
Computer Engineering and Intelligent Systems                                                                                                                                 www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol.7, No.6, 2016 

 

8 
 

A Discriminative Survey on SQL Injection Methods to Detect 

Vulnerabilities in Web applications 
 

Nrottam Chaubey
1
, Sumit Sharma

2
 

1.PG scholar, CSE, VIST, Bhopal, INDIA 

2.HOD, CSE department , VIST, Bhopal, INDIA 

 

Abstract 
SQL Injection Attacks are extremely sober intrusion assaults on web based application since such types of 

assaults could reveals the secrets and safety of information. In actuality, illegal personnel intrude to the web 

based database and then after consequently, access to the information. To avoid such type of assault different 

methods are recommended by various researchers but they are not adequate since most of implemented methods 

will not prevent all type of assaults. In this paper we did survey on the various sorts of SQL Injection attacks and 

on the various present SQL Injection Attacks avoidance methods available. We analyzed that the existing SQL 

Injection Attacks avoidance methods will require the client side information, one by one and then authenticate 

which will create typical the developer’s job to write different validation codes for every web page which is 

receiving in the server side.  

Keywords: SQL Injection, Attacks, Vulnerability, WWW, XSS 

 

1. INTRODUCTION 
The tremendous use of the Web as an quick  means of data dissemination and various other transactions 

including those having financial drawbacks (consequences), has essentially made it a key component of today’s 

Internet architecture. These applications and their underlying data store keep necessary secure data. The small 

mismanage will leads to the millions dollars loss which could greatly affect the clients. Hence, it is necessary to 

protect these applications from targeted assaults now a day’s many activities are done by dynamic web 

application. For example several people pay their bills, book the hotels (restaurants) or and give the online exam 

through the dynamic websites instead of spending time for commuting. It is very necessary that the private 

information of the client should follow the CIA trade (i.e. Confidentiality, Integrity and 

Authentication)information of people must be kept secret and confidentiality and integrity of them must be 

provided by developer of web application but unfortunately there is no any guarantee for preserving the 

underlying databases from current assaults [1].  

Web applications are vulnerable (insecure) to outside assaults, in which unauthorized person easily 

threaten the application’s underlying database. In the 2002 Computer Security Institute and FBI  both these 

organizations presented a scenario in  which, on a yearly basis(year by year ), over half of nearly all web  data 

stores have to pass through at least one security breach( web assault) .In the survey performed by the Imperva a 

center for defense services   which have included more than 250 Web applications  from enterprise collaboration,  

online banking, e-commerce, and supply chain management sites and their vulnerability assessment shows  that 

at least 92% of Web applications are insecure  to some form of malicious intrusions [2]. Represent U.S. industry 

maintenance such as the Sarbanes-Oxley Act pertaining to information security, try to force very strict security 

compliance by application vendors [3] and there is a great need to found means of satisfying these security 

requirements.  

The Structural Query Language Injection (SQLI) assault were hired when an assaulter changes the 

logic, semantics or syntax of a SQL query by inserting new malicious  SQL keywords or operators. When there 

is no input validation phenomena SQL Injection Assaults are hired. In reality, assaulters can shape their illegal 

input as component of final query that will operate by databases. Web applications or confidential information 

systems could be the victims of this vulnerability because assaulters by abusing this vulnerability can threat their 

authority, integrity and secretly. So, programmers should utilize some different coding pattern to avoid this 

vulnerability but they are not sufficient enough. SQLIAs are also capable of escaping traditional tools such as 

firewalls and various Intrusion Detection Systems (IDSs) because they are hired through workstation ports 

utilized for regular (permanent) web flow (traffic) usually are open in firewall. On the other side many IDSs 

aims on the network layer and IP layers for the security but SQLIAs occupies their place at application layer.  

Many analysts have proposed a range of technique to get a rid of from these assaults through defensive 

coding style [4], [5]. SQL-Injection Attack (SQLIA) constitutes as one of the great assaults against web 

applications. Due to the deficiency in input validation, an assaulter can be able to directly access the data store. 

Any web application exposed on the WWW or even in the simple intranet could be vulnerable to SQLIAs. 

Although the major causes that lead to SQLIAs are well known, but they still exist because of lack of effective 

mechanism for detecting and preventing them. Secure way of programming could, protect against various types 

of SQLIAs. This entire process for protecting Several approaches  have been proposed in the studies  to prevent 



Computer Engineering and Intelligent Systems                                                                                                                                 www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol.7, No.6, 2016 

 

9 
 

SQLIAs in the application layer, which  will combine the two procedures firstly combine static analysis of 

application level programs and  secondly runtime validation of dynamically generated SQL-queries with 

inclusion of client inputs.  

Although these approaches will prevent SQLIAs at the application layer, very small importance is given 

on securing objects kept in the database layer such as stored procedures which are also largely vulnerable to SQL 

Injection Attacks. Stored procedures occupies important place in the present -day relational database stores. 

They are responsible for adding the extra layer of abstraction level into the design of a software system, i.e. This 

extra layer, at the particular degree, secure some design confidential from the potentially un authorized 

personnel’s, such as relational table designs. By using the mechanism of stored procedures, one can be ensured 

that the information is stored in the data store safely. In these databases, the developer utilize dynamic SQL 

queries i.e., SQL statements are built at runtime according to the different client inputs. On the basis of this 

variable feature   degree to construct SQL statements according to different requirements can be easily managed, 

but have a threat from SQL Injection Attacks, the problem is the impractical nature of various present techniques 

because they could not address all assault types or have not been implemented yet. Also some of them require 

modifying web application code or extra working source. However, the main aim of this paper is to introduce all 

types of SQL injection attacks and to evaluate present approaches which will detect and then after prevent these 

assaults.  

Rest of the paper is organized as follow: section 2 describes about SQL injection and its various attacks, 

in section 3 we gives detail analysis of detection and prevention techniques of SQL injection, section 4 presents 

motivation of our study and finally we concluded our paper in section 5. 

 

2. SQL INJECTION (SQLIA) 

In SQL injection attack the intruder adds Structured Query Language code to login box of a web form to make 

the modifications. SQL injection vulnerability allows an assaulter to perform malicious functioning directly to a 

web application’s underlying database and destroy secretly. 

A.VARIOUS SQL INJECTION ATTACK TYPES 
The various forms of SQLIAs are possible. For a successful SQLIA the unauthorized person should put a 

semantically and syntactical correct command to the inventive SQL query. Currently the following types of 

SQLIAs in accordance to the researches [6], [7] are presented. 

Tautologies:  
In such category of assault the intruder injects SQL tokens (malicious keywords) to the conditional query 

statement which will evaluate always true. This type of assault utilized to bypass security control and to gain 

access to information by avoiding vulnerable input which utilize the WHERE clause in the SQL. 

"SELECT * FROM customer WHERE custid =’111’ and password =’bbb’ OR ’1’=’1’" As the tautology 

statement (l = 1) has been included to the query it will always evaluated to be true Illegal/Logically Incorrect 

Queries: are rejected, and message is returned back from the database which will provide the necessary useful 

debugging information. This error messages help the intruder to guess the parameters which will then after be 

utilized by the intruder to hire the assaults on the target web application. In the example below assaulter makes a 

type mismatch error by injecting the following text into the pin input: 

Original URL:http://www.krch.polimLitieventil?idnav=8864  

SQL Injection: http://www.krch.polimi.itleventil?idnav=8864’Error message showed: SELECT name FROM 

Customer WHERE id =7764\’ from the message error given below we can identify out the entries of customer 

fields will be returned from the retrieved information the assaulters can easily hire the assaults. 

Union Query: The UNION keyword is utilized in such queries which will join the malicious query with the 

simple one  

Piggy-backed Queries: The query delimiter mechanism is utilized in this type of assault, intruder make the 

breach in security of database by appending extra other query to the original query. If the assault is proper then it 

shows its impact .The first query will get easily evaluated as true, whereas following queries could be 

illegitimate. The intruder can inject any SQL command to the web store in our example, assaulter inject “0 

character; drop table client” into the pin input instead of Boolean logical value. Then the web application would 

produce the query of the following format: 

SELECT info FROM clients WHERE login=’pre’ 

AND pin =000; drop table clients Because of “;” character, database recognize both queries 

Now executes both these queries. The second query is illegal in nature from the database prospective. One can 

discover that the database will not require separation character in various queries, so to discover this type of 

assault, to scan the special character is not very effective solution. 

Stored Procedure: 
Stored procedure is the extra  abstraction layer which is a part of database that Developer  could set an extra on 

the database store .The programmer is responsible for coding the stored variables , so, this part is as inject able as 



Computer Engineering and Intelligent Systems                                                                                                                                 www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol.7, No.6, 2016 

 

10 
 

web application forms, different stored procedures have the different way to be get breached 

. In the practical example, assaulter exploits 

 Parameterized stored procedure CREATE PROCEDURE DBO. Is Authenticated @clientId varint2, @pwd 

varint2, @pin char 

AS EXEC("SELECT accounts FROM clients 

WHERE login= ’"+@clientName+"’ and 

pass=’"+@password+"’ and pin="+@pin); 

GO 

The stored procedures will give the true or false on the basis of validation. Since in SQLIA, intruder input ", 

SHUTDOWN; - -" for clientname or password. Afterward the stored procedure produces the following query 

SELECT accounts_no. FROM clients WHERE login=’doe’ AND pass =; SHUTDOWN; -- AND pin= on the 

execution of this type of assault which works as piggy-back assault. The query will be evaluated and the after the 

second which is illegitimate and executed and causes database shut down. So we can simply say that the stored 

procedures are vulnerable to the various malicious assaults on the internet as web application. 

Blind Injection: 
The error generated messages which will provide some needed information to unauthorized personnel to hire the 

assaults will be hiding by the developer. In which the generic page will be shown to the intruder. So the SQLIA 

would be more difficult but we cannot say that it is not impossible. The intruder can still breach information by 

asking a series of True/False questions through SQL declaration. Suppose two possible injections into the 

login: 

SELECT ids FROM clients WHERE 

1 =0 -- AND pass = AND 

login=’doe’ and 

Pin=0 

SELECT ids 

login=’doe’ and 

pin=0 

If the application nature is secured, both queries above queries will not get successful, because of the strong 

input validation. But if there is the situation of no input validation, then the unauthorized person can try the 

chance. In the First step the illegal accessing client  submit the query and receives an error message in the output  

because of “1=0”.and at this point the intruder is not able to understand the reason for error weather it is because 

of logical error or input validation . Then the assaulter submits the second query which forever true. But in case 

of no login error message, then the assaulter identifies the login vulnerable to injection. 

Timing Attacks:  
Due to the delay in the responses from the database the intruder can discover some information to hire the 

assaults. In this technique we will uses the if-then statement which cause to SQL evaluation  engine to execute a 

long running query or  we can say the a time delay statement on the basis of injected logic . This category of 

assault is very similar to the blind injection and the intruder can then measure the time the page takes to load and 

the after evaluate whether the injected statement is accurate. This method utilizes an if-then statement for 

injecting queries. W AITFOR is a keyword will be utilized to cause the indefinite delays.  

Alternate Encodings:  
Alternate coding mechanisms such as hexadecimal, ASCII, and Unicode etc will be utilized in the injection 

query by using alternate encoding, such as. And by this ways the intruder can easily bypass its injected query in 

the web storage space”.  For instance, assaulter exercises char (44) in place of single quote, which will denote 

the bad character. This technique will be very dangerous if it will be implemented in the joint majority with the 

other technique, because it can easily target various layers of the target application, so the developers have to 

keep mind to avoid such assaults (alternate coding). 

 

3. SQL INJECTION DETECTION AND PREVENTIONTECHNIQUES 

As the deploy of defensive coding or OS hardening but they are  not enough to prevent SQLIAs to web 

applications so researchers have proposed some of techniques to assist developers. Huang and colleagues [8] 

propose WAVES, a black box technique for testing web applications for SQL injection deficiencies the tool 

identify all points a web application that can be utilized to insert SQLIAs. It construct assaults that aim these 

points and observe the application how response to the assaults by utilize machine learning IDBC-Checker [9] 

was not invented for the purpose  of detection and prevention As most of the SQLIAs contains the  of syntactical  

and type correct queries format  so this technique would not catch more general forms of these assaults. 

Wassermann and Su have proposed Tautology Checker [10] that utilizes static analysis to prevent tautology 

assault. The important limitation of this technique is that its scope is limited to tautology and cannot detect or 

prevent other types of assaults Xiang Fu and Kai Qian [11] proposed the design of a static analysis framework, 



Computer Engineering and Intelligent Systems                                                                                                                                 www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol.7, No.6, 2016 

 

11 
 

called SAFELI for identifying SQLIA vulnerabilities at compile time. SAFELI statically monitor the MSIL 

(Microsoft Symbolic intermediate language) is byte code of ASP .NET web applications using symbolic 

execution. SAFELI can analyze the source code and will be able to identify delicate vulnerabilities that cannot 

be discovered by black-box vulnerability scanners. The main drawback of this technique is that this approach can 

discover the SQL injection assaults only on Microsoft based product. 

CANDID Modified the web applications which are written in Java through the program transformation 

method [6,4]. This tool dynamically mines the programmer-intended query structure on any input and detects 

assaults by comparing it against the structure of the actual query issued. CANDID’s natural and easy procedure 

turns out to be very efficient for detection of SQL injection vulnerabilities. In SQL Guard [12] and SQL Check 

[13] queries are checked at runtime based on a model which is expressed as a grammar which inputs legal 

requests only. SQL Guard determines the pattern of the query prior and after the addition of client- input based 

on the model. In SQL Check, the model is specific independently by the developer. These  mechanisms uses the 

secure secret  key to bound the  client input during parsing check phenomena  done by  runtime checker, so 

security of the approach depends on the inability of the intruder to detect the key. In these mechanisms developer 

should modify code to utilize a special intermediate library or physically inserts special keywords into the code 

where the value which is input by the client is composed with dynamically generated query. AMNESIA 

combines static analysis and runtime monitoring [14], [15]. Queries are intercepted before they are sent to the 

database and are checked against the statically built models, in dynamic phase. Queries that violate the model are 

prevented from accessing to the database.  

The limitation of this tool is that it is completely dependent on the accuracy of its static analysis 

framework for building query models. WebSSARI [16] utilize static analysis to observe taint flows against 

preconditions for various types of sensitive functions. It works based on sanitized input that has passed through a 

pre defined set of filters. The limitation of approach is adequate preconditions for sensitive functions cannot be 

accurately expressed so some filters may be omitted. Livshits and Lam [17] utilize static analysis techniques to 

detect vulnerabilities in software. Java Static Tainting utilizes information flow techniques to detect when tainted 

input has been utilized to make a SQLIA. The primary limitation of this approach is that it can detect only 

known patterns of SQLIAs and it can generate a relatively high amount of false positives because it utilizes a 

conservative analysis. Java Dynamic Tainting [18] is another tool that was implemented for java. Despite of 

other tool, chase string instead of character for taint information and try to sanitize the large query strings which 

have been generated by the tainted input but unfortunately injection in numeric fields cannot prevent by this 

approach Difficulty of identifying all sources of client input is the main limitation of this approach. Two similar 

approaches by Nguyen-Tuong [19] and Pietraszek [20] modify a PHP interpreter to track precise per- character 

taint information.  

A context sensitive analysis is utilized to detect and reject queries if certain types of SQL tokens has 

been constructed by illegitimate input. Limitation of these two approaches is that they require rewriting code. 

SQL DOM [21] utilizes database queries encapsulation for trustable access to databases. They utilize a type-

checked API which cause query building process is systematic. Consequently by API they apply coding best 

practices such as input filtering and strict client input type checking. The drawback of the approaches is that 

developer should learn new programming paradigm or query-development process. Positive tainting [22] not 

only focuses on positive tainting rather than negative tainting but also it is automated and does need developer 

intervention. IDS [23] utilize an Intrusion Detection System (IDS) to identify SQLIAs, depends on a machine 

learning method. The technique builds models of the typical queries and then at runtime, queries that do not 

match the model would be recognized as assault. This tool discovers assaults successfully other than it depend 

on training seriously.  

Else, many false positives and false negatives would be generated. Another approach in this category is 

SQL-IDS [5] which focus on writing specifications for the web application that explain the required structure 

framework of SQL statements that are generated by the applications. A proxy filtering system that intensifies 

input validation rules on the data flowing to a Web application is called Security Gateway [24]. In this technique 

for transferring parameters from web-page to application server, developers should utilize Security Policy 

Descriptor Language (SPDL). So developer should know which data should be filtered and also what patterns 

should apply to the data. SQLPrevent [25] is consists of an HTTP request interceptor. The original data flow is 

modified when SQLPrevent is deployed into a web server. The HTTP requests are saved into the current thread-

local storage. Then, SQL interceptor intercepts the SQL statements that are made by web application and pass 

them to the SQLIA detector module. Consequently, HTTP request from thread local storage is fetched and 

examined to determine whether it contains an SQLIA. The malicious SQL statement would be prevented to be 

sent to database, if it is suspicious to SQLIA.  Swaddler [26] analyzes the internal state of a web application. It 

works based on both single and multiple variables and shows an impressive way against complex assaults to web 

applications. First the approach describes the normal values for the application’s state variables in critical points 

of the application’s components. Then, during the detection period, it observed the application’s execution to 



Computer Engineering and Intelligent Systems                                                                                                                                 www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol.7, No.6, 2016 

 

12 
 

recognize abnormal states. 

There are several other techniques have been proposed in literature  to  avoid SQLIAs which when 

utilized combined with some other techniques can be prove to be very efficient . 

 

4. MOTIVATION  

The above presented SQL injection prevention techniques verifies authenticity of each data element individually 

.consider an example, if any client Inputs to a login form than the various server will verify the given client name 

and given password separately. As we know their growing demand of web application and the complicated data 

requirements the data submitted by the client is also become complicated. In present scenario we can see lot of 

complex HTML form that client has to fill up and submit. For example, a simple medical store needs to enter 

various product details into one form. Hence, we can easily understand the complexity of data validation into 

server side. In a simple web application each individual page has different types of HTML form which is 

essential because each form is dedicated for different work, such as client registration, product creation, product 

purchase etc. Now existing SQL injection prevention techniques handles each data separately.  

That makes the developer job complicated. The developers have to write code for the validity checking 

of each html-form separately. Since each form has different types of complexity it is currently not possible to 

make the validating process as generic for all the forms. This also makes the maintenance job difficult as the data 

validation policy is different in each from submitting server code Different web applications manage the 

validation rules differently., Also some framework available which allows automated server-side validation and 

the developer can do very less work to manage it. But complex validation requirements cannot be satisfy by all 

those automatic validating systems. Also for most of these validating systems, developers have to enter 

validation rules separately. Sometimes we need to send multiple information’s to the server. For example, online 

customer can purchase 10 items at a time. In that case 10 insertions required in the corresponding database table.  

 

5. CONCLUSION 
Web applications are make threats by SQL Injection Attacks (SQLIAs) because this kind of assault could 

compromise privacy and integrity of information in databases. To prevent this sort of assault many methods have 

been projected by so many researchers but they are not enough because most of these methods could not prevent 

all type of assaults. In this survey paper we have examined different types of SQL Injection attacks and also the 

study different existing SQLIAs detection and prevention techniques already available. We have shown that the 

existing SQLIAs detection and prevention techniques could validate the client side data in singular manner. This 

makes difficult the developer’s job to write validation codes for every query receiving on page on the server. In 

Future researches can we done on the method in which a single tool is used to detect injection attacks in web 

based application written in different languages. 

 

REFERENCES 

1.  [1] C. S. Institute. Computer crime and security survey (2002)  

2.  [2] W.  Inc Only 10% of web applications is secured against common hacking techniques. .  (2004)   

3. [3] K.  Beaver.  Achieving sarbanes-oxley compli-ance for web applications through security testing (2003)   

4. [4] P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan, “CANDID: dy- namic candidate  evaluations for 

automatic prevention of SQL injection attacks,” ACM Trans. Inf. Syst. Secur.,      vol. 13, no. 2, pp. 1–39, 

2010. 

5. [5] K. Kemalis and T. Tzouramanis, “Sql-ids: a specification-based approach for sql-injection     

detection,” in Proceedings of the 2008 ACM symposiu on Applied computing, ser. SAC ’08.   ACM, 2008, 

pp. 2153–2158. 

6.  [6] S. Bandhakavi, P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan, “Candid: preventing sql injection 

attacks using dynamic candidatevaluations,” in Proceedings of the 14th ACM conference on Compute and 

communications security, ser. CCS ’07, 2007, pp. 12–24. 

7. [7] X. Jin and S. L. Osborn, “Architecture for data collection in database intrusion detection      systems,” 

in Proceedings of the 4th VLDB conference on Secure data management, ser.  

8.       SDM’07, 2007, pp. 96–107. 

9. [8] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai, “Web application security assessment by fault 

injection and behavior monitoring,” in Proceedings of the 12th international conference on World Wide 

Web, ser. WWW ’03, 2003, pp. 148–159. 

10. [9] G. Wassermann, C. Gould, Z. Su, and P. Devanbu, “Static checking of dynamically generated queries 

in database applications,” ACM Trans. Softw. Eng. Methodol., vol. 16, no. 4, Sep. 2007. 

11. [10] G. Wassermann and Z. Su, “An analysis framework for security in web applications,” in In 

Proceedings of the FSE Workshop on Specification and Verification of Component-Based Systems 

(SAVCBS 2004, 2004, pp. 70–78. 



Computer Engineering and Intelligent Systems                                                                                                                                 www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol.7, No.6, 2016 

 

13 
 

12. [11] X. Fu and K. Qian, “Safeli: Sql injection scanner using symbolic execution,” in Proceedings of the 

2008 workshop on Testing, analysis, and verification of web services and applications, ser. TAV-WEB ’08, 

2008, pp. 34–39. 

13. [12] G. Buehrer, B. W. Weide, and P. A. G. Sivilotti, “Using parse tree validation to prevent sql injection 

attacks,” in Proceedings of the 5th international workshop on Software engineering and middleware, ser. 

SEM ’05, 2005, pp. 106–113. 

14. [13] Z. Su and G. Wassermann, “The essence of command injection attacks in web applications,” 

SIGPLAN Not., vol. 41, no. 1, pp. 372–382, Jan. 2006. 

15. [14] W. G. J. Halfond and A. Orso, “Amnesia: analysis and monitoring for neutralizing sql-injection 

attacks,” in Proceedings of the 20th IEEE/ACM international Conference on Automated software 

engineering, ser. ASE ’05, 2005, pp. 174–183. 

16. [15] ——, “Combining static analysis and runtime monitoring to counter sql-injection attacks,” SIGSOFT 

Softw. Eng. Notes, vol. 30, no. 4, pp. 1–7, May 2005. 

17. [16] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo, “Securing web application code 

by static analysis and runtime protection,” in Proceedings of the 13th international conference on World 

Wide Web, ser. WWW ’04, 2004, pp. 40–52. 

18. [17] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in java applications with static 

analysis,” in Proceedings of the 14th conference on USENIX Security Symposium - Volume 14, ser. 

SSYM’05, 2005, pp. 18–18. 

19. [18] V. Haldar, D. Chandra, and M. Franz, “Dynamic taint propagation for java,” in Proceeding of the 21st 

Annual Computer Security Applications Conference, ser. ACSAC ’05, 2005, pp. 303–311. 

20. [19] A. Nguyen-tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans, “Automatically hardening web 

applications using precise tainting,” in In 20th IFIP International Information Security Conference, 2005, 

pp. 372–382. 

21. [20] T. Pietraszek and C. V. Berghe, “Defending against injection attacks through context-sensitive string 

evaluation,” in Proceedings of the 8th international conference on Recent Advances in Intrusion Detection, 

ser. RAID’05, 2006, pp. 124–145. 

22. [21] R. A. McClure and I. H. Kr¨uger, “Sql dom: compile time checking  of dynamic sql statements,” in 

Proceedings of the 27th international conference on Software engineering, ser. ICSE ’05, 2005, pp. 88–96. 

23. [22] W. G. J. Halfond, A. Orso, and P. Manolios, “Using positive tainting and syntax-aware evaluation to 

counter sql injection attacks,” in Proceedings of the 14th ACM SIGSOFT international symposium on 

Foundations of software engineering, ser. SIGSOFT ’06/FSE-14, 2006, pp. 175–185. 

24. [23] F. Valeur, D. Mutz, and G. Vigna, “A learning-based approach to the detection of sql attacks,” in 

Proceedings of the Second international conference on Detection of Intrusions and Malware, and 

Vulnerability Assessment, ser. DIMVA’05. Springer-Verlag, 2005, pp. 123–140. 

25. [24] D. Scott and R. Sharp, “Abstracting application-level web security,” in Proceedings of the 11th 

international conference on World Wide Web, ser. WWW ’02, 2002, pp. 396–407. 

26. [25] P.Grazie, “Phd sqlprevent thesis,” Ph.D. dissertation, University of British Columbia(UBC) 

Vancouver, Canada, 2008. 

27. [26] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna, “Swaddler: An approach for the anomaly-based 

detection of state violations in web applications,” 2007. 

 


