3,806 research outputs found

    Thermal and QoS-Aware Embedded Systems

    Full text link
    While embedded systems such as smartphones and smart cars become essential parts of our lives, they face urgent thermal challenges. Extreme thermal conditions (i.e., both high and low temperatures) degrade system reliability, even risking safety; devices in the cold environments unexpectedly go offline, whereas extremely high device temperatures can cause device failures or battery explosions. These thermal limits become close to the norm because of ever-increasing chip power densities and application complexities. Embedded systems in the wild, however, lack adaptive and effective solutions to overcome such thermal challenges. An adaptive thermal management solution must cope with various runtime thermal scenarios under a changing ambient temperature. An effective solution requires the understanding of the dynamic thermal behaviors of underlying hardware and application workloads to ensure thermal and application quality-of-service (QoS) requirements. This thesis proposes a suite of adaptive and effective thermal management solutions to address different aspects of real-world thermal challenges faced by modern embedded systems. First, we present BPM, a battery-aware power management framework for mobile devices to address the unexpected device shutoffs in cold environments. We develop BPM as a background service that characterizes and controls real-time battery behaviors to maintain operable conditions even in cold environments. We then propose eTEC, building on the thermoelectric cooling solution, which adaptively controls cooling and computational power to avoid mobile devices overheating. For the real-time embedded systems such as cars, we present RT-TRM, a thermal-aware resource management framework that monitors changing ambient temperatures and allocates system resources to individual tasks. Next, we target in-vehicle vision systems running on CPUs–GPU system-on-chips and develop CPU–GPU co-scheduling to tackle thermal imbalance across CPUs caused by GPU heat. We evaluate all of these solutions using representative mobile/automotive platforms and workloads, demonstrating their effectiveness in meeting thermal and QoS requirements.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/153350/1/ymoonlee_1.pd

    Electronics Thermal Management in Information and Communications Technologies: Challenges and Future Directions

    Get PDF
    This paper reviews thermal management challenges encountered in a wide range of electronics cooling applications from large-scale (data center and telecommunication) to smallscale systems (personal, portable/wearable, and automotive). This paper identifies drivers for progress and immediate and future challenges based on discussions at the 3rd Workshop on Thermal Management in Telecommunication Systems and Data Centers held in Redwood City, CA, USA, on November 4–5, 2015. Participants in this workshop represented industry and academia, with backgrounds ranging from data center thermal management and energy efficiency to high-performance computing and liquid cooling, thermal management in wearable and mobile devices, and acoustic noise management. By considering a wide range of electronics cooling applications with different lengths and time scales, this paper identifies both common themes and diverging views in the thermal management community

    ADAPTIVE POWER MANAGEMENT FOR COMPUTERS AND MOBILE DEVICES

    Get PDF
    Power consumption has become a major concern in the design of computing systems today. High power consumption increases cooling cost, degrades the system reliability and also reduces the battery life in portable devices. Modern computing/communication devices support multiple power modes which enable power and performance tradeoff. Dynamic power management (DPM), dynamic voltage and frequency scaling (DVFS), and dynamic task migration for workload consolidation are system level power reduction techniques widely used during runtime. In the first part of the dissertation, we concentrate on the dynamic power management of the personal computer and server platform where the DPM, DVFS and task migrations techniques are proved to be highly effective. A hierarchical energy management framework is assumed, where task migration is applied at the upper level to improve server utilization and energy efficiency, and DPM/DVFS is applied at the lower level to manage the power mode of individual processor. This work focuses on estimating the performance impact of workload consolidation and searching for optimal DPM/DVFS that adapts to the changing workload. Machine learning based modeling and reinforcement learning based policy optimization techniques are investigated. Mobile computing has been weaved into everyday lives to a great extend in recent years. Compared to traditional personal computer and server environment, the mobile computing environment is obviously more context-rich and the usage of mobile computing device is clearly imprinted with user\u27s personal signature. The ability to learn such signature enables immense potential in workload prediction and energy or battery life management. In the second part of the dissertation, we present two mobile device power management techniques which take advantage of the context-rich characteristics of mobile platform and make adaptive energy management decisions based on different user behavior. We firstly investigate the user battery usage behavior modeling and apply the model directly for battery energy management. The first technique aims at maximizing the quality of service (QoS) while keeping the risk of battery depletion below a given threshold. The second technique is an user-aware streaming strategies for energy efficient smartphone video playback applications (e.g. YouTube) that minimizes the sleep and wake penalty of cellular module and at the same time avoid the energy waste from excessive downloading. Runtime power and thermal management has attracted substantial interests in multi-core distributed embedded systems. Fast performance evaluation is an essential step in the research of distributed power and thermal management. In last part of the dissertation, we present an FPGA based emulator of multi-core distributed embedded system designed to support the research in runtime power/thermal management. Hardware and software supports are provided to carry out basic power/thermal management actions including inter-core or inter-FPGA communications, runtime temperature monitoring and dynamic frequency scaling

    Predictive Dynamic Thermal and Power Management for Heterogeneous Mobile Platforms

    Get PDF
    abstract: Heterogeneous multiprocessor systems-on-chip (MPSoCs) powering mobile platforms integrate multiple asymmetric CPU cores, a GPU, and many specialized processors. When the MPSoC operates close to its peak performance, power dissipation easily increases the temperature, hence adversely impacts reliability. Since using a fan is not a viable solution for hand-held devices, there is a strong need for dynamic thermal and power management (DTPM) algorithms that can regulate temperature with minimal performance impact. This abstract presents a DTPM algorithm based on a practical temperature prediction methodology using system identification. The DTPM algorithm dynamically computes a power budget using the predicted temperature, and controls the types and number of active processors as well as their frequencies. Experiments on an octa-core big.LITTLE processor and common Android apps demonstrate that the proposed technique predicts temperature within 3% accuracy, while the DTPM algorithm provides around 6x reduction in temperature variance, and as large as 16% reduction in total platform power compared to using a fan.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals

    Get PDF
    Multimedia applications are driving wireless network operators to add high-speed data services such as Edge (E-GPRS), WCDMA (UMTS) and WLAN (IEEE 802.11a,b,g) to the existing GSM network. This creates the need for multi-mode cellular handsets that support a wide range of communication standards, each with a different RF frequency, signal bandwidth, modulation scheme etc. This in turn generates several design challenges for the analog and digital building blocks of the physical layer. In addition to the above-mentioned protocols, mobile devices often include Bluetooth, GPS, FM-radio and TV services that can work concurrently with data and voice communication. Multi-mode, multi-band, and multi-standard mobile terminals must satisfy all these different requirements. Sharing and/or switching transceiver building blocks in these handsets is mandatory in order to extend battery life and/or reduce cost. Only adaptive circuits that are able to reconfigure themselves within the handover time can meet the design requirements of a single receiver or transmitter covering all the different standards while ensuring seamless inter-interoperability. This paper presents analog and digital base-band circuits that are able to support GSM (with Edge), WCDMA (UMTS), WLAN and Bluetooth using reconfigurable building blocks. The blocks can trade off power consumption for performance on the fly, depending on the standard to be supported and the required QoS (Quality of Service) leve

    Computational Sprinting: Exceeding Sustainable Power in Thermally Constrained Systems

    Get PDF
    Although process technology trends predict that transistor sizes will continue to shrink for a few more generations, voltage scaling has stalled and thus future chips are projected to be increasingly more power hungry than previous generations. Particularly in mobile devices which are severely cooling constrained, it is estimated that the peak operation of a future chip could generate heat ten times faster than than the device can sustainably vent. However, many mobile applications do not demand sustained performance; rather they comprise short bursts of computation in response to sporadic user activity. To improve responsiveness for such applications, this dissertation proposes computational sprinting, in which a system greatly exceeds sustainable power margins (by up to 10Ã?) to provide up to a few seconds of high-performance computation when a user interacts with the device. Computational sprinting exploits the material property of thermal capacitance to temporarily store the excess heat generated when sprinting. After sprinting, the chip returns to sustainable power levels and dissipates the stored heat when the system is idle. This dissertation: (i) broadly analyzes thermal, electrical, hardware, and software considerations to analyze the feasibility of engineering a system which can provide the responsiveness of a plat- form with 10Ã? higher sustainable power within today\u27s cooling constraints, (ii) leverages existing sources of thermal capacitance to demonstrate sprinting on a real system today, and (iii) identifies the energy-performance characteristics of sprinting operation to determine runtime sprint pacing policies

    Self-Aware resource management in embedded systems

    Get PDF
    Resource management for modern embedded systems is challenging in the presence of dynamic workloads, limited energy and power budgets, and application and user requirements. These diverse and dynamic requirements often result in conflicting objectives that need to be handled by intelligent and self-aware resource management. State-of-the-art resource management approaches leverage offline and online machine learning techniques for handling such complexity. However, these approaches focus on fixed objectives, limiting their adaptability to dynamically evolving requirements at run-time. In this dissertation, we first propose resource management approaches with fixed objectives for handling concurrent dynamic workload scenarios, mixed-sensitivity workloads, and user requirements and battery constraints. Then, we propose comprehensive self-aware resource management for handling multiple dynamic objectives at run-time. The proposed resource management approaches in this dissertation use machine learning techniques for offline modeling and online controlling. In each resource management approach, we consider a dynamic set of requirements that had not been considered in the state-of-the-art approaches and improve the selfawareness of resource management by learning applications characteristics, users’ habits, and battery patterns. We characterize the applications by offline data collection for handling the conflicting requirements of multiple concurrent applications. Further, we consider user’s activities and battery patterns for user and battery-aware resource management. Finally, we propose a comprehensive resource management approach which considers dynamic variation in embedded systems and formulate a goal for resource management based on that. The approaches presented in this dissertation focus on dynamic variation in the embedded systems and responding to the variation efficiently. The approaches consider minimizing energy consumption, satisfying performance requirements of the applications, respecting power constraints, satisfying user requirements, and maximizing battery cycle life. Each resource management approach is evaluated and compared against the relevant state-of-the-art resource management frameworks
    • …
    corecore