872 research outputs found

    A Practical Model and an Optimal Controller for Variable Speed Wind Turbine Permanent Magnet Synchronous Generator

    Get PDF
    The aim of this paper is the complete modeling and simulation of an optimal control system using practical setup parameters for a wind energy conversion system (WECS) through a direct driven permanent magnet synchronous generator (D-PMSG) feeding ac power to the utility grid. The generator is connected to the grid through a back-to-back PWM converter with a switching frequency of 10 KHz. A maximum power point tracking (MPPT) control is proposed to ensure the maximum power capture from wind turbine, and a PI controller designed for the wind turbine to generate optimum speed for the generator via an aerodynamic model. MATLAB/Simulink results demonstrate the accuracy of the developed control scheme

    Generator Systems for Marine Current Turbine Applications: A Comparative Study

    Get PDF
    Emerging technologies for marine current turbines are mainly related to works that have been carried out on wind turbines and ship propellers. It is then obvious that many electric generator topologies could be used for marine current turbines. As in the wind turbine context, doubly-fed induction generators and permanent magnet generators seem to be attractive solutions for harnessing the tidal current energy. In this paper, a comparative study between these two generator types is presented and fully analyzed in terms of generated power, maintenance, and operation constraints. This comparison is done for the Raz de Sein site (Brittany, France) using a multiphysics modeling simulation tool. This tool integrates, in a modular environment, the resource model, the turbine hydrodynamicmodel, and generator models. Experiments have also been carried out to confirm the simulation results.Financement de thÚse de Brest Métropole Océan

    DFIG versus PMSG for marine current turbine applications

    Get PDF
    Emerging technologies for marine current turbine are mainly relevant to works that have been carried out on wind turbines and ship propellers. It is then obvious that many electric generator topologies could be used for marine current turbines. As in the wind turbine context, doubly-fed induction generators and permanent magnet generators seems to be attractive solutions to be used to harness the tidal current energy. In this paper, a comparative study between these two generators type is presented and fully analyzed in terms of generated power, maintenance and operation constraints. This comparison is done for the Raz de Sein site (Brittany, France) using a multi physics modeling simulation tool. This tool integrates, in a modular environment, the resource model, the turbine hydrodynamic model and the generators models

    Power quality issues of 3MW direct-driven PMSG wind turbine

    Get PDF
    This paper presents power quality issues of a grid connected wind generation system with a MW-class direct-driven permanent magnet synchronous generator (PMSG). A variable speed wind turbine model was simulated and developed with the simulation tool of PSCAD/EMTDC. The model includes a wind turbine with one mass-model drive train model, a PMSG model and a full-scale voltage source back to back PWM converter. The converter controller model is employed in the dq-synchronous rotating reference frame and applied to both generator and grid sides. To achieve maximum power point tracking, a tip speed ratio method is applied in machine side, whereas DC voltage control is applied in grid side to achieve constant DC voltage. Due to wind fluctuation and power oscillation as a result of wind shear and tower shadow effects (3p), there will be a fluctuation in the output power and voltage. The concerned power quality issues in this work are Harmonics, power fluctuation and flicker emission. The measurements will be carried out under different wind speed and circumstances

    A Maximum Power Point Tracking Control Algorithms for a PMSG‐based WECS for Isolated Applications: Critical Review

    Get PDF
    This chapter deals with a comprehensive overview study of the direct‐driven (DD) permanent magnet synchronous generator (PMSG) for wind‐energy generation system for stand‐alone applications. The dynamic model of PMSG is presented, and different maximum power point tracking (MPPT) algorithms have been realized in the aim to compare their performance. A comparison of performances of the conventional P&O MPPT and the fuzzy logic P&O (FLC P&O) MPPT is presented. Control technique for the presented system is presented and analyzed for the generator side converter. The simulation results carried out using Matlab/Simulink software show the effectiveness of the wind turbine control system

    Modeling and Control of Diesel-Hydrokinetic Microgrids

    Get PDF
    A large number of decentralized communities in Canada and particularly in QuĂ©bec rely on diesel power generation. The cost of electricity and environmental concerns suggest that hydrokinetic energy is a potential for power generation. Hydrokinetic energy conversion systems (HKECSs) are clean, reliable alternatives, and more beneficial than other renewable energy sources and conventional hydropower generation. However, due to the stochastic nature of river speed and variable load patterns of decentralized communities, the use of a hybrid diesel- hydrokinetic (D-HK) microgrid system has advantages. A large or medium penetration level has a negative effect on the short-term (transient) and long-term (steady-state) performance of such a hybrid system if the HKECS is controlled based on conventional control schemes. The conventional control scheme of the HKECS is the maximum power point tracking (MPPT). In the long-term conditions, the diesel generator set (genset) can operate at a reduced load where the role of the HKECS is to reduce the electrical load on the diesel genset (light loading). In the short-term, the frequency of the microgrid can vary due to the variable nature of water speed and load patterns. This can lead to power quality problems like a high rate of change of frequency or power, frequency fluctuations, etc. Moreover, these problems are magnified in storage-less DHK microgrids where a conventional energy storage system is not available to mitigate power as well as frequency deviations by controlling active power. Therefore, developing sophisticated control strategies for the HKECS to mitigate problems as mentioned above are necessary. Another challenging issue is a hardware-in-the-loop (HIL) platform for testing and developing a D-HK microgrid. A dispatchable power controller for a fixed-pitch cross-flow turbine-based HKECS operating in the low rotational speed (stall) region is presented in this thesis. It delivers a given power requested by an operator provided that the water speed is high enough. If not, it delivers as much as possible, operating with an MPPT algorithm while meeting the basic operating limits (i.e., generator voltage and rotor speed, rated power, and maximum water speed), shutting down automatically if necessary. A supervisory control scheme provides a smooth transition between modes of operation as the water speed and reference power from the operator vary. The performance of the proposed dispatchable power controller and supervisory control algorithm is verified experimentally with an electromechanical-based hydrokinetic turbine (HKT) emulator. The permanent magnet synchronous generator (PMSG) is preferred in small HKECSs. So, a converter-based PMSG emulator as a testbed for designing, analyzing, and testing of the generator’s power electronic interface and its control system is developed. A 6-switch voltage source converter (VSC) is used as a power amplifier to mimic the behaviour of the PMSG supplying linear and non-linear loads. Technical challenges of the PMSG emulator are considered, and proper solutions are suggested. Finally, an active power sharing control strategy for a storage-less D-HK microgrid with medium and high penetration of hydrokinetic power to mitigate: 1) the effect of the grid frequency fluctuation due to instantaneous variation in the water speed/load, and 2) light loading operation of the diesel engine is proposed. A supplementary control loop that includes virtual inertia and frequency droop control is added to the conventional control system of HKECS in order to provide load power sharing and frequency support control. The proposed strategy is experimentally verified with diesel engine and HKT emulators controlled via a dSPACEÂź rapid control prototyping system. The transient and steady-state performance of the system including grid frequency and power balancing control are presented

    Dynamic Modeling and Performance Analysis of PMSG- based Variable Speed WTG: Case Study of Adama Wind Farm I, Ethiopia

    Get PDF
    In this paper, the performance of Permanent Magnet Synchronous Generator (PMSG) -based Variable Speed Wind Turbine Generator (WTG) at Adama Wind Farm I (WTG), connected to a grid is studied. To study the performance of the WTG, both machine and grid side converters are modeled and analyzed very well. On the machine side, maximum power point tracking (MPPT) for maximum energy extraction is done using the direct speed control (DSC) technique, which is linked with the optimal tip speed ratio for each wind speed value considered. On the grid side, dc-link voltage and reactive power flow to the grid are controlled. For this purpose, first, the simulation model of the system is prepared in MATLAB Simulink considering the dynamic mathematical model of the PMSG, and Wind Turbine Aerodynamic model using the user-defined function blocks. Then, the PI regulators designed for direct speed, torque (current) control, and dc-link voltage are employed in the model. Moreover, to study and analyze the behavior of the system in a variable speed operation, a wind speed starting from cut-in wind speed (3m/s) to the rated wind speed (11m/s) is applied in 4s. The simulation result of the existing system model shows that the actual values of performance variables correspond well with the analytical values of the system. In addition, the chosen control algorithms applied in the control system of the generator-side converter are hence verified

    A Review of Control Techniques for Wind Energy Conversion System

    Get PDF
    Wind energy is the most efficient and advanced form of renewable energy (RE) in recent decades, and an effective controller is required to regulate the power generated by wind energy. This study provides an overview of state-of-the-art control strategies for wind energy conversion systems (WECS). Studies on the pitch angle controller, the maximum power point tracking (MPPT) controller, the machine side controller (MSC), and the grid side controller (GSC) are reviewed and discussed. Related works are analyzed, including evolution, software used, input and output parameters, specifications, merits, and limitations of different control techniques. The analysis shows that better performance can be obtained by the adaptive and soft-computing based pitch angle controller and MPPT controller, the field-oriented control for MSC, and the voltage-oriented control for GSC. This study provides an appropriate benchmark for further wind energy research

    Power Management Strategies for a Wind Energy Source in an Isolated Microgrid and Grid Connected System

    Get PDF
    This thesis focuses on the development of power management control strategies for a direct drive permanent magnet synchronous generator (PMSG) based variable speed wind turbine (VSWT). Two modes of operation have been considered: (1) isolated/islanded mode, and (2) grid-connected mode. In the isolated/islanded mode, the system requires additional energy sources and sinks to counterbalance the intermittent nature of the wind. Thus, battery energy storage and photovoltaic (PV) systems have been integrated with the wind turbine to form a microgrid with hybrid energy sources. For the wind/battery hybrid system, several energy management and control issues have been addressed, such as DC link voltage stability, imbalanced power flow, and constraints of the battery state of charge (SOC). To ensure the integrity of the microgrid, and to increase its flexibility, dump loads and an emergency back-up AC source (can be a diesel generator set) have been used to protect the system against the excessive power production from the wind and PV systems, as well as the intermittent nature of wind source. A coordinated control strategy is proposed for the dump loads and back up AC source. An alternative control strategy is also proposed for a hybrid wind/battery system by eliminating the dedicated battery converter and the dump loads. To protect the battery against overcharging, an integrated control strategy is proposed. In addition, the dual vector voltage control (DVVC) is also developed to tackle the issues associated with unbalanced AC loads. To improve the performance of a DC microgrid consisting wind, battery, and PV, a distributed control strategy using DC link voltage (DLV) based control law is developed. This strategy provides simpler structure, less frequent mode transitions, and effective coordination among different sources without relying on real-time communication. In a grid-connected mode, this DC microgrid is connected to the grid through a single inverter at the point of common coupling (PCC). The generated wind power is only treated as a source at the DC side for the study of both unbalanced and balanced voltage sag issues at a distribution grid network. The proposed strategy consists of: (i) a vector current control with a feed-forward of the negative-sequence voltage (VCCF) to compensate for the negative sequence currents; and (ii) a power compensation factor (PCF) control for the VCCF to maintain the balanced power flow between the system and the grid. A sliding mode control strategy has also been developed to enhance the overall system performance. Appropriate grid code has been considered in this case. All the developed control strategies have been validated via extensive computer simulation with realistic system parameters. Furthermore, to valid developed control strategies in a realistic environment in real-time, a microgrid has been constructed using physical components: a wind turbine simulator (WTS), power electronic converters, simulated grid, sensors, real-time controllers and protection devices. All the control strategies developed in this system have been validated experimentally on this facility. In conclusion, several power management strategies and real-time control issues have been investigated for direct drive permanent magnet synchronous generator (PMSG) based variable speed wind turbine system in an islanded and grid-connected mode. For the islanded mode, the focuses have been on microgrid control. While for the grid-connected mode, main consideration has been on the mitigation of voltage sags at the point of common coupling (PCC)

    Modeling and control of stand-alone AC microgrids: centralized and distributed storage, energy management and distributed photovoltaic and wind generation

    Get PDF
    El aumento de la penetraciĂłn de energĂ­as renovables en la red elĂ©ctrica es necesario para el desarrollo de un sistema sostenible. Para hacerlo posible tĂ©cnicamente, se ha planteado el uso de microrredes, definidas como una combinaciĂłn de cargas, generadores distribuidos y elementos de almacenamiento controlados gracias a una estrategia global de gestiĂłn energĂ©tica. AdemĂĄs, las microrredes aumentan la fiabilidad del sistema puesto que pueden funcionar en modo aislado en caso de fallo de red. Esta tesis se centra en el desarrollo de microrredes AC en funcionamiento aislado. El objetivo principal es el diseño y la implementaciĂłn de estrategias de gestiĂłn energĂ©ticas sin utilizar cables de comunicaciĂłn entre los distintos elementos, lo que permite reducir los costes del sistema y aumentar su fiabilidad. Para ello, se abordan los siguientes aspectos: ‱ GestiĂłn energĂ©tica de una microrred AC con generador diesel, almacenamiento centralizado y generaciĂłn renovable distribuida ‱ Diseño de tĂ©cnicas de control “droop” para repartir la corriente entre inversores conectados en paralelo ‱ GestiĂłn energĂ©tica de una microrred AC con almacenamiento distribuido y generaciĂłn renovable distribuida ‱ Control de la etapa DC/DC de inversores fotovoltaicos con pequeño condensador de entrada en el seno de una microrred ‱ Control de extracciĂłn de mĂĄxima potencia sin sensores mecĂĄnicos para sistemas minieĂłlicos en el seno de una microrred.The introduction of distributed renewable generators into the electrical grid is required for a sustainable system. In order to increase the penetration of renewable energies, microgrids are usually proposed as one of the most promising technologies. A microgrid is a combination of loads, distributed generators and storage elements which behaves as a single controllable unit for the grid operator. Furthermore, microgrids make it possible to improve the system reliability because they are capable of standalone operation in case of grid failure. This thesis is focused on the development of AC microgrids under stand-alone operation. Its main objective is to design and implement overall control strategies which do not require the use of communication cables, thereby reducing costs and improving reliability. For this purpose, the following aspects are tackled: ‱ Energy management of an AC microgrid with diesel generator, centralized storage and distributed renewable generation ‱ Design of droop methods so that the current is shared among parallel-connected inverters ‱ Energy management of an AC microgrid with distributed storage and distributed renewable generation ‱ Control of the DC/DC stage in photovoltaic inverters with small input capacitors within a microgrid ‱ Sensorless MPPT control for small wind turbines within a microgrid.Programa Oficial de Doctorado en EnergĂ­as Renovables (RD 1393/2007)Energia Berriztagarrietako Doktoretza Programa Ofiziala (ED 1393/2007
    • 

    corecore