14 research outputs found

    Kinematics and Robot Design II (KaRD2019) and III (KaRD2020)

    Get PDF
    This volume collects papers published in two Special Issues “Kinematics and Robot Design II, KaRD2019” (https://www.mdpi.com/journal/robotics/special_issues/KRD2019) and “Kinematics and Robot Design III, KaRD2020” (https://www.mdpi.com/journal/robotics/special_issues/KaRD2020), which are the second and third issues of the KaRD Special Issue series hosted by the open access journal robotics.The KaRD series is an open environment where researchers present their works and discuss all topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. It aims at being an established reference for researchers in the field as other serial international conferences/publications are. Even though the KaRD series publishes one Special Issue per year, all the received papers are peer-reviewed as soon as they are submitted and, if accepted, they are immediately published in MDPI Robotics. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”.KaRD2019 together with KaRD2020 received 22 papers and, after the peer-review process, accepted only 17 papers. The accepted papers cover problems related to theoretical/computational kinematics, to biomedical engineering and to other design/applicative aspects

    Static and Dynamic Analysis of Nonlinear Valve Springs Based on Finite Element Analysis and Machine Learning Algorithm

    Get PDF
    The valve spring is a fundamental type of helical spring which is essential for enabling the opening and closure of a valve in a car engine. Nowadays, it is increasingly common to use valve springs of nonlinear geometry in high-speed car engines for better dynamic performance. However, practical issues such as malfunction and pre-failure are also raised by spring researchers and manufacturers using and analysing these nonlinear springs. It is commonly stated that existing spring models and empirical formula do not allow for the analysis of these nonlinear springs. To tackle such difficulties, it is imperative that all the varied geometric parameters of a nonlinear spring be clarified in order to facilitate efficient and generalizable analysis. Past research efforts have mainly emphasized the analysis of standard valve springs of constant geometric parameters and the development of spring models for low-speed static conditions. However, these models do not take into account the full breadth of conditions and consequently are considered to be insufficient and compromised in accuracy. Therefore, it remains a challenge to effectively leverage such models in the analysis and design of nonlinear valve springs. This thesis aims to address the existing gaps and present a comprehensive study on the analysis of nonlinear valve springs and their dynamic response in high-speed engines. An advanced spring formula is developed based on simplified curved beam theory to formulate the relationships between the nonlinear spring geometry (varied coil diameter, varied pitch and coil clash) and the mechanical properties of a beehive valve spring. These nonlinear considerations deliver a higher predictive accuracy than the existing spring formulas by comparing FE and experimental results. The new spring formula is coupled with the distributed parameter model to simulate the dynamic spring responses. However, whilst it accurately simulates the dynamic responses at lower engine speeds (lower 5000-rpm), it fails to simulate the significant abnormal spring forces at high engine speeds (over 8000-rpm). On the contrary, the FE springs model is developed, of which static and dynamic simulation results fit well with the experimental data at both low and high engine speeds. More importantly, analysis of the dynamic FE results explains how the violent coil clash leads to significant abnormal spring forces. In the last part, a machine learning model, based on genetic programming techniques and the FE results, is developed to aid the design of nonlinear helical springs. The model enables researchers to analyse nonlinear helical spring properties directly using information extracted from FE results data, bypassing the necessity to unravel the complex inner relationships between the nonlinear spring parameters

    Soft Robotics: Design for Simplicity, Performance, and Robustness of Robots for Interaction with Humans.

    Get PDF
    This thesis deals with the design possibilities concerning the next generation of advanced Robots. Aim of the work is to study, analyse and realise artificial systems that are essentially simple, performing and robust and can live and coexist with humans. The main design guideline followed in doing so is the Soft Robotics Approach, that implies the design of systems with intrinsic mechanical compliance in their architecture. The first part of the thesis addresses design of new soft robotics actuators, or robotic muscles. At the beginning are provided information about what a robotic muscle is and what is needed to realise it. A possible classification of these systems is analysed and some criteria useful for their comparison are explained. After, a set of functional specifications and parameters is identified and defined, to characterise a specific subset of this kind of actuators, called Variable Stiffness Actuators. The selected parameters converge in a data-sheet that easily defines performance and abilities of the robotic system. A complete strategy for the design and realisation of this kind of system is provided, which takes into account their me- chanical morphology and architecture. As consequence of this, some new actuators are developed, validated and employed in the execution of complex experimental tasks. In particular the actuator VSA-Cube and its add-on, a Variable Damper, are developed as the main com- ponents of a robotics low-cost platform, called VSA-CubeBot, that v can be used as an exploratory platform for multi degrees of freedom experiments. Experimental validations and mathematical models of the system employed in multi degrees of freedom tasks (bimanual as- sembly and drawing on an uneven surface), are reported. The second part of the thesis is about the design of multi fingered hands for robots. In this part of the work the Pisa-IIT SoftHand is introduced. It is a novel robot hand prototype designed with the purpose of being as easily usable, robust and simple as an industrial gripper, while exhibiting a level of grasping versatility and an aspect comparable to that of the human hand. In the thesis the main theo- retical tool used to enable such simplification, i.e. the neuroscience– based notion of soft synergies, are briefly reviewed. The approach proposed rests on ideas coming from underactuated hand design. A synthesis method to realize a desired set of soft synergies through the principled design of adaptive underactuated mechanisms, which is called the method of adaptive synergies, is discussed. This ap- proach leads to the design of hands accommodating in principle an arbitrary number of soft synergies, as demonstrated in grasping and manipulation simulations and experiments with a prototype. As a particular instance of application of the method of adaptive syner- gies, the Pisa–IIT SoftHand is then described in detail. The design and implementation of the prototype hand are shown and its effec- tiveness demonstrated through grasping experiments. Finally, control of the Pisa/IIT Hand is considered. Few different control strategies are adopted, including an experimental setup with the use of surface Electromyographic signals

    MUSME 2011 4 th International Symposium on Multibody Systems and Mechatronics

    Full text link
    El libro de actas recoge las aportaciones de los autores a través de los correspondientes artículos a la Dinámica de Sistemas Multicuerpo y la Mecatrónica (Musme). Estas disciplinas se han convertido en una importante herramienta para diseñar máquinas, analizar prototipos virtuales y realizar análisis CAD sobre complejos sistemas mecánicos articulados multicuerpo. La dinámica de sistemas multicuerpo comprende un gran número de aspectos que incluyen la mecánica, dinámica estructural, matemáticas aplicadas, métodos de control, ciencia de los ordenadores y mecatrónica. Los artículos recogidos en el libro de actas están relacionados con alguno de los siguientes tópicos del congreso: Análisis y síntesis de mecanismos ; Diseño de algoritmos para sistemas mecatrónicos ; Procedimientos de simulación y resultados ; Prototipos y rendimiento ; Robots y micromáquinas ; Validaciones experimentales ; Teoría de simulación mecatrónica ; Sistemas mecatrónicos ; Control de sistemas mecatrónicosUniversitat Politècnica de València (2011). MUSME 2011 4 th International Symposium on Multibody Systems and Mechatronics. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/13224Archivo delegad

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    Proceedings of the European Conference on Agricultural Engineering AgEng2021

    Get PDF
    This proceedings book results from the AgEng2021 Agricultural Engineering Conference under auspices of the European Society of Agricultural Engineers, held in an online format based on the University of Évora, Portugal, from 4 to 8 July 2021. This book contains the full papers of a selection of abstracts that were the base for the oral presentations and posters presented at the conference. Presentations were distributed in eleven thematic areas: Artificial Intelligence, data processing and management; Automation, robotics and sensor technology; Circular Economy; Education and Rural development; Energy and bioenergy; Integrated and sustainable Farming systems; New application technologies and mechanisation; Post-harvest technologies; Smart farming / Precision agriculture; Soil, land and water engineering; Sustainable production in Farm buildings

    Advances in Robot Kinematics : Proceedings of the 15th international conference on Advances in Robot Kinematics

    Get PDF
    International audienceThe motion of mechanisms, kinematics, is one of the most fundamental aspect of robot design, analysis and control but is also relevant to other scientific domains such as biome- chanics, molecular biology, . . . . The series of books on Advances in Robot Kinematics (ARK) report the latest achievement in this field. ARK has a long history as the first book was published in 1991 and since then new issues have been published every 2 years. Each book is the follow-up of a single-track symposium in which the participants exchange their results and opinions in a meeting that bring together the best of world’s researchers and scientists together with young students. Since 1992 the ARK symposia have come under the patronage of the International Federation for the Promotion of Machine Science-IFToMM.This book is the 13th in the series and is the result of peer-review process intended to select the newest and most original achievements in this field. For the first time the articles of this symposium will be published in a green open-access archive to favor free dissemination of the results. However the book will also be o↵ered as a on-demand printed book.The papers proposed in this book show that robot kinematics is an exciting domain with an immense number of research challenges that go well beyond the field of robotics.The last symposium related with this book was organized by the French National Re- search Institute in Computer Science and Control Theory (INRIA) in Grasse, France

    Multibody dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: Formulations and Numerical Methods, Efficient Methods and Real-Time Applications, Flexible Multibody Dynamics, Contact Dynamics and Constraints, Multiphysics and Coupled Problems, Control and Optimization, Software Development and Computer Technology, Aerospace and Maritime Applications, Biomechanics, Railroad Vehicle Dynamics, Road Vehicle Dynamics, Robotics, Benchmark Problems. The conference is organized by the Department of Mechanical Engineering of the Universitat Politècnica de Catalunya (UPC) in Barcelona. The organizers would like to thank the authors for submitting their contributions, the keynote lecturers for accepting the invitation and for the quality of their talks, the awards and scientific committees for their support to the organization of the conference, and finally the topic organizers for reviewing all extended abstracts and selecting the awards nominees.Postprint (published version

    Radiobiology Textbook:Space Radiobiology

    Get PDF
    The study of the biologic effects of space radiation is considered a “hot topic,” with increased interest in the past years. In this chapter, the unique characteristics of the space radiation environment will be covered, from their history, characterization, and biological effects to the research that has been and is being conducted in the field. After a short introduction, you will learn the origin and characterization of the different types of space radiation and the use of mathematical models for the prediction of the radiation doses during different mission scenarios and estimate the biological risks due to this exposure. Following this, the acute, chronic, and late effects of radiation exposure in the human body are discussed before going into the detailed biomolecular changes affecting cells and tissues, and in which ways they differ from other types of radiation exposure. The next sections of this chapter are dedicated to the vast research that has been developed through the years concerning space radiation biology, from small animals to plant models and 3D cell cultures, the use of extremophiles in the study of radiation resistance mechanisms to the importance of ground-based irradiation facilities to simulate and study the space environment
    corecore