25,494 research outputs found

    Controlled Matching Game for Resource Allocation and User Association in WLANs

    Full text link
    In multi-rate IEEE 802.11 WLANs, the traditional user association based on the strongest received signal and the well known anomaly of the MAC protocol can lead to overloaded Access Points (APs), and poor or heterogeneous performance. Our goal is to propose an alternative game-theoretic approach for association. We model the joint resource allocation and user association as a matching game with complementarities and peer effects consisting of selfish players solely interested in their individual throughputs. Using recent game-theoretic results we first show that various resource sharing protocols actually fall in the scope of the set of stability-inducing resource allocation schemes. The game makes an extensive use of the Nash bargaining and some of its related properties that allow to control the incentives of the players. We show that the proposed mechanism can greatly improve the efficiency of 802.11 with heterogeneous nodes and reduce the negative impact of peer effects such as its MAC anomaly. The mechanism can be implemented as a virtual connectivity management layer to achieve efficient APs-user associations without modification of the MAC layer

    Assessing load-sharing within optimistic simulation platforms

    Get PDF
    The advent of multi-core machines has lead to the need for revising the architecture of modern simulation platforms. One recent proposal we made attempted to explore the viability of load-sharing for optimistic simulators run on top of these types of machines. In this article, we provide an extensive experimental study for an assessment of the effects on run-time dynamics by a load-sharing architecture that has been implemented within the ROOT-Sim package, namely an open source simulation platform adhering to the optimistic synchronization paradigm. This experimental study is essentially aimed at evaluating possible sources of overheads when supporting load-sharing. It has been based on differentiated workloads allowing us to generate different execution profiles in terms of, e.g., granularity/locality of the simulation events. © 2012 IEEE

    C-MOS array design techniques: SUMC multiprocessor system study

    Get PDF
    The current capabilities of LSI techniques for speed and reliability, plus the possibilities of assembling large configurations of LSI logic and storage elements, have demanded the study of multiprocessors and multiprocessing techniques, problems, and potentialities. Evaluated are three previous systems studies for a space ultrareliable modular computer multiprocessing system, and a new multiprocessing system is proposed that is flexibly configured with up to four central processors, four 1/0 processors, and 16 main memory units, plus auxiliary memory and peripheral devices. This multiprocessor system features a multilevel interrupt, qualified S/360 compatibility for ground-based generation of programs, virtual memory management of a storage hierarchy through 1/0 processors, and multiport access to multiple and shared memory units

    Elastic Multi-resource Network Slicing: Can Protection Lead to Improved Performance?

    Full text link
    In order to meet the performance/privacy requirements of future data-intensive mobile applications, e.g., self-driving cars, mobile data analytics, and AR/VR, service providers are expected to draw on shared storage/computation/connectivity resources at the network "edge". To be cost-effective, a key functional requirement for such infrastructure is enabling the sharing of heterogeneous resources amongst tenants/service providers supporting spatially varying and dynamic user demands. This paper proposes a resource allocation criterion, namely, Share Constrained Slicing (SCS), for slices allocated predefined shares of the network's resources, which extends the traditional alpha-fairness criterion, by striking a balance among inter- and intra-slice fairness vs. overall efficiency. We show that SCS has several desirable properties including slice-level protection, envyfreeness, and load driven elasticity. In practice, mobile users' dynamics could make the cost of implementing SCS high, so we discuss the feasibility of using a simpler (dynamically) weighted max-min as a surrogate resource allocation scheme. For a setting with stochastic loads and elastic user requirements, we establish a sufficient condition for the stability of the associated coupled network system. Finally, and perhaps surprisingly, we show via extensive simulations that while SCS (and/or the surrogate weighted max-min allocation) provides inter-slice protection, they can achieve improved job delay and/or perceived throughput, as compared to other weighted max-min based allocation schemes whose intra-slice weight allocation is not share-constrained, e.g., traditional max-min or discriminatory processor sharing

    Performance analysis of downlink shared channels in a UMTS network

    Get PDF
    In light of the expected growth in wireless data communications and the commonly anticipated up/downlink asymmetry, we present a performance analysis of downlink data transfer over \textsc{d}ownlink \textsc{s}hared \textsc{ch}annels (\textsc{dsch}s), arguably the most efficient \textsc{umts} transport channel for medium-to-large data transfers. It is our objective to provide qualitative insight in the different aspects that influence the data \textsc{q}uality \textsc{o}f \textsc{s}ervice (\textsc{qos}). As a most principal factor, the data traffic load affects the data \textsc{qos} in two distinct manners: {\em (i)} a heavier data traffic load implies a greater competition for \textsc{dsch} resources and thus longer transfer delays; and {\em (ii)} since each data call served on a \textsc{dsch} must maintain an \textsc{a}ssociated \textsc{d}edicated \textsc{ch}annel (\textsc{a}-\textsc{dch}) for signalling purposes, a heavier data traffic load implies a higher interference level, a higher frame error rate and thus a lower effective aggregate \textsc{dsch} throughput: {\em the greater the demand for service, the smaller the aggregate service capacity.} The latter effect is further amplified in a multicellular scenario, where a \textsc{dsch} experiences additional interference from the \textsc{dsch}s and \textsc{a}-\textsc{dch}s in surrounding cells, causing a further degradation of its effective throughput. Following an insightful two-stage performance evaluation approach, which segregates the interference aspects from the traffic dynamics, a set of numerical experiments is executed in order to demonstrate these effects and obtain qualitative insight in the impact of various system aspects on the data \textsc{qos}

    On the Interface Between Operations and Human Resources Management

    Get PDF
    Operations management (OM) and human resources management (HRM) have historically been very separate fields. In practice, operations managers and human resource managers interact primarily on administrative issues regarding payroll and other matters. In academia, the two subjects are studied by separate communities of scholars publishing in disjoint sets of journals, drawing on mostly separate disciplinary foundations. Yet, operations and human resources are intimately related at a fundamental level. Operations are the context that often explains or moderates the effects of human resource activities such as pay, training, communications and staffing. Human responses to operations management systems often explain variations or anomalies that would otherwise be treated as randomness or error variance in traditional operations research models. In this paper, we probe the interface between operations and human resources by examining how human considerations affect classical OM results and how operational considerations affect classical HRM results. We then propose a unifying framework for identifying new research opportunities at the intersection of the two fields
    • 

    corecore