257 research outputs found

    A Discriminative Survey on SQL Injection Methods to Detect Vulnerabilities in Web applications

    Get PDF
    SQL Injection Attacks are extremely sober intrusion assaults on web based application since such types of assaults could reveals the secrets and safety of information. In actuality, illegal personnel intrude to the web based database and then after consequently, access to the information. To avoid such type of assault different methods are recommended by various researchers but they are not adequate since most of implemented methods will not prevent all type of assaults. In this paper we did survey on the various sorts of SQL Injection attacks and on the various present SQL Injection Attacks avoidance methods available. We analyzed that the existing SQL Injection Attacks avoidance methods will require the client side information, one by one and then authenticate which will create typical the developer’s job to write different validation codes for every web page which is receiving in the server side. Keywords: SQL Injection, Attacks, Vulnerability, WWW, XS

    07091 Abstracts Collection -- Mobility, Ubiquity and Security

    Get PDF
    From 25.02.2007 to 02.03.2007, the Dagstuhl Seminar 07091 ``Mobility, Ubiquity and Security\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Transparent and Precise Malware Analysis Using Virtualization: From Theory to Practice

    Get PDF
    Dynamic analysis is an important technique used in malware analysis and is complementary to static analysis. Thus far, virtualization has been widely adopted for building fine-grained dynamic analysis tools and this trend is expected to continue. Unlike User/Kernel space malware analysis platforms that essentially co-exist with malware, virtualization based platforms benefit from isolation and fine-grained instrumentation support. Isolation makes it more difficult for malware samples to disrupt analysis and fine-grained instrumentation provides analysts with low level details, such as those at the machine instruction level. This in turn supports the development of advanced analysis tools such as dynamic taint analysis and symbolic execution for automatic path exploration. The major disadvantage of virtualization based malware analysis is the loss of semantic information, also known as the semantic gap problem. To put it differently, since analysis takes place at the virtual machine monitor where only the raw system state (e.g., CPU and memory) is visible, higher level constructs such as processes and files must be reconstructed using the low level information. The collection of techniques used to bridge semantic gaps is known as Virtual Machine Introspection. Virtualization based analysis platforms can be further separated into emulation and hardware virtualization. Emulators have the advantages of flexibility of analysis tool development and efficiency for fine-grained analysis; however, emulators suffer from the transparency problem. That is, malware can employ methods to determine whether it is executing in an emulated environment versus real hardware and cease operations to disrupt analysis if the machine is emulated. In brief, emulation based dynamic analysis has advantages over User/Kernel space and hardware virtualization based techniques, but it suffers from semantic gap and transparency problems. These problems have been exacerbated by recent discoveries of anti-emulation malware that detects emulators and Android malware with two semantic gaps, Java and native. Also, it is foreseeable that malware authors will have a similar response to taint analysis. In other words, once taint analysis becomes widely used to understand how malware operates, the authors will create new malware that attacks the imprecisions in taint analysis implementations and induce false-positives and false-negatives in an effort to frustrate analysts. This dissertation addresses these problems by presenting concepts, methods and techniques that can be used to transparently and precisely analyze both desktop and mobile malware using virtualization. This is achieved in three parts. First, precise heterogeneous record and replay is presented as a means to help emulators benefit from the transparency characteristics of hardware virtualization. This technique is implemented in a tool called V2E that uses KVM for recording and TEMU for replaying and analysis. It was successfully used to analyze real-world anti-emulation malware that evaded analysis using TEMU alone. Second, the design of an emulation based Android malware analysis platform that uses virtual machine introspection to bridge both the Java and native level semantic gaps as well as seamlessly bind the two views together into a single view is presented. The core introspection and instrumentation techniques were implemented in a new analysis platform called DroidScope that is based on the Android emulator. It was successfully used to analyze two real-world Android malware samples that have cooperating Java and native level components. Taint analysis was also used to study their information ex-filtration behaviors. Third, formal methods for studying the sources of false-positives and false-negatives in dynamic taint analysis designs and for verifying the correctness of manually defined taint propagation rules are presented. These definitions and methods were successfully used to analyze and compare previously published taint analysis platforms in terms of false-positives and false-negatives

    Automatic Creation of SQL Injection and Cross-Site Scripting Attacks

    Get PDF
    We present a technique for finding security vulnerabilitiesin Web applications. SQL Injection (SQLI) and cross-sitescripting (XSS) attacks are widespread forms of attackin which the attacker crafts the input to the application toaccess or modify user data and execute malicious code. Inthe most serious attacks (called second-order, or persistent,XSS), an attacker can corrupt a database so as to causesubsequent users to execute malicious code.This paper presents an automatic technique for creatinginputs that expose SQLI and XSS vulnerabilities. The techniquegenerates sample inputs, symbolically tracks taintsthrough execution (including through database accesses),and mutates the inputs to produce concrete exploits. Oursis the first analysis of which we are aware that preciselyaddresses second-order XSS attacks.Our technique creates real attack vectors, has few falsepositives, incurs no runtime overhead for the deployed application,works without requiring modification of applicationcode, and handles dynamic programming-languageconstructs. We implemented the technique for PHP, in a toolArdilla. We evaluated Ardilla on five PHP applicationsand found 68 previously unknown vulnerabilities (23 SQLI,33 first-order XSS, and 12 second-order XSS)

    The integration of multi-color taint-analysis with dynamic symbolic execution for Java web application security analysis

    Get PDF
    The view of IT security in today’s software development processes is changing. While IT security used to be seen mainly as a risk that had to be managed during the operation of IT systems, a class of security weaknesses is seen today as measurable quality aspects of IT system implementations, e.g., the number of paths allowing SQL injection attacks. Current trends, such as DevSecOps pipelines, therefore establish security testing in the development process aiming to catch these security weaknesses before they make their way into production systems. At the same time, the analysis works differently than in functional testing, as security requirements are mostly universal and not project specific. Further, they measure the quality of the source code and not the function of the system. As a consequence, established testing strategies such as unit testing or integration testing are not applicable for security testing. Instead, a new category of tools is required in the software development process: IT security weakness analyzers. These tools scan the source code for security weaknesses independent of the functional aspects of the implementation. In general, such analyzers give stronger guarantees for the presence or absence of security weaknesses than functional testing strategies. In this thesis, I present a combination of dynamic symbolic execution and explicit dynamic multi-color taint analysis for the security analysis of Java web applications. Explicit dynamic taint analysis is an established monitoring technique that allows the precise detection of security weaknesses along a single program execution path, if any are present. Multi-color taint analysis implies that different properties defining diverse security weaknesses can be expressed at the same time in different taint colors and are analyzed in parallel during the execution of a program path. Each taint color analyzes its own security weakness and taint propagation can be tailored in specific sanitization points for this color. The downside of dynamic taint analysis is the single exploration of one path. Therefore, this technique requires a path generator component as counterpart that ensures all relevant paths are explored. Dynamic symbolic execution is appropriate here, as enumerating all reachable execution paths in a program is its established strength. The Jaint framework presented here combines these two techniques in a single tool. More specifically, the thesis looks into SMT meta-solving, extending dynamic symbolic execution on Java programs with string operations, and the configuration problem of multi-color taint analysis in greater detail to enable Jaint for the analysis of Java web applications. The evaluation demonstrates that the resulting framework is the best research tool on the OWASP Benchmark. One of the two dynamic symbolic execution engines that I worked on as part of the thesis has won gold in the Java track of SV-COMP 2022. The other demonstrates that it is possible to lift the implementation design from a research specific JVM to an industry grade JVM, paving the way for the future scaling of Jaint

    Fine-grained reasoning about the security and usability trade-off in modern security tools

    Get PDF
    Defense techniques detect or prevent attacks based on their ability to model the attacks. A balance between security and usability should always be established in any kind of defense technique. Attacks that exploit the weak points in security tools are very powerful and thus can go undetected. One source of those weak points in security tools comes when security is compromised for usability reasons, where if a security tool completely secures a system against attacks the whole system will not be usable because of the large false alarms or the very restricted policies it will create, or if the security tool decides not to secure a system against certain attacks, those attacks will simply and easily succeed. The key contribution of this dissertation is that it digs deeply into modern security tools and reasons about the inherent security and usability trade-offs based on identifying the low-level, contributing factors to known issues. This is accomplished by implementing full systems and then testing those systems in realistic scenarios. The thesis that this dissertation tests is that we can reason about security and usability trade-offs in fine-grained ways by building and testing full systems. Furthermore, this dissertation provides practical solutions and suggestions to reach a good balance between security and usability. We study two modern security tools, Dynamic Information Flow Tracking (DIFT) and Antivirus (AV) software, for their importance and wide usage. DIFT is a powerful technique that is used in various aspects of security systems. It works by tagging certain inputs and propagating the tags along with the inputs in the target system. However, current DIFT systems do not track implicit information flow because if all DIFT propagation rules are directly applied in a conservative way, the target system will be full of tagged data (a problem called overtagging) and thus useless because the tags tell us very little about the actual information flow of the system. So, current DIFT systems drop some security for usability. In this dissertation, we reason about the sources of the overtagging problem and provide practical ways to deal with it, while previous approaches have focused on abstract descriptions of the main causes of the problem based on limited experiments. The second security tool we consider in this dissertation is antivirus (AV) software. AV is a very important tool that protects systems against worms and viruses by scanning data against a database of signatures. Despite its importance and wide usage, AV has received little attention from the security research community. In this dissertation, we examine the AV internals and reason about the possibility of creating timing channel attacks against AV software. The attacker could infer information about the AV based only on the scanning time the AV spends to scan benign inputs. The other aspect of AV this dissertation explores is the low-level AV performance impact on systems. Even though the performance overhead of AV is a well known issue, the exact reasons behind this overhead are not well-studied. In this dissertation, we design a methodology that utilizes Event Tracing for Windows technology (ETW), a technology that accounts for all OS events, to reason about AV performance impact from the OS point of view. We show that the main performance impact of the AV on a task is the longer waiting time the task spends waiting on events
    • …
    corecore