469 research outputs found

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Secure Routing in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to the service providers. Unlike traditional Wi-Fi networks, with each access point (AP) connected to the wired network, in WMNs only a subset of the APs are required to be connected to the wired network. The APs that are connected to the wired network are called the Internet gateways (IGWs), while the APs that do not have wired connections are called the mesh routers (MRs). The MRs are connected to the IGWs using multi-hop communication. The IGWs provide access to conventional clients and interconnect ad hoc, sensor, cellular, and other networks to the Internet. However, most of the existing routing protocols for WMNs are extensions of protocols originally designed for mobile ad hoc networks (MANETs) and thus they perform sub-optimally. Moreover, most routing protocols for WMNs are designed without security issues in mind, where the nodes are all assumed to be honest. In practical deployment scenarios, this assumption does not hold. This chapter provides a comprehensive overview of security issues in WMNs and then particularly focuses on secure routing in these networks. First, it identifies security vulnerabilities in the medium access control (MAC) and the network layers. Various possibilities of compromising data confidentiality, data integrity, replay attacks and offline cryptanalysis are also discussed. Then various types of attacks in the MAC and the network layers are discussed. After enumerating the various types of attacks on the MAC and the network layer, the chapter briefly discusses on some of the preventive mechanisms for these attacks.Comment: 44 pages, 17 figures, 5 table

    Routing Security Issues in Wireless Sensor Networks: Attacks and Defenses

    Get PDF
    Wireless Sensor Networks (WSNs) are rapidly emerging as an important new area in wireless and mobile computing research. Applications of WSNs are numerous and growing, and range from indoor deployment scenarios in the home and office to outdoor deployment scenarios in adversary's territory in a tactical battleground (Akyildiz et al., 2002). For military environment, dispersal of WSNs into an adversary's territory enables the detection and tracking of enemy soldiers and vehicles. For home/office environments, indoor sensor networks offer the ability to monitor the health of the elderly and to detect intruders via a wireless home security system. In each of these scenarios, lives and livelihoods may depend on the timeliness and correctness of the sensor data obtained from dispersed sensor nodes. As a result, such WSNs must be secured to prevent an intruder from obstructing the delivery of correct sensor data and from forging sensor data. To address the latter problem, end-to-end data integrity checksums and post-processing of senor data can be used to identify forged sensor data (Estrin et al., 1999; Hu et al., 2003a; Ye et al., 2004). The focus of this chapter is on routing security in WSNs. Most of the currently existing routing protocols for WSNs make an optimization on the limited capabilities of the nodes and the application-specific nature of the network, but do not any the security aspects of the protocols. Although these protocols have not been designed with security as a goal, it is extremely important to analyze their security properties. When the defender has the liabilities of insecure wireless communication, limited node capabilities, and possible insider threats, and the adversaries can use powerful laptops with high energy and long range communication to attack the network, designing a secure routing protocol for WSNs is obviously a non-trivial task.Comment: 32 pages, 5 figures, 4 tables 4. arXiv admin note: substantial text overlap with arXiv:1011.152

    A reliable and resource aware framework for data dissemination in wireless sensor networks

    Full text link
    Distinctive from traditional wireless ad hoc networks, wireless sensor networks (WSN) comprise a large number of low-cost miniaturized nodes each acting autonomously and equipped with short-range wireless communication mechanism, limited memory, processing power, and a physical sensing capability. Since sensor networks are resource constrained in terms of power, bandwidth and computational capability, an optimal system design radically changes the performance of the sensor network. Here, a comprehensive information dissemination scheme for wireless sensor networks is performed. Two main research issues are considered: (1) a collaborative flow of information packet/s from the source to sink and (2) energy efficiency of the sensor nodes and the entire system. For the first issue, we designed and evaluated a reactive and on-demand routing paradigm for distributed sensing applications. We name this scheme as IDLF-Information Dissemination via Label ForwarDing IDLF incorporates point to point data transmission where the source initiates the routing scheme and disseminates the information toward the sink (destination) node. Prior to transmission of actual data packet/s, a data tunnel is formed followed by the source node issuing small label information to its neighbors locally. These labels are in turn disseminated in the network. By using small size labels, IDLF avoids generation of unnecessary network traffic and transmission of duplicate packets to nodes. To study the impact of node failures and to improve the reliability of the network, we developed another scheme which is an extension to IDLF. This new scheme, RM-IDLF - Reliable Multipath Information dissemination by Label Forwarding, employ an alternate disjoint path. This alternate path scheme (RM-IDLF) may have a higher path cost in terms of energy consumption, but is more reliable in terms of data packet delivery to sink than the single path scheme (IDLF). In the latter scheme, the protocol establishes multiple (alternate) disjoint path/s from source to destination with negligible control overhead to balance load due to heavy data traffic among intermediate nodes from source to the destination. Another point of interest in this framework is the study of trade-offs between the achieved routing reliability using multiple disjoint path routing and extra energy consumption due to the use of additional path/s. Also, the effect of the failed nodes on the network performance is evaluated within the sensor system; Performance of the label dissemination scheme is evaluated and compared with the classic flooding and SPIN. (Abstract shortened by UMI.)

    End-to-End Resilience Mechanisms for Network Transport Protocols

    Get PDF
    The universal reliance on and hence the need for resilience in network communications has been well established. Current transport protocols are designed to provide fixed mechanisms for error remediation (if any), using techniques such as ARQ, and offer little or no adaptability to underlying network conditions, or to different sets of application requirements. The ubiquitous TCP transport protocol makes too many assumptions about underlying layers to provide resilient end-to-end service in all network scenarios, especially those which include significant heterogeneity. Additionally the properties of reliability, performability, availability, dependability, and survivability are not explicitly addressed in the design, so there is no support for resilience. This dissertation presents considerations which must be taken in designing new resilience mechanisms for future transport protocols to meet service requirements in the face of various attacks and challenges. The primary mechanisms addressed include diverse end-to-end paths, and multi-mode operation for changing network conditions
    • …
    corecore