analyse the bifurcation of periodic patterns for nonlinear equations describing the state of a system defined on the space of structure tensors, when these equations are further invariant with respect to the isometries of this space. We show that the problem reduces to a bifurcation problem in the hyperbolic plane D (Poincar\'e disc). We make use of the concept of periodic lattice in D to further reduce the problem to one on a compact Riemann surface D/T, where T is a cocompact, torsion-free Fuchsian group. The knowledge of the symmetry group of this surface allows to carry out the machinery of equivariant bifurcation theory. Solutions which generically bifurcate are called "H-planforms", by analogy with the "planforms" introduced for pattern formation in Euclidean space. This concept is applied to the case of an octagonal periodic pattern, where we are able to classify all possible H-planforms satisfying the hypotheses of the Equivariant Branching Lemma. These patterns are however not straightforward to compute, even numerically, and in the last section we describe a method for computation illustrated with a selection of images of octagonal H-planforms.Comment: 26 pages, 11 figure

    Local/global analysis of the stationary solutions of some neural field equations

    Full text link
    Neural or cortical fields are continuous assemblies of mesoscopic models, also called neural masses, of neural populations that are fundamental in the modeling of macroscopic parts of the brain. Neural fields are described by nonlinear integro-differential equations. The solutions of these equations represent the state of activity of these populations when submitted to inputs from neighbouring brain areas. Understanding the properties of these solutions is essential in advancing our understanding of the brain. In this paper we study the dependency of the stationary solutions of the neural fields equations with respect to the stiffness of the nonlinearity and the contrast of the external inputs. This is done by using degree theory and bifurcation theory in the context of functional, in particular infinite dimensional, spaces. The joint use of these two theories allows us to make new detailed predictions about the global and local behaviours of the solutions. We also provide a generic finite dimensional approximation of these equations which allows us to study in great details two models. The first model is a neural mass model of a cortical hypercolumn of orientation sensitive neurons, the ring model. The second model is a general neural field model where the spatial connectivity isdescribed by heterogeneous Gaussian-like functions.Comment: 38 pages, 9 figure

    Dynamical mechanism for sharp orientation tuning in an integrate-and-fire model of a cortical hypercolumn

    Get PDF
    Orientation tuning in a ring of pulse-coupled integrate-and-fire (IF) neurons is analyzed in terms of spontaneous pattern formation. It is shown how the ring bifurcates from a synchronous state to a non-phase-locked state whose spike trains are characterized by clustered but irregular fluctuations of the interspike intervals (ISIs). The separation of these clusters in phase space results in a localized peak of activity as measured by the time-averaged firing rate of the neurons. This generates a sharp orientation tuning curve that can lock to a slowly rotating, weakly tuned external stimulus. Under certain conditions, the peak can slowly rotate even to a fixed external stimulus. The ring also exhibits hysteresis due to the subcritical nature of the bifurcation to sharp orientation tuning. Such behavior is shown to be consistent with a corresponding analog version of the IF model in the limit of slow synaptic interactions. For fast synapses, the deterministic fluctuations of the ISIs associated with the tuning curve can support a coefficient of variation of order unity.<br/
    corecore