325 research outputs found

    Optimizations in Heterogeneous Mobile Networks

    Get PDF

    Energy efficiency as a SON mechanism for HSPA+ networks

    Get PDF
    The operation of mobile networks incurs significant amountsof energy consumption. From a network operation point of view reductionof energy consumption is not only a matter of environmental responsibilitybut also reduces the operational costs and improves network performanceminimizing some daily problems. In our study we apply an energy savingmechanism by means of Self-Organizing Networks (SON) functionality. Weshow that it is possible to reduce energy consumption and also control cellbreathing bringing more Quality of Service (QoS) to the network

    Inter-cell Interference Management Technique for Multi-Cell LTE-A Network

    Get PDF
    In modern cellular system such as LTE Advanced (LTE-A), frequency reuse scheme is targeted to be applied to fulfill the requirement of high capacity broadband access and high spectrum efficiency. But this kind of frequency planning may lead to the worse inter-cell interference (ICI) level experienced especially by a user located at the cell edge. Soft Frequency Reuse (SFR) is considered as an effective way to mitigate inter-cell interference and maintain capacity. We propose a power division SFR, known as multi level SFR technique to minimize ICI in a designed LTE-A network for sub-urban environment. Service area of LTE-A network was first developed to deploy particular number of eNB by using LTE network planning tools in the frequency of 1800 MHz with the use of SISO (Single Input Single Output) antennas. Coverage dimensioning and propagation consideration determine LTE-A parameters which were used in the simulation. Monte carlo simulation is executed to examine the performance of SFR for LTE-A downlink transmission to address different power ratio and traffic loads problem. Both performance of cell edge users and overall cell performance are evaluated in terms of CINR, BLER, and throughput. Performance with SFR is also compared with the classical frequency reuse one and three

    Enhancing LTE with Cloud-RAN and Load-Controlled Parasitic Antenna Arrays

    Get PDF
    Cloud radio access network systems, consisting of remote radio heads densely distributed in a coverage area and connected by optical fibers to a cloud infrastructure with large computational capabilities, have the potential to meet the ambitious objectives of next generation mobile networks. Actual implementations of C-RANs tackle fundamental technical and economic challenges. In this article, we present an end-to-end solution for practically implementable C-RANs by providing innovative solutions to key issues such as the design of cost-effective hardware and power-effective signals for RRHs, efficient design and distribution of data and control traffic for coordinated communications, and conception of a flexible and elastic architecture supporting dynamic allocation of both the densely distributed RRHs and the centralized processing resources in the cloud to create virtual base stations. More specifically, we propose a novel antenna array architecture called load-controlled parasitic antenna array (LCPAA) where multiple antennas are fed by a single RF chain. Energy- and spectral-efficient modulation as well as signaling schemes that are easy to implement are also provided. Additionally, the design presented for the fronthaul enables flexibility and elasticity in resource allocation to support BS virtualization. A layered design of information control for the proposed end-to-end solution is presented. The feasibility and effectiveness of such an LCPAA-enabled C-RAN system setup has been validated through an over-the-air demonstration

    Tutorial on LTE/LTE-A Cellular Network Dimensioning Using Iterative Statistical Analysis

    Get PDF
    LTE is the fastest growing cellular technology and is expected to increase its footprint in the coming years, as well as progress toward LTE-A. The race among operators to deliver the expected quality of experience to their users is tight and demands sophisticated skills in network planning. Radio network dimensioning (RND) is an essential step in the process of network planning and has been used as a fast, but indicative, approximation of radio site count. RND is a prerequisite to the lengthy process of thorough planning. Moreover, results from RND are used by players in the industry to estimate preplanning costs of deploying and running a network; thus, RND is, as well, a key tool in cellular business modelling. In this work, we present a tutorial on radio network dimensioning, focused on LTE/LTE-A, using an iterative approach to find a balanced design that mediates among the three design requirements: coverage, capacity, and quality. This approach uses a statistical link budget analysis methodology, which jointly accounts for small and large scale fading in the channel, as well as loading due to traffic demand, in the interference calculation. A complete RND manual is thus presented, which is of key importance to operators deploying or upgrading LTE/LTE-A networks for two reasons. It is purely analytical, hence it enables fast results, a prime factor in the race undertaken. Moreover, it captures essential variables affecting network dimensions and manages conflicting targets to ensure user quality of experience, another major criterion in the competition. The described approach is compared to the traditional RND using a commercial LTE network planning tool. The outcome further dismisses the traditional RND for LTE due to unjustified increase in number of radio sites and related cost, and motivates further research in developing more effective and novel RND procedures

    Cloud Radio Access Network architecture. Towards 5G mobile networks

    Get PDF

    Energy Efficient Small Cell Planning For High Capacity Wireless Networks

    Get PDF
    This thesis presents a new strategy to densify Small Cells (i.e., add more low powered base stations within macro networks) and enhance the coverage and capacity of Heterogeneous Networks. This is accomplished by designing Micro Cell for outdoor applications, Pico and Femtocell for indoor applications. It is shown that, there exists a free space propagation medium in all propagation environments due to Fresnel zones, and the path loss slope within this zone is similar to free space propagation medium. This forms the basis of our development of the present work. The salient feature of the proposed work has two main considerations (a) The cell radius of Small Cells must be within the first Fresnel zone break point, and (b) The minimum inter-cell distance must be greater than twice of Small Cell radius. The proposed network is simulated in real a radio network simulator called ATOLL. The simulation results showed that densify Small Cells not only enhanced the capacity and coverage of Heterogeneous Networks but also improved the carrier to interference ratio significantly. Since the proposed work allows UE (user equipment) to have Line of Sight (LOS) communication with the serving cell, and UE can have higher uplink (UL) signal to interference plus noise ratio (SINR) that will further allow UE to reduce its transmission power, which will consequently lead to a longer battery life for the UE and reduce the interference in the system

    Pilvipohjaisen radioliityntäverkon kustannusten mallintaminen

    Get PDF
    The rapid growth of mobile data traffic is challenging the current way of building and operating the current radio access network. Cloud-based radio access network is researched as a solution to provide the required capacity for rapidly growing traffic demand in more economical manner. Scope of this thesis is to evaluate the costs of different existing and future radio access network architectures depending on the given network and traffic scenario. This is done by creating a cost model based on expert interviews to solve the most economical solution for the given network in terms of total cost of ownership. The results show that the cloud-based radio access network’s cost benefits are dependent on the expected traffic growth. In the low traffic growth scenario, the cost benefits of cloud-based radio access network are questionable, but in the high traffic growth scenario clear cost benefits are achieved.Mobiilidataliikenteen nopea kasvu haastaa nykyisen tavan rakentaa ja hallinnoida tämän hetkisiä radioliityntäverkkoja. Pilvipohjaista radioliityntäverkkoa tutkitaan ratkaisuksi tarjota tarvittavaa verkkokapasiteettia entistä taloudellisemmin. Tämän opinnäytetyön tarkoituksena on arvioida nykyisten ja pilvipohjaisten radioliityntäverkkoarkkitehtuurien kustannuksia riippuen verkon rakenteesta ja liikenteestä. Tämä toteutetaan luomalla kustannusmalli, joka perustuu asiantuntijoiden haastatteluihin. Mallin avulla on mahdollista vertailla annetun verkon eri arkkitehtuurien kokonaiskustannuksia ja selvittää taloudellisin radioliityntäverkkoarkkitehtuuri verkolle. Mallinnuksen tulokset osoittavat, että pilvipohjaisen radioliityntäverkon taloudelliset hyödyt ovat riippuvaisia dataliikenteen kasvusta verkossa. Vähäisellä data-liikenteen kasvulla pilvipohjaisen radioliityntäverkon kustannusedut ovat kyseenalaiset, mutta suurella dataliikenteen kasvulla saadaan selviä säästöjä verrattuna nykyisiin arkkitehtuureihin
    corecore