20,497 research outputs found

    Bayesian value-of-infomation analysis: an application to a policy model of Alzheimer's disease

    Get PDF
    A framework is presented that distinguishes the conceptually separate decisions of which treatment strategy is optimal from the question of whether more information is required to inform this choice in the future. The authors argue that the choice of treatment strategy should be based on expected utility, and the only valid reason to characterize the uncertainty surrounding outcomes of interest is to establish the value of acquiring additional information. A Bayesian decision theoretic approach is demonstrated through a probabilistic analysis of a published policy model of Alzheimer’s disease. The expected value of perfect information is estimated for the decision to adopt a new pharmaceutical for the population of patients with Alzheimer’s disease in the United States. This provides an upper bound on the value of additional research. The value of information is also estimated for each of the model inputs. This analysis can focus future research by identifying those parameters where more precise estimates would be most valuable and indicating whether an experimental design would be required. We also discuss how this type of analysis can also be used to design experimental research efficiently (identifying optimal sample size and optimal sample allocation) based on the marginal cost and marginal benefit of sample information. Value-of-information analysis can provide a measure of the expected payoff from proposed research, which can be used to set priorities in research and development. It can also inform an efficient regulatory framework for new healthcare technologies: an analysis of the value of information would define when a claim for a new technology should be deemed substantiated and when evidence should be considered competent and reliable when it is not cost-effective to gather any more information

    Defining and characterising structural uncertainty in decision analytic models

    Get PDF
    An inappropriate structure for a decision analytic model can potentially invalidate estimates of cost-effectiveness and estimates of the value of further research. However, there are often a number of alternative and credible structural assumptions which can be made. Although it is common practice to acknowledge potential limitations in model structure, there is a lack of clarity about methods to characterize the uncertainty surrounding alternative structural assumptions and their contribution to decision uncertainty. A review of decision models commissioned by the NHS Health Technology Programme was undertaken to identify the types of model uncertainties described in the literature. A second review was undertaken to identify approaches to characterise these uncertainties. The assessment of structural uncertainty has received little attention in the health economics literature. A common method to characterise structural uncertainty is to compute results for each alternative model specification, and to present alternative results as scenario analyses. It is then left to decision maker to assess the credibility of the alternative structures in interpreting the range of results. The review of methods to explicitly characterise structural uncertainty identified two methods: 1) model averaging, where alternative models, with different specifications, are built, and their results averaged, using explicit prior distributions often based on expert opinion and 2) Model selection on the basis of prediction performance or goodness of fit. For a number of reasons these methods are neither appropriate nor desirable methods to characterize structural uncertainty in decision analytic models. When faced with a choice between multiple models, another method can be employed which allows structural uncertainty to be explicitly considered and does not ignore potentially relevant model structures. Uncertainty can be directly characterised (or parameterised) in the model itself. This method is analogous to model averaging on individual or sets of model inputs, but also allows the value of information associated with structural uncertainties to be resolved.

    Personalised mobile services supporting the implementation of clinical guidelines

    Get PDF
    Telemonitoring is emerging as a compelling application of Body Area Networks (BANs). We describe two health BAN systems developed respectively by a European team and an Australian team and discuss some issues encountered relating to formalization of clinical knowledge to support real-time analysis and interpretation of BAN data. Our example application is an evidence-based telemonitoring and teletreatment application for home-based rehabilitation. The application is intended to support implementation of a clinical guideline for cardiac rehabilitation following myocardial infarction. In addition to this the proposal is to establish the patient’s individual baseline risk profile and, by real-time analysis of BAN data, continually re-assess the current risk level in order to give timely personalised feedback. Static and dynamic risk factors are derived from literature. Many sources express evidence probabilistically, suggesting a requirement for reasoning with uncertainty; elsewhere evidence requires qualitative reasoning: both familiar modes of reasoning in KBSs. However even at this knowledge acquisition stage some issues arise concerning how best to apply the clinical evidence. Furthermore, in cases where insufficient clinical evidence is currently available, telemonitoring can yield large collections of clinical data with the potential for data mining in order to furnish more statistically powerful and accurate clinical evidence

    Dynamic real-time risk analytics of uncontrollable states in complex internet of things systems, cyber risk at the edge

    Get PDF
    The Internet of Things (IoT) triggers new types of cyber risks. Therefore, the integration of new IoT devices and services requires a self-assessment of IoT cyber security posture. By security posture this article refers to the cybersecurity strength of an organisation to predict, prevent and respond to cyberthreats. At present, there is a gap in the state of the art, because there are no self-assessment methods for quantifying IoT cyber risk posture. To address this gap, an empirical analysis is performed of 12 cyber risk assessment approaches. The results and the main findings from the analysis is presented as the current and a target risk state for IoT systems, followed by conclusions and recommendations on a transformation roadmap, describing how IoT systems can achieve the target state with a new goal-oriented dependency model. By target state, we refer to the cyber security target that matches the generic security requirements of an organisation. The research paper studies and adapts four alternatives for IoT risk assessment and identifies the goal-oriented dependency modelling as a dominant approach among the risk assessment models studied. The new goal-oriented dependency model in this article enables the assessment of uncontrollable risk states in complex IoT systems and can be used for a quantitative self-assessment of IoT cyber risk posture

    A systematic review of health economic models of opioid agonist therapies in maintenance treatment of non-prescription opioid dependence

    Get PDF
    Background: Opioid dependence is a chronic condition with substantial health, economic and social costs. The study objective was to conduct a systematic review of published health-economic models of opioid agonist therapy for non-prescription opioid dependence, to review the different modelling approaches identified, and to inform future modelling studies. Methods: Literature searches were conducted in March 2015 in eight electronic databases, supplemented by hand-searching reference lists and searches on six National Health Technology Assessment Agency websites. Studies were included if they: investigated populations that were dependent on non-prescription opioids and were receiving opioid agonist or maintenance therapy; compared any pharmacological maintenance intervention with any other maintenance regimen (including placebo or no treatment); and were health-economic models of any type. Results: A total of 18 unique models were included. These used a range of modelling approaches, including Markov models (n = 4), decision tree with Monte Carlo simulations (n = 3), decision analysis (n = 3), dynamic transmission models (n = 3), decision tree (n = 1), cohort simulation (n = 1), Bayesian (n = 1), and Monte Carlo simulations (n = 2). Time horizons ranged from 6 months to lifetime. The most common evaluation was cost-utility analysis reporting cost per quality-adjusted life-year (n = 11), followed by cost-effectiveness analysis (n = 4), budget-impact analysis/cost comparison (n = 2) and cost-benefit analysis (n = 1). Most studies took the healthcare provider’s perspective. Only a few models included some wider societal costs, such as productivity loss or costs of drug-related crime, disorder and antisocial behaviour. Costs to individuals and impacts on family and social networks were not included in any model. Conclusion: A relatively small number of studies of varying quality were found. Strengths and weaknesses relating to model structure, inputs and approach were identified across all the studies. There was no indication of a single standard emerging as a preferred approach. Most studies omitted societal costs, an important issue since the implications of drug abuse extend widely beyond healthcare services. Nevertheless, elements from previous models could together form a framework for future economic evaluations in opioid agonist therapy including all relevant costs and outcomes. This could more adequately support decision-making and policy development for treatment of non-prescription opioid dependence
    corecore